Pattern of Aedes aegypti and Aedes albopictus Associated with Human Exposure to Dengue Virus in Kinshasa, the Democratic Republic of the Congo
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Study Design and Period
2.3. Statistical Analysis
2.4. Ethical Consideration
3. Results
Eneral Characteristics of the Study Population
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- WHO. Dengue and Severe Dengue; World Health Organisation: Geneva, Switzerland, 2022; Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 19 September 2022).
- WHO. World-Malaria-Report-2021; World Health Organisation: Geneva, Switzerland, 2021; Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 (accessed on 19 September 2022).
- Nana-Ndjangwo, S.M.; Djiappi-Tchamen, B.; Mony, R.; Demanou, M.; Keumezeu-Tsafack, J.; Bamou, R.; Awono-Ambene, P.; Bilong Bilong, C.F.; Antonio-Nkondjio, C. Assessment of Dengue and Chikungunya Infections among Febrile Patients Visiting Four Healthcare Centres in Yaoundé and Dizangué, Cameroon. Viruses 2022, 14, 2127. [Google Scholar] [CrossRef] [PubMed]
- Rugarabamu, S.; Rumisha, S.F.; Mwanyika, G.O.; Sindato, C.; Lim, H.-Y.; Misinzo, G.; Mboera, L.E.G. Viral haemorrhagic fevers and malaria co-infections among febrile patients seeking health care in Tanzania. Infect. Dis. Poverty 2022, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Siribhadra, A.; Ngamprasertchai, T.; Rattanaumpawan, P.; Lawpoolsri, S.; Luvira, V.; Pitisuttithum, P. Antimicrobial Stewardship in Tropical Infectious Diseases: Focusing on Dengue and Malaria. Trop. Med. Infect. Dis. 2022, 7, 159. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-J.S.; Higgs, S.; Vanlandingham, D.L. Biological Control Strategies for Mosquito Vectors of Arboviruses. Insects 2017, 8, 21. [Google Scholar] [CrossRef]
- Girard, M.; Nelson, C.B.; Picot, V.; Gubler, D.J. Arboviruses: A global public health threat. Vaccine 2020, 38, 3989–3994. [Google Scholar] [CrossRef]
- Oragwa, A.O.; Oragwa, F.C.; Oluwayelu, D.O. Serologic evidence of silent Rift Valley fever virus infection among occupationally exposed persons in northern Nigeria. J. Infect. Dev. Ctries. 2022, 16, 881–887. [Google Scholar] [CrossRef]
- Kanunfre, K.A.; Rocha, M.C.; Malta, M.B.; de-Souza, R.M.; Castro, M.C.; Boscardin, S.B.; Souza, H.F.S.; Witkin, S.S.; Cardoso, M.A.; Okay, T.S. Silent circulation of Chikungunya virus among pregnant women and newborns in the Western Brazilian Amazon before the first outbreak of chikungunya fever. Rev. Inst. Med. Trop. São Paulo 2022, 64, e25. [Google Scholar] [CrossRef]
- Jing, Q.; Wang, M. Dengue epidemiology. Glob. Health J. 2019, 3, 37–45. [Google Scholar] [CrossRef]
- Bettis, A.A.; Jackson, M.L.; Yoon, I.-K.; Breugelmans, J.G.; Goios, A.; Gubler, D.J.; Powers, A.M. The global epidemiology of chikungunya from 1999 to 2020: A systematic literature review to inform the development and introduction of vaccines. PLoS Negl. Trop. Dis. 2022, 16, e0010069. [Google Scholar] [CrossRef]
- Mbanzulu, K.M.; Mboera, L.E.G.; Luzolo, F.K.; Wumba, R.; Misinzo, G.; Kimera, S.I. Mosquito-borne viral diseases in the Democratic Republic of the Congo: A review. Parasites Vectors 2020, 13, 103. [Google Scholar] [CrossRef]
- Ido, E.; Ahuka, S.; Karhemere, S.; Shibata, K.; Kameoka, M.; Muyembe, J.J. Dengue Virus Infection during an Outbreak of Chikungunya Virus in Democratic Republic of Congo, Annales Africaines de Médecine. Available online: https://anafrimed.net (accessed on 19 August 2022).
- Proesmans, S.; Katshongo, F.; Milambu, J.; Fungula, B.; Muhindo, H.M.; Ahuka-Mundeke, S.; Luz, R.I.D.; Esbroeck, M.V.; Arien, K.K.; Cnops, L.; et al. Dengue and chikungunya among outpatients with acute undifferentiated fever in Kinshasa, Democratic Republic of Congo: A cross sectional study. PLoS Negl. Trop. Dis. 2019, 13, e0007047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willcox, A.C.; Mumba, D.; Jadi, R.; de Silva, A.M.; Collins, M.H.; Meshnick, S.R.; Tshefu, A.; Parr, J.B.; Keeler, C.; Kashamuka, M. Seroepidemiology of dengue, Zika, and yellow fever viruses among children in the Democratic Republic of the Congo. Am. J. Trop. Med. Hyg. 2018, 99, 756–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makiala-Mandanda, S.; Ahuka-Mundeke, S.; Abbate, J.L.; Pukuta-Simbu, E.; Nsio-Mbeta, J.; Berthet, N.; Leroy, E.M.; Becquart, P.; Muyembe-Tamfum, J.-J. Identifcation of dengue and chikungunya cases among suspected cases of yellow fever in the Democratic Republic of the Congo. Vector Borne Zoonotic Dis. 2018, 18, 364–370. [Google Scholar] [CrossRef]
- Näslund, J.; Ahlm, C.; Islam, K.; Evander, M.; Bucht, G.; Lwande, O.W. Emerging Mosquito-Borne Viruses Linked to Aedes aegypti and Aedes albopictus: Global Status and Preventive Strategies. Vector Borne Zoonotic Dis. 2021, 21, 731–746. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, A.; Roess, A. Interrelationship between climatic, ecologic, social, and cultural determinants affecting dengue emergence and transmission in Puerto Rico and their implications for Zika response. J. Trop. Med. 2017, 2017, 8947067. [Google Scholar] [CrossRef] [Green Version]
- Robert, M.A.; Stewart-Ibarra, A.M.; Estallo, E.L. Climate change and viral emergence: Evidence from Aedes-borne arboviruses. Curr. Opin. Virol. 2020, 40, 41–47. [Google Scholar] [CrossRef]
- Kolimenakis, A.; Heinz, S.; Wilson, M.L.; Winkler, V.; Yakob, L.; Michaelakis, A.; Papachristos, D.; Richardson, C.; Horstick, O. The role of urbanisation in the spread of Aedes mosquitoes and the diseases they transmit—A systematic review. PLoS Negl. Trop. Dis. 2021, 15, e0009631. [Google Scholar] [CrossRef] [PubMed]
- Dalpadado, R.; Amarasinghe, D.; Gunathilaka, N.; Ariyarathna, N. Bionomic aspects of dengue vectors Aedes aegypti and Aedes albopictus at domestic settings in urban, suburban and rural areas in Gampaha District, Western Province of Sri Lanka. Parasites Vectors 2022, 15, 148. [Google Scholar] [CrossRef]
- Bobanga, T.; Moyo, M.; Vulu, F.; Irish, S.R. First Report of Aedes albopictus (Diptera: Culicidae) in the Democratic Republic of Congo. Afr. Entomol. 2018, 26, 234–236. [Google Scholar] [CrossRef]
- Wat’senga, F.T.; Fasine, S.; Manzambi, E.Z.; Marquetti, M.C.; Binene, G.M.; Ilombe, G.; Mundeke, R.T.; Smitz, N.; Bisset, J.A.; Van, W.B.; et al. High Aedes spp. larval indices in Kinshasa, Democratic Republic of Congo. Parasites Vectors 2021, 14, 92. [Google Scholar] [CrossRef]
- Mbanzulu, K.M.; Mboera, L.E.G.; Wumba, R.; Engbu, D.; Bojabwa, M.M.; Zanga, J.; Mitashi, P.M.; Misinzo, G.; Kimera, S.I. Physicochemical characteristics of Aedes mosquito breeding habitats in suburban and urban areas of Kinshasa, Democratic Republic of the Congo. Front. Trop. Dis. 2022, 2, 789273. [Google Scholar] [CrossRef]
- Mariën, J.; Laurent, N.; Smitz, N.; Gombeer, S. First observation of Aedes albopictus (Skuse, 1894) (Diptera: Culicidae) in Tshuapa province (Boende), Democratic Republic of the Congo African. Entomology 2022, 30, e11932. [Google Scholar] [CrossRef]
- De Weggheleire, A.; Nkuba-Ndaye, A.; Mbala-Kingebeni, P.; Mariën, J.; Kindombe-Luzolo, E.; Ilombe, G.; Mangala-Sonzi, D.; Binene-Mbuka, G.; De Smet, B.; Vogt, F.; et al. A Multidisciplinary Investigation of the First Chikungunya Virus Outbreak in Matadi in the Democratic Republic of the Congo. Viruses 2021, 13, 1988. [Google Scholar] [CrossRef]
- Otshudiema, J.O.; Ndakala, N.G.; Mawanda, E.K.; Tshapenda, G.P.; Kimfuta, J.M.; Nsibu, L.N.; Gueye, A.S.; Dee, J.; Philen, R.M.; Giese, C.; et al. Yellow fever outbreak Kongo Central province. Democratic Republic of the Congo. Morb. Mortal. Wkly. Rep. 2017, 66, 335–338. [Google Scholar] [PubMed] [Green Version]
- WHO. Yellow-Fever in West and Central-Africa; World Health Organisation: Geneva, Switzerland; Available online: https://www.who.int/emergencies/disease-outbreak-news/item/yellow-fever-west-and-central-africa (accessed on 12 September 2022).
- Hasan, M.J.; Tabassum, T.; Sharif, M.; Khan, M.; Saeed, A.; Bipasha, A.R.; Basher, A.; Islam, M.R.; Amin, M.R. Comparison of clinical manifestation of dengue fever in Bangladesh: An observation over a decade. BMC Infect. Dis. 2021, 21, 1113. [Google Scholar] [CrossRef]
- Liu, L.-T.; Chen, C.-H.; Tsai, C.-Y.; Lin, P.-C.; Hsu, M.-C.; Huang, B.-Y.; Wang, Y.-H.; Tsai, J.-J. Evaluation of rapid diagnostic tests to detect dengue virus infections in Taiwan. PLoS ONE 2020, 15, e0239710. [Google Scholar] [CrossRef]
- Lim, J.K.; Alexander, N.; Tanna, G.L.D. A systematic review of the economic impact of rapid diagnostic tests for dengue. BMC Health Serv. Res. 2017, 17, 850. [Google Scholar] [CrossRef]
- Wikipedia. Kinshasa. The Free Encyclopedia. Available online: https://en.wikipedia.org/wiki/Kinshasa (accessed on 14 September 2022).
- Focks, D.A.; UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases. A Review of Entomological Sampling Methods and Indicators for Dengue Vectors; World Health Organisation: Geneva, Switzerland, 2004; Available online: https://apps.who.int/iris/handle/10665/68575 (accessed on 14 December 2020).
- Rueda, L.M. Pictorial Keys for the Identification of Mosquitoes (Diptera: Culicidae) Associated with Dengue Virus Transmission. Zootaxa 2004, 589, 1–60. [Google Scholar] [CrossRef]
- Santoso, M.S.; Yohan, B.; Denis, D.; Hayati, R.F.; Haryanto, S.; Trianty, L.; Noviyanti, R.; Hibberd, M.L.; Sasmono, R.T. Diagnostic accuracy of 5 different brands of dengue virus non-structural protein 1 (NS1) antigen rapid diagnostic tests (RDT) in Indonesia. Diagn. Microbiol. Infect. Dis. 2020, 98, 115116. [Google Scholar] [CrossRef]
- Alidjinou, E.K.; Tardieu, S.; Vrenken, I.; Hober, D.; Gourinat, A.-C. Prospective Evaluation of a Commercial Dengue NS1 Antigen Rapid Diagnostic Test in New Caledonia. Microorganisms 2022, 10, 346. [Google Scholar] [CrossRef] [PubMed]
- Dhar-Chowdhury, P.; Haque, C.E.; Lindsay, R.; Hossain, S. Socioeconomic and Ecological Factors Influencing Aedes aegypti Prevalence, Abundance, and Distribution in Dhaka, Bangladesh. Am. J. Trop. Med. Hyg. 2016, 94, 1223–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngugi, H.N.; Mutuku, F.M.; Ndenga, B.A.M.; Usunzaji, P.S.; Mbakaya, J.O.; Aswani, P.; Irungu, L.W.; Mukoko, D.; Vulule, J.; Kitron, U.; et al. Characterization and productivity profiles of Aedes aegypti (L.) breeding habitats across rural and urban landscapes in western and coastal Kenya. Parasites Vectors 2017, 10, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasheed, S.B.; Boots, M.; Frantz, A.C.; Butlin, R.K. Population structure of the mosquito Aedes aegypti (Stegomyia aegypti) in Pakistan. Med. Vet. Entomol. 2013, 27, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Mostafavi, E.; Zaim, M.; Enayati, A.; Basseri, H.R.; Mirolyaei, A.R.; Poormozafari, J.; Gouya, M.M. Imported tires; a potential source for the entry of Aedes invasive mosquitoes to Iran. Travel Med. Infect. Dis. 2022, 49, 102389. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.P.M.; Ingrid, N.G.; Rosário, I.N.G.; Silva, I.M. Distribution and preference for oviposition sites of Aedes albopictus (Skuse) in the metropolitan area of Belém, in the Brazilian Amazon. J. Vector Ecol. 2020, 45, 312–320. [Google Scholar] [CrossRef]
- Camargo, C.; Alfonso-Parra, C.; Díaz, S.; Rincon, D.F.; Ramírez-Sánchez, L.F.; Agudelo, J.; Barrientos, L.M.; Villa-Arias, S.; Avila, F.W. Spatial and temporal population dynamics of male and female Aedes albopictus at a local scale in Medellín, Colombia. Parasites Vectors 2021, 14, 312. [Google Scholar] [CrossRef]
- Gainor, E.M.; Harris, E.; LaBeaud, A.D. Uncovering the Burden of Dengue in Africa: Considerations on Magnitude, Misdiagnosis, and Ancestry. Viruses 2022, 14, 233. [Google Scholar] [CrossRef]
- Pal, S.; Dauner, A.L.; Mitra, I.; Forshey, B.M.; Garcia, P.; Morrison, A.C.; Halsey, E.S.; Kochel, T.J.; Wu, S. Evaluation of Dengue NS1 Antigen Rapid Tests and ELISA Kits Using Clinical Samples. PLoS ONE 2014, 9, e113411. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.-T.; Dalipanda, T.; Jagilly, R.; Wang, Y.-H.; Lin, P.-C.; Tsai, C.-Y.; Lin, P.-C.; Tsai, C.-Y.; Lai, W.-T.; Tsai, J.-J. Comparison of two rapid diagnostic tests during a large dengue virus serotype 3 outbreak in the Solomon Islands in 2013. PLoS ONE 2018, 13, e0202304. [Google Scholar] [CrossRef] [Green Version]
- Blacksell, S.D.; Jarman, R.G.; Bailey, M.S.; Tanganuchitcharnchai, A.; Jenjaroen, K.; Gibbons, R.V.; Paris, D.H.; Premaratna, R.; Janaka de Silva, H.; Lalloo, D.G.; et al. Evaluation of six commercial point-of-care tests for diagnosis of acute dengue infections: The need for combining NS1 antigen and IgM/IgG antibody detection to achieve acceptable levels of Accuracy. Clin. Vaccine Immunol. 2011, 18, 2095–2101. [Google Scholar] [CrossRef]
- Kraemer, M.U.; Faria, N.R.; Reiner, R.C., Jr.; Golding, N.; Nikolay, B.; Stasse, S.; Johansson, M.A.; Salje, H.; Faye, O.; Wint, G.W.; et al. Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015–16: A modelling study. Lancet Infect. Dis. 2017, 17, 330–338. [Google Scholar] [CrossRef]
- Paupy, C.; Chantha, N.; Reynes, J.M.; Failloux, A.B. Factors influencing the population structure of Aedes aegypti from the main cities in Cambodia. Heredity 2005, 95, 144–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muyembe-Tamfum, J.J.; Peyrefitte, C.N.; Yogolelo, R.; Basisya, E.M.; Koyange, D.; Pukuta, E.; Mashako, M.; Tolou, H.; Durand, J.P. Epidemic of Chikungunya virus in 1999 and 200 in the Democratic Republic of the Congo. Med. Trop. Rev. Corps. Sante. Colon. 2003, 63, 637–638. [Google Scholar]
- Nur, Y.A.; Groen, J.; Heuvelmans, H.; Tuynman, W.; Copra, C.; Osterhaus, A.D. An outbreak of West Nile fever among migrants in Kisangani, Democratic Republic of Congo. Am. J. Trop. Med. Hyg. 1999, 61, 885–888. [Google Scholar] [CrossRef] [Green Version]
- Power, G.M.; Vaughan, A.M.; Clemente, N.S.; Pescarini, J.M.; Paixão, E.S.; Lobkowicz, L.; Raja, A.I.; Souza, A.P.; Barreto, M.L.; Brickley, E.B. Socioeconomic risk markers of arthropod-borne virus (arbovirus) infections: A systematic literature review and meta-analysis. BMJ Glob. Health 2022, 7, e007735. [Google Scholar]
- Hou, B.; Chen, H.; Gao, N.; An, J. Cross-Reactive Immunity among Five Medically Important Mosquito-Borne Flaviviruses Related to Human Diseases. Viruses 2022, 14, 1213. [Google Scholar] [CrossRef]
Variable | No Sampled Grid Cells n | Positive Grid Cells n (%) | (+) Cells in Rainy Season n (%) | (+) Cells in Dry Season n (%) | |
---|---|---|---|---|---|
District | Municipality | ||||
Funa | Selembao | 100 | 17 (17.0) | 12 | 5 (5.0) |
Ngiri-Ngiri | 100 | 10 (10.0) | 10 (10.0) | 0 (0.0) | |
Kasa-Vubu | 100 | 9 (9.0) | 9 (9.0) | 0 (0.0) | |
Bandalungwa | 100 | 10 (10.0) | 8 (8.0) | 2 (2.0) | |
Kalamu | 100 | 13 (13.0) | 13 (13.0) | 0 (0.0) | |
Mont Amba | Ngaba | 100 | 8 (8.0) | 7 (7.0) | 1 (1.0) |
Limete | 100 | 32 (32.0) | 32 (32.0) | 2 (2.0) | |
Matete | 100 | 18 (18.0) | 18 (18.0) | 0 (0.0) | |
Kisenso | 100 | 21 (21.0) | 21 (21.0) | 2 (2.0) | |
Tshangu | Ndjili | 100 | 44 (44.0) | 44 (44.0) | 3 (3.0) |
Kimbaseke | 100 | 21 (21.0) | 20 (20.0) | 1 (1.0) | |
Masina | 100 | 24 (24.0) | 24 (24.0) | 0 (0.0) | |
Nsele | 100 | 12 (12.0) | 12 (12.0) | 1 (1.0) | |
Maluku | 50 | 13 (26.0) | 13 (26.0) | 1 (2.0) | |
Lukunga | Kinshasa | 100 | 15 (15.0) | 15 (15.0) | 0 (0.0) |
Barumbu | 100 | 20 (20.0) | 20 (20.0) | 0 (0.0) | |
Lingwala | 100 | 14 (14.0) | 14 (14.0) | 0 (0.0) | |
Ngaliema | 100 | 28 (28.0) | 25 (25.0) | 5 (5.0) | |
Mont Ngafula | 100 | 32 (32.0) | 32 (32.0) | 4 (4.0) | |
Total | 1850 | 361 (19.5) | 349 (18.9) | 28 (1.5) |
Municipality | N | Bamboo n (%) | Discarded Container n (%) | Container for Domestic Uses n (%) | Tire n (%) |
---|---|---|---|---|---|
Ngaliema | 53 | 2 (3.8) | 12 (22.6) | 30 (56.6) | 9 (17.0) |
Kinshasa | 23 | 0 (0.0) | 15 (65.2) | 4 (17.4) | 4 (17.4) |
Barumbu | 39 | 0 (0.0) | 27 (69.2) | 4 (10.3) | 8 (20.5) |
Lingwala | 21 | 0 (0.0) | 11 (52.4) | 6 (28.6) | 4 (19.0) |
Mont Ngafula | 71 | 5 (7.0) | 3 (4.2) | 54 (76.1) | 9 (12.7) |
Maluku | 24 | 1 (4.1) | 3 (12.6) | 15 (62.5) | 5 (20.8) |
Nsele | 16 | 4 (25.0) | 2 (12.5) | 8 (50.0) | 2 (12.5) |
Kimbanseke | 34 | 6 (17.6) | 7 (20.7) | 13 (38.2) | 8 (23.5) |
Masina | 40 | 3 (7.5) | 8 (20.0) | 12 (30.0) | 17 (42.5) |
Ndjili | 80 | 1 (1.3) | 18 (22.5) | 8 (10.0) | 53 (66.2) |
Kasa-Vubu | 23 | 0 (0.0) | 2 (8.7) | 3 (13.0) | 18 (78.3) |
Ngiri-Ngiri | 15 | 0 (0.0) | 4 (26.7) | 3 (20.0) | 8 (53.3) |
Bandal | 19 | 0 (0.0) | 2 (10.5) | 4 (21.1) | 13 (68.4) |
Selembao | 49 | 0 (0) | 0 (0.0) | 27 (55.1) | 22 (44.9) |
Kalamu | 20 | 2 (10.0) | 8 (40.0) | 1 (5.0) | 9 (45.0) |
Kisenso | 37 | 1 (2.7) | 6 (16.2) | 27 (73.0) | 3 (8.1) |
Ngaba | 13 | 0 (0.0) | 2 (15.4) | 2 (15.4) | 9 (69.2) |
Limete | 65 | 1 (1.5) | 18 (27.7) | 10 (15.4) | 36 (55.4) |
Matete | 39 | 0 (0.0) | 13 (33.3) | 4 (10.3) | 22 (56.4) |
Total | 681 | 26 (3.9) | 161 (23.6) | 235 (34.5) | 259 (38.0) |
Municipality | No Sampled Grid Cells | Rainy Season | Dry Season | ||
---|---|---|---|---|---|
Ae. aegypti | Ae. albopictus | Ae. aegypti | Ae. albopictus | ||
Selembao | 100 | 8 (8.0) | 7 (7.0) | 4 (4.0) | 1 (1.0) |
Ngiri-Ngiri | 100 | 7 (7.0) | 3 (3.0) | 0 (0.0) | 0 (0.0) |
Kasa-Vubu | 100 | 6 (6.0) | 3 (3.0) | 0 (0.0) | 0 (0.0) |
Bandalungwa | 100 | 8 (8.0) | 0 (0.0) | 1 (1.0) | 1 (1.0) |
Kalamu | 100 | 10 (10.0) | 4 (4.0) | 0 (0.0) | 0 (0.0) |
Ngaba | 100 | 4 (4.0) | 3 (3.0) | 0 (0.0) | 1 (1.0) |
Limete | 100 | 16 (16.0) | 18 (18.0) | 0 (0.0) | 2 (2.0) |
Matete | 100 | 11 (11.0) | 9 (9.0) | 0 (0.0) | 0 (0.0) |
Kisenso | 100 | 15 (15.0) | 8 (8.0) | 2 (2.0) | 0 (0.0) |
Ndjili | 100 | 24 (24.0) | 26 (26.0) | 2 (2.0) | 1 (1.0) |
Kimbaseke | 100 | 4 (4.0) | 16 (16.0) | 0 (0.0) | 1 (1.0) |
Masina | 100 | 10 (10.0) | 17 (17.0) | 0 (0.0) | 0 (0.0) |
Nsele | 100 | 2 (2.0) | 10 (10.0) | 0 (0.0) | 1 (1.0) |
Maluku | 100 | 3 (6.0) | 10 (20.0) | 0 (0.0) | 1 (2.0) |
Kinshasa | 100 | 14 (14.0) | 4 (4.0) | 0 (0.0) | 0 (0.0) |
Barumbu | 100 | 20 (20.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
Lingwala | 100 | 13 (13.0) | 2 (2.0) | 0 (0.0) | 0 (0.0) |
Ngaliema | 100 | 17 (17.0) | 8 (8.0) | 2 (2.0) | 3 (3.0) |
Mont Ngafula | 100 | 16 (16.0) | 21 (21.0) | 2 (2.0) | 2 (2.0) |
Total | 1850 | 208 (11.2) | 169 (9.1) | 13 (0.7) | 14 (0.8) |
Variable | No. of Respondents (%) |
---|---|
Age Group | |
6–17 years | 89 (22.2) |
18–34 years | 147 (36.8) |
35–51 years | 87 (21.7) |
≥52 years | 77 (19.3) |
Sex | |
Male | 155 (38.8) |
Female | 245 (61.2) |
Marital status | |
Unmarried | 235 (58.7) |
Married | 165 (41.3) |
Education level | |
None | 38 (9.5) |
Primary | 117 (29.2) |
Secondary | 164 (41.0) |
University | 81 (20.3) |
Occupation | |
Military | 18 (4.5) |
Faming crop | 18 (4.5) |
Health professional | 11 (2.8) |
Trading | 14 (3.5) |
Student | 108 (27.1) |
Housewife | 65 (16.3) |
Other | 26 (6.6) |
None | 139 (34.7) |
Variable | Samples Teste (N = 400) | Seropositive Samples n (%) | Dengue RDT Abs n (%) | Malaria RDT n (%) | ||
---|---|---|---|---|---|---|
District | Municipality | Ig G+ | Ig M+ | P. falciparum | ||
Tshangu | 100 | 6 (6.0) | 4 (4.0) | 4 (4.0%) | 30 (30.0) | |
Kimbanseke | 30 | 1 (3.3) | 1 (3.3) | 1 (3.3) | 12 (40.0) | |
Masina | 21 | 1 (4.8) | 1 (4.8) | 0 (0.0) | 4 (19.0) | |
Ndjili | 30 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 9 (30.0) | |
Nsele | 19 | 4 (21.4) | 2 (10.5) | 3 (15.8) | 5 (26.3) | |
Mont Amba | 100 | 22 (22.0) | 10 (10.0) | 17 (17.0) | 30 (30.0) | |
Lemba | 4 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (25.0) | |
Matete | 24 | 5 (20.8) | 1 (4.2) | 4 (16.6) | 5 (20.8) | |
Kisenso | 28 | 6 (21.4) | 3(10.7) | 4(14.3) | 11 (39.3) | |
Ngaba | 7 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 6 (85.7) | |
Limete | 37 | 11 (29.7) | 6 (16.2) | 9 (24.3) | 7 (18.9) | |
Funa | 100 | 17 (17.0) | 15 (15.0) | 2 (2.0) | 23 (23.0) | |
Kalamu | 12 | 1 (8.3) | 1 (8.3) | 0 (0.0) | 5 (41.7) | |
Kasa-Vubu | 10 | 3 (30.0) | 3 (30.0) | 0 (0.0) | 1 (10.1) | |
Ngiri-Ngiri | 10 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (20.0) | |
Bandal | 18 | 2 (11.1) | 0 (0.0) | 2 (11.1) | 3 (16.7) | |
Selembao | 29 | 7 (24.1) | 7 (24.1) | 0 (0.0) | 7 (24.1) | |
Bumbu | 21 | 4 (19.1) | 4 (19.1) | 0 (0.0) | 5 (23.8) | |
Lukunga | 100 | 14 (14.0) | 9 (9.0) | 8 (8.0) | 33.(33.0) | |
Kinshasa | 14 | 2 (14.3) | 1 (7.1) | 1 (7.1) | 3 (21.4) | |
Barumbu | 17 | 1 (5.9) | 1 (5.9) | 0 (0.0) | 6 (5.9) | |
Gombe | 16 | 2 (12.5) | 0 (0.0) | 2 (12.5) | 6 (37.5) | |
Ngaliema | 30 | 3. (10.0) | 3. (10.0) | 2 (6.8) | 14 (46.6) | |
Mont Ngafula | 23 | 6 (26.1) | 4 (17.4) | 3 (13.0) | 9 (39.1) | |
Total | 400 | 59 (14.8) | 39 (9.8) | 31 (7.8) | 116 (29.2) |
Variable Serological Status | Samples Tested (n = 100) | NS1 Positive n (%) |
---|---|---|
IgM | 21 | 18 (85.7) |
IgG | 28 | 4 (16.0) |
IgG and Ig M | 10 | 0 (0.0) |
Negative | 41 | 2 (4.8) |
Variable Clinical Symptoms | Total (n = 400) | Acute Dengue (n = 37) |
---|---|---|
Headaches | 204 (51.4) | 23 (62.2) |
Joints pain | 112 (28.2) | 13 (35.1.) |
Muscles pain | 74 (18.6) | 10 (27.0) |
Back pain | 12 (3.0) | - |
Abdominal pain | 13 (3.3) | 1 (2.7) |
Rash | 15 (3.8) | - |
Vomiting | 45 (11.3) | 6 (16.2) |
Diarrhea | 22 (5.5) | 3 (8.1) |
Cough | 12 (3.0) | - |
Fatigue | 8 (2.0) | - |
Jaundice | 5 (1.3) | - |
Other | 11 (2.7) | - |
Variable | OR | 95%CI | p < 0.05 | ORa | 95%CI | p < 0.05 |
---|---|---|---|---|---|---|
Age Group | ||||||
6–17 years | 1 | 1 | ||||
18–34 years | 0.9 | 0.4–1.9 | 0.954 | 0.8 | 0.3–1.9 | 0.0252 |
35–51 years | 0.5 | 0.2–1.6 | 0.151 | 0.3 | 0.08–0.8 | 0.697 |
52 years | 0.6 | 0.2–1.2 | 0.379 | 0.3 | 0.09–0.9 | 0.0489 |
Sex | ||||||
Female | 1 | 0 | 1 | |||
Male | 1.3 | 0.7–2.2 | 0.3380 | 2.4 | 1.1–5.2 | 0.0271 |
Marital status | ||||||
Unmarried | 1 | 1 | ||||
Married | 0.8 | 0.4–1.4 | 0.541 | 1.3 | 0.6–2.6 | 0.412 |
Education level | ||||||
None | 1 | 1 | ||||
Primary | 0.6 | 0.2–1.5 | 0.302 | 0.6 | 0.2–1.7 | 0.378 |
Secondary | 0.4 | 0.2–1.1 | 0.118 | 0.5 | 0.2–1.4 | 0.2414 |
University | 0.5 | 0.1–1.3 | 0.174 | 0.4 | 0.1–1.3 | 0.1462 |
Occupation | ||||||
None | 1 | 1 | ||||
Yes | 0.7 | 0.4–1.2 | 0.208 | 0.7 | 0.3–1.5 | 0.420 |
District | ||||||
Tshangu | 1 | 1 | ||||
Mont amba | 3.7 | 1.5–9.2 | 0.004 | 3.2 | 1.2–8.2 | 0.0123 |
Funa | 2.7 | 1.07–6.8 | 0.034 | 2.1 | 0.7–5.6 | 0.1375 |
Lukunga | 2.3 | 0.9–6.0 | 0.076 | 1.9 | 0.7–5.4 | 0.1852 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbanzulu, K.M.; Wumba, R.; Mboera, L.E.G.; Kayembe, J.-M.N.; Engbu, D.; Bojabwa, M.M.; Zanga, J.K.; Misinzo, G.; Kimera, S.I. Pattern of Aedes aegypti and Aedes albopictus Associated with Human Exposure to Dengue Virus in Kinshasa, the Democratic Republic of the Congo. Trop. Med. Infect. Dis. 2022, 7, 392. https://doi.org/10.3390/tropicalmed7110392
Mbanzulu KM, Wumba R, Mboera LEG, Kayembe J-MN, Engbu D, Bojabwa MM, Zanga JK, Misinzo G, Kimera SI. Pattern of Aedes aegypti and Aedes albopictus Associated with Human Exposure to Dengue Virus in Kinshasa, the Democratic Republic of the Congo. Tropical Medicine and Infectious Disease. 2022; 7(11):392. https://doi.org/10.3390/tropicalmed7110392
Chicago/Turabian StyleMbanzulu, Kennedy Makola, Roger Wumba, Leonard E. G. Mboera, Jean-Marie Ntumba Kayembe, Danoff Engbu, Michael Mondjo Bojabwa, Josué Kikana Zanga, Gerald Misinzo, and Sharadhuli Iddi Kimera. 2022. "Pattern of Aedes aegypti and Aedes albopictus Associated with Human Exposure to Dengue Virus in Kinshasa, the Democratic Republic of the Congo" Tropical Medicine and Infectious Disease 7, no. 11: 392. https://doi.org/10.3390/tropicalmed7110392
APA StyleMbanzulu, K. M., Wumba, R., Mboera, L. E. G., Kayembe, J. -M. N., Engbu, D., Bojabwa, M. M., Zanga, J. K., Misinzo, G., & Kimera, S. I. (2022). Pattern of Aedes aegypti and Aedes albopictus Associated with Human Exposure to Dengue Virus in Kinshasa, the Democratic Republic of the Congo. Tropical Medicine and Infectious Disease, 7(11), 392. https://doi.org/10.3390/tropicalmed7110392