Clinical Features Related to Severity and Mortality among COVID-19 Patients in a Pre-Vaccine Period in Luanda, Angola
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Sample Collection and Testing
2.3. Data Sources and Processing
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Studied Population
3.2. Baseline Laboratory Parameters Related to Disease Severity and Clinical Outcome
3.3. Treatments and Clinical Outcomes among COVID-19 Patients
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, H.; Stratton, C.W.; Tang, Y.W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J. Med. Virol. 2020, 92, 401–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544. [Google Scholar]
- Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe 2020, 27, 325–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Sohrabia, C.; Alsafib, Z.; O’Neilla, N.; Khanb, M.; Kerwanc, A.; Al-Jabirc, A.; Iosifidisa, C.; Aghad, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar]
- Adhanom Ghebreyesus, T. WHO Director-General’s opening remarks at the media briefing on COVID-19-11 March 2020. World Health Organ. 2020, 4, 1–4. [Google Scholar]
- Bulut, C.; Kato, Y. Epidemiology of COVID-19. Turkish J. Med. Sci. 2020, 50, 563–570. [Google Scholar] [CrossRef]
- WHO Coronavirus disease (COVID-19): Situation Report–107. World Health Organ. 2020, 2019, 2633.
- WHO Coronavirus Disease: Symptoms. WHO. 2022. Available online: https://covid19.who.int/ (accessed on 1 September 2022).
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Li, T.; Lu, H.; Zhang, W. Clinical observation and management of COVID-19 patients. Emerg. Microbes Infect. 2020, 9, 687–690. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Dong, X.; Cao, Y.; Yuan, Y.; Yang, Y.; Yan, Y.; Akdis, C.A.; Gao, Y. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy Eur. J. Allergy Clin. Immunol. 2020, 75, 1730–1741. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Weiss, P.; Murdoch, D.R. Clinical course and mortality risk of severe COVID-19. Lancet Comment 2020, 395, 1014–1015. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Huang, J.; Zhong, M.; Yuan, K.; Chen, Y. Seroprevalence of Dengue Virus among Pregnant Women in Guangdong, China. Viral Immunol. 2020, 33, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, B.M.; De Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med. 2020, 8, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Wong, C.K.; Lam, C.W.K.; Wu, A.K.L.; Ip, W.K.; Lee, N.L.S.; Chan, I.H.S.; Lit, L.C.W.; Hui, D.S.C.; Chan, M.H.M.; Chung, S.S.C.; et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 2004, 136, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. An Off. Publ. Infect. Dis. Soc. Am. 2020, 15, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Phelan, T.; Dunne, J.; Conlon, N.; Cheallaigh, C.N.í.; Abbott, W.M.; Faba-Rodriguez, R.; Amanat, F.; Krammer, F.; Little, M.A.; Hughes, G.; et al. Dynamic Assay for Profiling Anti-SARS-CoV-2 Antibodies and Their ACE2/Spike RBD Neutralization Capacity. Viruses 2021, 13, 1371. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. J. Am. Med. Assoc. 2020, 323, 1061. [Google Scholar] [CrossRef] [PubMed]
- Sebastião, C.S.; Neto, Z.; Martinez, P.; Jandondo, D.; Antonio, J.; Galangue, M.; De Carvalho, M.; David, K.; Miranda, J.; Afonso, P.; et al. Sociodemographic characteristics and risk factors related to SARS-CoV-2 infection in Luanda, Angola. PLoS ONE 2021, 16, 1–10. [Google Scholar]
- Gagnon, L.R.; Sadasivan, C.; Yogasundaram, H.; Oudit, G.Y. Review of Hydroxychloroquine Cardiotoxicity: Lessons From the COVID-19 Pandemic. Curr. Heart Fail. Rep. 2022, 27, 1–9. [Google Scholar] [CrossRef]
- Di Stefano, L.; Ogburn, E.L.; Ram, M.; Scharfstein, D.O.; Li, T.; Khanal, P.; Baksh, S.N.; McBee, N.; Gruber, J.; Gildea, M.R.; et al. Hydroxychloroquine/chloroquine for the treatment of hospitalized patients with COVID-19: An individual participant data meta-analysis. PLoS ONE 2022, 17, e0273526. [Google Scholar] [CrossRef]
- Sebastião, C.S.; Gaston, C.; Paixão, J.P.; Sacomboio, E.N.M.; Neto, Z.; de Vasconcelos, J.N.; Morais, J. Coinfection between SARS-CoV-2 and vector-borne diseases in Luanda, Angola. J. Med. Virol. 2021, 94, 366–371. [Google Scholar] [CrossRef]
- Monticelli, M.; Mele, B.H.; Andreotti, G.; Cubellis, M.V.; Riccio, G. Why does SARS-CoV-2 hit in different ways? Host genetic factors can influence the acquisition or the course of COVID-19. Eur. J. Med. Genet. 2021, 64, 104227. [Google Scholar] [CrossRef]
- Marklund, E.; Leach, S.; Axelsson, H.; Nyström, K.; Norder, H.; Bemark, M.; Angeletti, D.; Lundgren, A.; Nilsson, S.; Andersson, L.-M.; et al. Serum-IgG responses to SARS-CoV-2 after mild and severe COVID-19 infection and analysis of IgG non-responders. PLoS ONE 2020, 15, e0241104. [Google Scholar] [CrossRef]
- Corona, A.; Richini, G.; Simoncini, S.; Zangrandi, M.; Biasini, M.; Russo, G.; Pasqua, M.; Santorsola, C.; Gregorini, C.; Giordano, C. Treating Critically Ill Patients Experiencing SARS-CoV-2 Severe Infection with Ig-M and Ig-A Enriched Ig-G Infusion. Antibiotics 2021, 10, 930. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, B.; Fu, M.; Li, M.; Yuan, X.; Zhu, Y.; Peng, J.; Guo, H.; Lu, Y. Clinical and inflammatory features based machine learning model for fatal risk prediction of hospitalized COVID-19 patients: Results from a retrospective cohort study. Ann. Med. 2021, 53, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Maklad, S.; Basiony, F. Electrolyte disturbances in patients with acute exacerbation of chronic obstructive pulmonary disease. Sci. J. Al-Azhar Med. Fac. Girls 2019, 3, 427. [Google Scholar] [CrossRef]
- Albeladi, F.I.; Wahby Salem, I.M.; Albandar, A.A.; Almusaylim, H.A.; Albandar, A.S. Electrolyte imbalance in infectious disease patients at King Abdulaziz Hospital, Jeddah. J. Taibah Univ. Med. Sci. 2022, 17, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Chen, D.; Li, X.; Song, Q.; Hu, C.; Hu, C.; Su, F.; Su, F.; Dai, J.; Dai, J.; et al. Assessment of Hypokalemia and Clinical Characteristics in Patients with Coronavirus Disease 2019 in Wenzhou, China. JAMA Netw. Open 2020, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Weiner, I.D.; Wingo, C.S. Hyperkalemia: A potential silent killer. J. Am. Soc. Nephrol. 1998, 9, 1535–1543. [Google Scholar] [CrossRef]
- Moreno, -P.O.; Leon-Ramirez, J.M.; Fuertes-Kenneally, L.; Perdiguero, M.; Andres, M.; Garcia-Navarro, M.; Ruiz-Torregrosa, P.; Boix, V.; Gil, J.; Merino, E.; et al. Hypokalemia as a sensitive biomarker of disease severity and the requirement for invasive mechanical ventilation requirement in COVID-19 pneumonia: A case series of 306 Mediterranean patients. Int. J. Infect. Dis. 2020, 100, 449–454. [Google Scholar] [CrossRef]
- Petnak, T.; Thongprayoon, C.; Cheungpasitporn, W.; Bathini, T.; Vallabhajosyula, S.; Chewcharat, A.; Kashani, K. Serum Chloride Levels at Hospital Discharge and One-Year Mortality among Hospitalized Patients. Med. Sci. 2020, 8, 22. [Google Scholar] [CrossRef]
- Hong, K.-H.; Choi, J.-P.; Hong, S.-H.; Lee, J.; Kwon, J.-S.; Kim, S.-M.; Park, S.Y.; Rhee, J.-Y.; Kim, B.-N.; Choi, H.J.; et al. Predictors of mortality in Middle East respiratory syndrome (MERS). Thorax 2018, 73, 286–289. [Google Scholar] [CrossRef]
- Choi, K.W.; Chau, T.N.; Tsang, O.; Tso, E.; Chiu, M.C.; Tong, W.L.; Lee, P.O.; Ng, T.K.; Ng, W.F.; Lee, K.C.; et al. Outcomes and Prognostic Factors in 267 Patients with Severe Acute Respiratory Syndrome in Hong Kong. Ann. Intern. Med. 2003, 139, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Alfaraj, S.H.; Al-Tawfiq, J.A.; Assiri, A.Y.; Alzahrani, N.A.; Alanazi, A.A.; Memish, Z.A. Clinical predictors of mortality of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: A cohort study. Travel Med. Infect. Dis. 2019, 29, 48–50. [Google Scholar] [CrossRef]
- Milbrandt, E.B.; Reade, M.C.; Lee, M.; Shook, S.L.; Angus, D.C.; Kong, L.; Carter, M.; Yealy, D.M.; Kellum, J.A. Prevalence and Significance of Coagulation Abnormalities in Community-Acquired Pneumonia. Mol. Med. 2009, 15, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Rodelo, J.R.; De La Rosa, G.; Valencia, M.L.; Ospina, S.; Arango, C.M.; Gómez, C.I.; García, A.; Nuñez, E.; Jaimes, F.A. D-dimer is a significant prognostic factor in patients with suspected infection and sepsis. Am. J. Emerg. Med. 2012, 30, 1991–1999. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristic | N (%) | Disease Severity | Clinical Outcome | ||||
---|---|---|---|---|---|---|---|
Non-Severe | Severe | p-Value | Survivors | Non-Survivors | p-Value | ||
Overall | 101 (100%) | 23 (22.8) | 78 (77.2) | 91 (90.1) | 10 (9.90) | ||
Age | |||||||
Mean ± SD—yr | 51.1 ± 14.2 | 50.4 ± 13.1 | 51.3 ± 14.5 | 0.774 | 50.2 ± 14.1 | 59.6 ± 12.5 | 0.045 |
Distribution—No. (%) | |||||||
<20 yr | 1 (1.00) | 0 (0.0) | 1 (1.30) | 0.826 | 1 (1.10) | 0 (0.0) | 0.161 |
20–40 yr | 24 (23.8) | 5 (21.7) | 19 (24.4) | 24 (26.4) | 0 (0.0) | ||
>40 yr | 76 (75.2) | 18 (78.3) | 58 (74.4) | 66 (72.5) | 10 (100) | ||
Gender—No. (%) | |||||||
Female | 40 (39.6) | 11 (47.8) | 29 (37.2) | 0.359 | 35 (38.5) | 5 (50.0) | 0.479 |
Male | 61 (60.4) | 12 (52.2) | 49 (62.8) | 56 (61.5) | 5 (50.0) | ||
Place of residence—No. (%) | |||||||
Rural area | 46 (45.5) | 9 (39.1) | 37 (47.4) | 0.482 | 42 (46.2) | 4 (40.0) | 0.711 |
Urban area | 55 (54.5) | 14 (60.9) | 41 (52.6) | 49 (53.8) | 6 (60.0) | ||
Fever on admission | |||||||
Mean (SD) | 36.5 ± 0.73 | 36.3 ± 0.27 | 36.5 ± 0.81 | 0.268 | 36.5 ± 0.69 | 36.5 ± 1.04 | 0.955 |
Distribution of temp.—°C | |||||||
<37.5 °C | 88 (87.1) | 23 (100) | 65 (83.3) | 0.221 | 80 (87.9) | 8 (80.0) | 0.565 |
37.5–37.9 °C | 3 (3.00) | 0 (0.0) | 3 (3.80) | 3 (3.30) | 0 (0.0) | ||
38.0–38.9 °C | 9 (8.90) | 0 (0.0) | 9 (11.5) | 7 (7.70) | 2 (20.0) | ||
≥39.0 °C | 1 (1.00) | 0 (0.0) | 1 (1.30) | 1 (1.10) | 0 (0.0) | ||
Signs and symptoms—No. (%) | 78 (77.2) | 0 (0.0) | 78 (100) | <0.001 | 68 (74.7) | 10 (100) | 0.070 |
Fever | 36 (35.6) | 0 (0.0) | 36 (46.2) | <0.001 | 34 (37.4) | 2 (20.0) | 0.277 |
Cough | 37 (36.6) | 0 (0.0) | 37 (47.4) | <0.001 | 32 (35.2) | 5 (50.0) | 0.355 |
Headache | 15 (14.9) | 0 (0.0) | 15 (19.2) | 0.023 | 14 (15.4) | 1 (10.0) | 0.649 |
Fatigue | 8 (7.90) | 0 (0.0) | 8 (10.3) | 0.109 | 7 (7.70) | 1 (10.0) | 0.798 |
Asthenia | 27 (26.7) | 0 (0.0) | 27 (34.6) | <0.001 | 23 (25.3) | 4 (40.0) | 0.318 |
Dyspnea | 19 (18.8) | 0 (0.0) | 19 (24.4) | 0.009 | 16 (17.6) | 3 (30.0) | 0.340 |
Osteomyalgia | 16 (15.8) | 0 (0.0) | 16 (20.5) | 0.018 | 15 (16.5) | 1 (10.0) | 0.594 |
Gastrointestinal symptoms | 27 (26.7) | 0 (0.0) | 27 (34.6) | <0.001 | 24 (26.4) | 3 (30.0) | 0.806 |
Apathy | 2 (2.00) | 0 (0.0) | 2 (2.60) | 0.438 | 1 (1.10) | 1 (10.0) | 0.055 |
Anosmia | 9 (8.90) | 0 (0.0) | 9 (11.5) | 0.088 | 9 (9.90) | 0 (0.0) | 0.297 |
Malaise | 20 (19.8) | 0 (0.0) | 20 (25.6) | 0.007 | 16 (17.6) | 4 (40.0) | 0.091 |
Hemiplegia | 1 (1.00) | 0 (0.0) | 1 (1.30) | 0.585 | 0 (0.0) | 1 (10.0) | 0.002 |
Loss of consciousness | 1 (1.00) | 0 (0.0) | 1 (1.30) | 0.585 | 0 (0.0) | 1 (10.0) | 0.002 |
Coexisting disorder—No. (%) | |||||||
No | 36 (35.6) | 17 (73.9) | 19 (24.4) | <0.001 | 35 (38.5) | 1 (10.0) | 0.074 |
Yes | 65 (64.4) | 6 (26.1) | 59 (75.6) | 56 (61.5) | 9 (90.0) | ||
Disorder distribution—No. (%) | |||||||
Chronic pulmonary disease | 3 (3.00) | 0 (0.0) | 3 (3.80) | 0.438 | 3 (3.30) | 0 (0.0) | 0.636 |
Arterial hypertension | 42 (41.6) | 4 (17.4) | 38 (48.7) | 0.007 | 36 (39.6) | 6 (60.0) | 0.213 |
Chronic renal disease | 6 (5.90) | 0 (0.0) | 6 (7.70) | 0.170 | 4 (4.40) | 2 (20.0) | 0.048 |
Diabetes | 17 (16.8) | 4 (17.4) | 13 (16.7) | 0.935 | 15 (16.5) | 2 (20.0) | 0.778 |
Cancer | 1 (1.00) | 0 (0.0) | 1 (1.30) | 0.585 | 1 (1.10) | 0 (0.0) | 0.739 |
Immunodeficiency | 1 (1.00) | 0 (0.0) | 1 (1.30) | 0.585 | 1 (1.10) | 0 (0.0) | 0.739 |
Hepatitis B infection | 1 (1.00) | 0 (0.0) | 1 (1.30) | 0.585 | 1 (1.10) | 0 (0.0) | 0.739 |
Allergic rhinitis | 1 (1.00) | 0 (0.0) | 1 (1.30) | 0.585 | 0 (0.0) | 1 (10.0) | 0.002 |
IgG | |||||||
No | 54 (66.7) | 15 (78.9) | 39 (62.9) | 0.194 | 49 (68.1) | 5 (55.6) | 0.453 |
Yes | 27 (33.3) | 4 (21.1) | 23 (37.1) | 23 (31.9) | 4 (44.4) |
Laboratory Findings | All Patients (101) | Gender | Age Group | Disease Severity | Clinical Outcome | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N (%) | Mean ± SD | Female (Mean ± SD) | Male (Mean ± SD) | p- Value | <40 yr (Mean ± SD) | ≥40 yr (Mean ± SD) | p-Value | Non-Severe (n = 23) | Severe (n = 78) | p-Value | Survivors (n = 91) | Non-Survivors (n = 10) | p-Value | |
Blood routine examination | ||||||||||||||
Erythrocytes, ×1012/L | 101 (100) | 4.62 ± 3.09 | 4.43 ± 0.95 | 4.74 ± 1.11 | 0.140 | 4.94 ± 1.31 | 4.52 ± 0.95 | 0.149 | 4.77 ± 1.07 | 4.58 ± 1.06 | 0.455 | 4.67 ± 1.05 | 4.14 ± 1.04 | 0.131 |
Hemoglobin, g/dL | 101 (100) | 12.7 ± 3.09 | 12.1 ± 2.78 | 13.1 ±3.25 | 0.109 | 13.7 ± 3.81 | 12.4 ± 2.77 | 0.113 | 13.1 ± 3.10 | 12.6 ± 3.12 | 0.552 | 12.8 ± 3.06 | 11.6 ± 3.37 | 0.238 |
Leukocytes, ×109/L | 101 (100) | 7.44 ± 4.13 | 6.94 ± 2.97 | 7.77 ± 4.73 | 0.282 | 6.39 ± 3.56 | 7.79 ± 4.26 | 0.111 | 4.57 ± 1.08 | 7.87 ± 4.66 | 0.083 | 6.79 ± 4.16 | 12.7 ± 4.62 | 0.079 |
Neutrophils, ×109/L | 98 (97) | 4.75 ± 3.40 | 4.43 ± 2.92 | 4.97 ± 3.70 | 0.420 | 4.34 ± 3.19 | 4.89 ± 3.47 | 0.472 | 2.40 ± 0.17 | 5.48 ± 4.17 | 0.035 | 4.40 ± 3.53 | 10.6 ± 4.60 | 0.385 |
Lymphocytes, ×109/L | 99 (98) | 1.54 ± 0.75 | 1.69 ± 0.71 | 1.44 ± 0.77 | 0.096 | 1.45 ± 0.70 | 1.58 ± 0.77 | 0.440 | 1.37 ± 0.47 | 1.61 ± 0.99 | 0.081 | 1.62 ± 0.97 | 1.19 ± 0.18 | 0.098 |
Eosinophil, ×109/L | 98 (97.0) | 0.12 ± 0.27 | 0.15 ± 0.32 | 0.10 ± 0.22 | 0.328 | 0.10 ± 0.14 | 0.13 ± 0.30 | 0.607 | 0.21 ± 0.49 | 0.10 ± 0.15 | 0.078 | 0.11 ± 0.27 | 0.21 ± 0.18 | 0.334 |
Platelets, ×103/mm3 | 101 (100) | 229 ± 122 | 218 ± 75.5 | 237 ± 144 | 0.391 | 211 ± 83.8 | 235 ± 132 | 0.292 | 154 ± 49.8 | 270 ± 155 | 0.212 | 252 ± 157 | 255 ± 55.2 | 0.215 |
Serum biochemical index | ||||||||||||||
Glucose, mg/dL | 96 (95) | 126 ± 89.3 | 124 ± 100 | 127 ± 82.9 | 0.896 | 103 ± 80.4 | 132 ± 91.1 | 0.160 | 117 ± 19.0 | 148 ± 97.0 | 0.739 | 144 ± 92.2 | 140 ± 95.0 | 0.512 |
Urea, mg/dL | 93 (92) | 28.2 ± 22.3 | 27.1 ± 29.3 | 28.9 ± 17.0 | 0.733 | 19.7 ± 10.9 | 30.9 ± 24.3 | 0.003 | 19.2 ± 1.95 | 28.1 ± 8.82 | 0.017 | 26.5 ± 9.20 | 29.2 ± 0.98 | 0.039 |
Creatinine, mg/dL | 94 (93) | 1.45 ± 2.99 | 2.16 ± 4.85 | 1.03 ± 0.29 | 0.176 | 0.89 ± 3.22 | 1.63 ± 3.42 | 0.074 | 1.03 ± 0.49 | 0.99 ± 0.38 | 0.362 | 1.06 ± 0.36 | 0.50 ± 0.00 | 0.025 |
AST, U/L | 99 (98) | 46.3 ± 38.7 | 31.0 ± 16.6 | 55.9 ± 45.1 | <0.001 | 49.1 ± 52.6 | 45.5 ± 33.8 | 0.755 | 63.0 ± 32.1 | 34.6 ± 23.4 | 0.069 | 35.4 ± 21.5 | 70.6 ± 53.0 | 0.629 |
ALT, U/L | 98 (97) | 41.3 ± 45.1 | 24.5 ± 20.7 | 52.0 ± 52.7 | <0.001 | 46.9 ± 54.1 | 40.0 ± 42.2 | 0.554 | 61.8 ± 18.1 | 30.7 ± 20.1 | 0.261 | 34.4 ± 20.4 | 43.5 ± 48.7 | 0.276 |
LDH, U/L | 73 (72) | 416 ± 318 | 379 ± 226 | 439 ± 364 | 0.388 | 317 ± 268 | 451 ± 329 | 0.087 | 291 ± 59.3 | 380 ± 281 | 0.091 | 297 ± 139 | 991 ± 309 | 0.114 |
SCK, U/L | 86 (85) | 261 ± 326 | 189 ± 182 | 303 ± 383 | 0.066 | 155 ± 156 | 287 ± 352 | 0.024 | 355 ± 168 | 197 ± 248 | 0.253 | 230 ± 252 | 136 ± 49.3 | 0.039 |
Alkaline phosphatase, U/L | 78 (77) | 87.5 ± 50.3 | 105 ± 62.6 | 76.5 ± 37.5 | 0.029 | 117 ± 82.2 | 79.4 ± 33.7 | 0.084 | 79.0 ± 14.1 | 82.6 ± 52.1 | 0.394 | 80.9 ± 50.6 | 92.8 ± 14.0 | 0.675 |
Albumin, g/L | 82 (81) | 38.3 ± 7.15 | 37.7 ± 7.79 | 38.5 ± 6.81 | 0.645 | 37.3 ± 9.21 | 38.5 ± 6.57 | 0.620 | 45.8 ± 2.39 | 35.6 ± 7.69 | 0.125 | 37.7 ± 8.27 | 32.0 ± 0.99 | 0.052 |
D-Dimer, g/L | 37 (37) | 5.47 ± 4.01 | 5.84 ± 3.51 | 5.27 ± 4.32 | 0.671 | 3.50 ± 3.57 | 6.42 ± 3.93 | 0.033 | 2.75 ± 4.01 | 4.39 ± 3.84 | 0.274 | 4.22 ± 3.98 | 3.45 ± 2.37 | 0.311 |
C-reactive protein, mg/L | 95 (94) | 7.30 ± 15.0 | 5.56 ± 7.33 | 8.36 ± 18.1 | 0.294 | 4.61 ± 7.04 | 8.16 ± 16.7 | 0.153 | 1.57 ± 1.05 | 7.44 ± 7.42 | 0.006 | 5.61 ± 6.54 | 15.2 ± 8.90 | 0.099 |
Sodium, mmol/L | 66 (65) | 129 ± 8.66 | 132 ± 10.4 | 128 ± 7.36 | 0.070 | 124 ± 11.5 | 130 ± 7.86 | 0.160 | 136 ± 5.10 | 127 ± 7.92 | 0.007 | 128 ± 8.57 | 131 ± 4.17 | 0.403 |
Potassium, mmol/L | 60 (59) | 8.78 ± 8.38 | 8.04 ± 9.78 | 9.12 ± 7.75 | 0.677 | 10.1 ± 14.1 | 8.54 ± 7.13 | 0.748 | 3.81 ± 0.54 | 9.06 ± 9.78 | 0.082 | 8.29 ± 9.59 | 8.07 ± 6.14 | 0.667 |
Chloride, mmol/L | 65 (64) | 102 ± 3.81 | 103 ± 3.51 | 101 ± 3.74 | 0.017 | 101 ± 2.82 | 102 ± 3.95 | 0.431 | 102 ± 1.03 | 100 ± 3.61 | 0.061 | 101 ± 3.55 | 99.7 ± 1.06 | 0.026 |
Infection-related factors | ||||||||||||||
PCT, ng/mL | 37 (37) | 0.62 ± 2.08 | 1.27 ± 3.78 | 0.38 ± 0.92 | 0.251 | 2.09 ± 4.28 | 0.22 ± 0.46 | 0.256 | 0.09 ± 0.02 | 1.04 ± 3.01 | 0.150 | 0.98 ± 2.93 | 0.19 ± 0.15 | 0.900 |
IL-6, ng/dL | 40 (40) | 136 ± 314 | 105 ± 259 | 151 ± 340 | 0.477 | 364 ± 554 | 60.2 ± 114 | 0.119 | 142 ± 231 | 191 ± 451 | 0.855 | 202 ± 441 | 20.3 ± 19.3 | 0.524 |
Treatment | Total (n = 101) | Gender | Age Group | Disease Severity | Clinical Outcome | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Female (n = 40) | Male (n = 61) | p-Value | <40 yr (n = 25) | ≥40 yr (n = 76) | p-Value | Non-Severe (n = 23) | Severe (n = 78) | p-Value | Survivors (n = 91) | Non-Survivors (n = 10) | p-Value | ||
Antibiotics | 74 (73.3) | 24 (60.0) | 50 (82.0) | 0.015 | 14 (56.0) | 60 (78.9) | 0.025 | 7 (30.4) | 67 (85.9) | <0.001 | 64 (70.3) | 10 (100) | 0.044 |
Corticosteroids | 52 (51.5) | 14 (35.0) | 38 (62.3) | 0.007 | 9 (36.0) | 43 (56.6) | 0.074 | 5 (21.7) | 47 (60.3) | 0.001 | 44 (48.4) | 8 (80.0) | 0.057 |
Anticoagulant | 43 (42.6) | 14 (35.0) | 29 (47.5) | 0.213 | 4 (16.0) | 39 (51.3) | 0.002 | 3 (13.0) | 40 (51.3) | 0.001 | 36 (39.6) | 7 (70.0) | 0.065 |
Antihypertensives | 19 (18.8) | 4 (10.0) | 15 (24.6) | 0.067 | 1 (4.00) | 18 (23.7) | 0.029 | 3 (13.0) | 16 (20.5) | 0.421 | 18 (19.8) | 1 (10.0) | 0.453 |
Analgesic | 12 (11.9) | 6 (15.0) | 6 (9.80) | 0.433 | 4 (16.0) | 8 (10.5) | 0.463 | 1 (4.30) | 11 (14.1) | 0.204 | 12 (13.2) | 0 (0.0) | 0.221 |
Antiacid | 8 (7.90) | 3 (7.50) | 5 (8.20) | 0.899 | 2 (8.00) | 6 (7.90) | 0.987 | 0 (0.0) | 8 (10.3) | 0.109 | 6 (6.60) | 2 (20.0) | 0.136 |
Antidiabetics | 7 (6.90) | 1 (2.50) | 6 (9.80) | 0.156 | 0 (0.0) | 7 (9.20) | 0.116 | 1 (4.30) | 6 (7.70) | 0.579 | 7 (7.70) | 0 (0.0) | 0.363 |
Antimalarial | 5 (5.00) | 1 (2.50) | 4 (6.60) | 0.358 | 2 (8.00) | 3 (3.90) | 0.418 | 0 (0.0) | 5 (6.40) | 0.213 | 4 (4.40) | 1 (10.0) | 0.438 |
Vitamins | 5 (5.00) | 2 (5.00) | 3 (4.90) | 0.985 | 2 (8.00) | 3 (3.90) | 0.418 | 0 (0.0) | 5 (6.40) | 0.213 | 5 (5.50) | 0 (0.0) | 0.447 |
Antiemetic | 3 (3.00) | 1 (2.50) | 2 (3.30) | 0.822 | 1 (4.00) | 2 (2.60) | 0.727 | 0 (0.0) | 3 (3.80) | 0.340 | 3 (3.30) | 0 (0.0) | 0.560 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sebastião, C.S.; Cogle, A.; Teixeira, A.D.; Cândido, A.M.; Tchoni, C.; Amorim, M.J.; Loureiro, N.; Parimbelli, P.; Penha-Gonçalves, C.; Demengeot, J.; et al. Clinical Features Related to Severity and Mortality among COVID-19 Patients in a Pre-Vaccine Period in Luanda, Angola. Trop. Med. Infect. Dis. 2022, 7, 338. https://doi.org/10.3390/tropicalmed7110338
Sebastião CS, Cogle A, Teixeira AD, Cândido AM, Tchoni C, Amorim MJ, Loureiro N, Parimbelli P, Penha-Gonçalves C, Demengeot J, et al. Clinical Features Related to Severity and Mortality among COVID-19 Patients in a Pre-Vaccine Period in Luanda, Angola. Tropical Medicine and Infectious Disease. 2022; 7(11):338. https://doi.org/10.3390/tropicalmed7110338
Chicago/Turabian StyleSebastião, Cruz S., Adis Cogle, Alice D’Alva Teixeira, Ana Micolo Cândido, Chissengo Tchoni, Maria João Amorim, N’gueza Loureiro, Paolo Parimbelli, Carlos Penha-Gonçalves, Jocelyne Demengeot, and et al. 2022. "Clinical Features Related to Severity and Mortality among COVID-19 Patients in a Pre-Vaccine Period in Luanda, Angola" Tropical Medicine and Infectious Disease 7, no. 11: 338. https://doi.org/10.3390/tropicalmed7110338
APA StyleSebastião, C. S., Cogle, A., Teixeira, A. D., Cândido, A. M., Tchoni, C., Amorim, M. J., Loureiro, N., Parimbelli, P., Penha-Gonçalves, C., Demengeot, J., Sacomboio, E., Mendes, M., Arrais, M., Morais, J., Vasconcelos, J. N. d., & Brito, M. (2022). Clinical Features Related to Severity and Mortality among COVID-19 Patients in a Pre-Vaccine Period in Luanda, Angola. Tropical Medicine and Infectious Disease, 7(11), 338. https://doi.org/10.3390/tropicalmed7110338