Global Research Trends on Monkeypox Virus: A Bibliometric and Visualized Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Bibliometric Analysis of Published Articles on MPV
3.2. Most Local Citation and Local Impact of Sources
3.3. Most Local and Global Cited Documents
3.4. Word Cloud of the Most Popular Keywords
3.5. Analyzing Co-Occurrence Networks with Keywords and Keywords Plus
3.6. Diffusion of Author Keywords
3.7. Collaboration by Academic
3.8. Top Most Cited Countries and Global Collaboration
3.9. Bibliometric Analysis of Institution Collaborations and Most Important Affiliations
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howard, C.R.; Fletcher, N.F. Emerging virus diseases: Can we ever expect the unexpected? Emerg. Microbes Infect. 2012, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.E.J.; Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis 2005, 11, 1842–1847. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; White, A. Monkeypox virus emerges from the shadow of its more infamous cousin: Family biology matters. Emerg. Microbes Infect. 2022, 11, 1768–1777. [Google Scholar] [CrossRef] [PubMed]
- Hraib, M.; Jouni, S.; Albitar, M.M.; Alaidi, S.; Alshehabi, Z. The outbreak of monkeypox 2022: An overview. Ann. Med. Surg. 2022, 79, 104069. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Zhou, Y.; Wu, H. Bibliometric analysis of global research trends on monkeypox: Are we ready to face this challenge? J. Med. Virol. 2022, 95, e27892. [Google Scholar] [CrossRef] [PubMed]
- Petersen, E.; Abubakar, I.; Ihekweazu, C.; Heymann, D.; Ntoumi, F.; Blumberg, L.; Asogun, D.; Mukonka, V.; Lule, S.A.; Bates, M.; et al. Monkeypox—Enhancing public health preparedness for an emerging lethal human zoonotic epidemic threat in the wake of the smallpox post-eradication era. Int. J. Infect. Dis. 2019, 78, 78–84. [Google Scholar] [CrossRef]
- Ogunsakin, R.E.; Ebenezer, O.; Jordaan, M.A.; Shapi, M.; Ginindza, T.G. Mapping Scientific Productivity Trends and Hotspots in Remdesivir Research Publications: A Bibliometric Study from 2016 to 2021. Int. J. Environ. Res. Public Health 2022, 19, 8845. [Google Scholar] [CrossRef]
- Tan, H.; Li, J.; He, M.; Li, J.; Zhi, D.; Qin, F.; Zhang, C. Global evolution of research on green energy and environmental technologies:A bibliometric study. J Environ. Manag. 2021, 297, 113382. [Google Scholar] [CrossRef]
- Ogunsakin, R.E.; Ebenezer, O.; Ginindza, T.G. A Bibliometric Analysis of the Literature on Norovirus Disease from 1991–2021. Int. J. Environ. Res. Public Health 2022, 19, 2508. [Google Scholar] [CrossRef] [PubMed]
- Heymann, D.L.; Szczeniowski, M.; Esteves, K. Re-emergence of monkeypox in Africa: A review of the past six years. Br. Med. Bull. 1998, 54, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Jezek, Z.; Grab, B.; Szczeniowski, M.V.; Paluku, K.M.; Mutombo, M. Human monkeypox: Secondary attack rates. Bull. World Health Organ. 1988, 66, 465–470. [Google Scholar] [PubMed]
- Stanford, M.M.; McFadden, G.; Karupiah, G.; Chaudhri, G. Immunopathogenesis of poxvirus infections: Forecasting the impending storm. Immunol. Cell Biol. 2007, 85, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Grant, R.; Nguyen, L.-B.L.; Breban, R. Modelling human-to-human transmission of monkeypox. To cite this version: HAL Id: Hal-03287459 Modelling human-to-human transmission of monkeypox. Bull. World Health Organ. 2020, 98, 638. [Google Scholar] [CrossRef] [PubMed]
- Nalca, A.; Rimoin, A.W.; Bavari, S.; Whitehouse, C.A. Reemergence of monkeypox: Prevalence, diagnostics, and countermeasures. Clin. Infect. Dis. 2005, 41, 1765–1771. [Google Scholar] [PubMed]
- MacNeil, A.; Reynolds, M.G.; Braden, Z.; Carroll, D.S.; Bostik, V.; Karem, K.; Smith, S.K.; Davidson, W.; Li, Y.; Moundeli, A.; et al. Transmission of atypical varicella-zoster virus infections involving palm and sole manifestations in an area with monkeypox endemicity. Clin. Infect. Dis. 2009, 48, 8–10. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.; Leggat, P.A. Human monkeypox: Current state of knowledge and implications for the future. Trop. Med. Infect. Dis. 2016, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Patrono, L.V.; Pléh, K.; Samuni, L.; Ulrich, M.; Röthemeier, C.; Sachse, A.; Muschter, S.; Nitsche, A.; Couacy-Hymann, E.; Boesch, C.; et al. Monkeypox virus emergence in wild chimpanzees reveals distinct clinical outcomes and viral diversity. Nat. Microbiol. 2020, 5, 955–965. [Google Scholar] [CrossRef]
- Okyay, R.A.; Bayrak, E.; Kaya, E.; Şahin, A.R.; Koçyiğit, B.F.; Taşdoğan, A.M.; Avci, A.; Sümbül, H.E. Another Epidemic in the Shadow of Covid 19 Pandemic: A Review of Monkeypox. Eurasian J. Med. Oncol. 2022, 6, 95–99. [Google Scholar] [CrossRef]
- Burnham, J.F. Scopus database: A review. Biomed. Digit. Libr. 2006, 3, 1. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of science (Wos) and scopus: The titans of bibliographic information in today’s academic world. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Tuppurainen, E.S.M.; Lamien, C.E.; Diallo, A. Capripox (Lumpy Skin Disease, Sheep Pox, and Goat Pox). In Veterinary Vaccines: Principles and Applications; Wiley: New York, NY, USA, 2021; pp. 383–397. [Google Scholar] [CrossRef]
- Rahman, M. Outbreaks of Lumpy Skin Disease of Cattle in Bangladesh: What to Know and What to Do. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Sajovic, I.; Podgornik, B.B. Bibliometric Analysis of Visualizations in Computer Graphics: A Study. SAGE Open 2022, 12, 21582440211071105. [Google Scholar] [CrossRef]
- Koo, M. Systemic lupus erythematosus research: A bibliometric analysis over a 50-year period. Int. J. Environ. Res. Public Health 2021, 18, 7095. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, J.; Ma, R. The prediction of infectious diseases: A bibliometric analysis. Int. J. Environ. Res. Public Health 2020, 17, 6218. [Google Scholar] [CrossRef]
- Zhang, X.; Estoque, R.C.; Xie, H.; Murayama, Y.; Ranagalage, M. Bibliometric analysis of highly cited articles on ecosystem services. PLoS ONE 2019, 14, e0210707. [Google Scholar] [CrossRef]
- Churiyah, M.; Sholikhan, S.; Filianti, F. Mobile learning uses in vocational high school: A bibliometric analysis. World J. Educ. Technol. Curr. Issues 2022, 14, 484–497. [Google Scholar] [CrossRef]
- Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver nanoparticles as potential antiviral agents. Molecules 2011, 16, 8894–8918. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Smith, J.O.; George, D.; Pepin, K.M.; Pitzer, V.E.; Pulliam, J.R.; Dobson, A.P.; Hudson, P.J.; Grenfell, B.T. Epidemie dynamics at the human-animal interface. Science 2009, 326, 1362–1367. [Google Scholar] [CrossRef]
- Reed, K.D.; Melski, J.W.; Graham, M.B.; Regnery, R.L.; Sotir, M.J.; Wegner, M.V.; Kazmierczak, J.J.; Stratman, E.J.; Li, Y.; Fairley, J.A.; et al. The Detection of Monkeypox in Humans in the Western Hemisphere From the Departments of Pathology. N. Engl. J. Med. 2004, 350, 342–350. [Google Scholar] [CrossRef] [Green Version]
- Jezek, Z.; Marennikova, S.S.; Mutumbo, M.; Nakano, J.H.; Paluku, K.M.; Szczeniowski, M. Human monkeypox: A study of 2510 contacts of 214 patients. J. Infect. Dis. 1986, 154, 551–555. [Google Scholar] [CrossRef]
- Wolfe, N.D.; Daszak, P.; Kilpatrick, A.M.; Burke, D.S. Bushmeat hunting, deforestation, and prediction of zoonotic disease emergence. Emerg. Infect. Dis. 2005, 11, 1822–1827. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.V.; Parkinson, C.V.; Choi, Y.W.; Speshock, J.L.; Hussain, S.M. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res. Lett. 2008, 3, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Gubser, C.; Hué, S.; Kellam, P.; Smith, G.L. Poxvirus genomes: A phylogenetic analysis. J. Gen. Virol. 2004, 85, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Earl, P.L.; Americo, J.L.; Wyatt, L.S.; Eller, L.A.; Whitbeck, J.C.; Cohen, G.H.; Eisenberg, R.J.; Hartmann, C.J.; Jackson, D.L.; Kulesh, D.A.; et al. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 2004, 428, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Pevear, D.C.; Davies, M.H.; Collett, M.S.; Bailey, T.; Rippen, S.; Barone, L.; Burns, C.; Rhodes, G.; Tohan, S.; et al. An Orally Bioavailable Antipoxvirus Compound (ST-246) Inhibits Extracellular Virus Formation and Protects Mice from Lethal Orthopoxvirus Challenge. J. Virol. 2005, 79, 13139–13149. [Google Scholar] [CrossRef] [Green Version]
- Yinka-Ogunleye, A.; Aruna, O.; Ogoina, D.; Aworabhi, N.; Eteng, W.; Badaru, S.; Mohammed, A.; Agenyi, J.; Etebu, E.N.; Numbere, T.; et al. Reemergence of human monkeypox in Nigeria, 2017. Emerg. Infect. Dis. 2018, 24, 1149–1151. [Google Scholar] [CrossRef]
- Edghill-Smith, Y.; Golding, H.; Manischewitz, J.; King, L.R.; Scott, D.; Bray, M.; Nalca, A.; Hooper, J.W.; Whitehouse, C.A.; Schmitz, J.E.; et al. Smallpox vaccine–induced antibodies are necessary and sufficient for protection against monkeypox virus. Nat. Med. 2005, 11, 740–747. [Google Scholar] [CrossRef]
- Hooper, J.W.; Thompson, E.; Wilhelmsen, C.; Zimmerman, M.; Ichou, M.A.; Steffen, S.E.; Schmaljohn, C.S.; Schmaljohn, A.L.; Jahrling, P.B. Smallpox DNA Vaccine Protects Nonhuman Primates against Lethal Monkeypox. J. Virol. 2004, 78, 4433–4443. [Google Scholar] [CrossRef]
- Likos, A.M.; Sammons, S.A.; Olson, V.A.; Frace, A.M.; Li, Y.; Olsen-Rasmussen, M.; Davidson, W.; Galloway, R.; Khristova, M.L.; Reynolds, M.G.; et al. A tale of two clades: Monkeypox viruses. J. Gen. Virol. 2005, 86, 2661–2672. [Google Scholar] [CrossRef]
- Baker, R.O.; Bray, M.; Huggins, J.W. Potential antiviral therapeutics for smallpox, monkeypox and other orthopoxvirus infections. Antivir. Res. 2003, 57, 13–23. [Google Scholar] [CrossRef]
- Zaucha, G.M.; Jahrling, P.B.; Geisbert, T.W.; Swearengen, J.R.; Hensley, L. The pathology of experimental aerosolized monkeypox virus infection in cynomolgus monkeys (Macaca fascicularis). Lab. Investig. 2001, 81, 1581–1600. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Li, G.; Liszewski, M.K.; Atkinson, J.P.; Jahrling, P.B.; Feng, Z.; Schriewer, J.; Buck, C.; Wang, C.; Lefkowitz, E.J.; et al. Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology 2005, 340, 46–63. [Google Scholar] [CrossRef] [Green Version]
- Parker, S.; Nuara, A.; Buller, R.M.L.; Schultz, D.A. Human monkeypox: An emerging zoonotic disease. Future Microbiol. 2007, 2, 17–34. [Google Scholar] [CrossRef]
- Guarner, J.; Johnson, B.J.; Paddock, C.D.; Shieh, W.J.; Goldsmith, C.S.; Reynolds, M.G.; Damon, I.K.; Regnery, R.L.; Zaki, S.R.; the Veterinary Monkeypox Virus Working Group. Monkeypox Transmission and Pathogenesis in Prairie Dogs. Emerg. Infect. Dis. 2004, 10, 426–431. [Google Scholar] [CrossRef]
- ten Have, H. Emerging Infectious Diseases. Adv. Glob. Bioeth. 2022, 18, 31–44. [Google Scholar]
- Stittelaar, K.J.; Neyts, J.; Naesens, L.; Van Amerongen, G.; Van Lavieren, R.F.; Holý, A.; de Clercq, E.; Niesters, H.G.M.; Fries, E.; Maas, C.; et al. Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection. Nature 2006, 439, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Hutin, Y.J.F.; Williams, R.J.; Malfait, P.; Pebody, R.; Loparev, V.N.; Ropp, S.L.; Rodriguez, M.; Knight, J.C.; Tshioko, F.K.; Khan, A.S.; et al. Outbreak of Human Monkeypox, Democratic Republic of Congo, 1996 to 1997. Emerg. Infect. Dis. 2001, 7, 434–438. [Google Scholar] [CrossRef]
- Di Giulio, D.B.; Eckburg, P.B. Human monkeypox: An emerging zoonosis. Lancet Infect. Dis. 2004, 4, 15–25. [Google Scholar] [CrossRef]
- Townsend, M.B.; Keckler, M.S.; Patel, N.; Davies, D.H.; Felgner, P.; Damon, I.K.; Karem, K.L. Humoral immunity to smallpox vaccines and monkeypox virus challenge: Proteomic assessment and clinical correlations. J. Virol. 2013, 87, 900–911. [Google Scholar] [CrossRef]
- Meyer, H.; Perrichot, M.; Stemmler, M.; Emmerich, P.; Schmitz, H.; Varaine, F.; Shungu, R.; Tshioko, F.; Formenty, P. Outbreaks of Disease Suspected of Being Due to Human Monkeypox Virus Infection in the Democratic Republic of Congo in 2001. J. Clin. Microbiol. 2002, 40, 2919–2921. [Google Scholar] [CrossRef] [Green Version]
- Huhn, G.D.; Bauer, A.M.; Yorita, K.; Graham, M.B.; Sejvar, J.; Likos, A.; Damon, I.K.; Reynolds, M.G.; Kuehnert, M.J. Clinical characteristics of human monkeypox, and risk factors for severe disease. Clin. Infect. Dis. 2005, 41, 1742–1751. [Google Scholar] [CrossRef]
- Hutson, C.L.; Lee, K.N.; Abel, J.; Carroll, D.S.; Montgomery, J.M.; Olson, V.A.; Li, Y.; Davidson, W.; Hughes, C.; Dillon, M.; et al. Monkeypox zoonotic associations: Insights from laboratory evaluation of animals associated with the multi-state US outbreak. Am. J. Trop. Med. Hyg. 2007, 76, 757–767. [Google Scholar] [CrossRef] [Green Version]
- Jordan, R.; Leeds, J.M.; Tyavanagimatt, S.; Hruby, D.E. Development of ST-246® for treatment of poxvirus infections. Viruses 2010, 2, 2409–2435. [Google Scholar] [CrossRef]
- Buchman, G.W.; Cohen, M.E.; Xiao, Y.; Richardson-Harman, N.; Silvera, P.; DeTolla, L.J.; Davis, H.L.; Eisenberg, R.J.; Cohen, G.H.; Isaacs, S.N. A protein-based smallpox vaccine protects non-human primates from a lethal monkeypox virus challenge. Vaccine 2010, 28, 6627–6636. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, M.G.; Yorita, K.L.; Kuehnert, M.J.; Davidson, W.B.; Huhn, G.D.; Holman, R.C.; Damon, I.K. Clinical manifestations of human monkeypox influenced by route of infection. J. Infect. Dis. 2006, 194, 773–780. [Google Scholar] [CrossRef]
- Li, Y.; Olson, V.A.; Laue, T.; Laker, M.T.; Damon, I.K. Detection of monkeypox virus with real-time PCR assays. J. Clin. Virol. 2006, 36, 194–203. [Google Scholar] [CrossRef]
- Hutson, C.L.; Olson, V.A.; Carroll, D.D.; Abel, J.A.; Hughes, C.M.; Braden, Z.H.; Weiss, S.; Self, J.; Osorio, J.E.; Hudson, P.N.; et al. A prairie dog animal model of systemic orthopoxvirus disease using west African and Congo Basin strains of Monkeypox virus. J. Gen. Virol. 2009, 90, 323–333. [Google Scholar] [CrossRef]
- Shchelkunov, S.N.; Totmenin, A.V.; Babkin, I.V.; Safronov, P.F.; Ryazankina, O.I.; Petrov, N.A.; Gutorov, V.V.; Uvarova, E.A.; Mikheev, M.V.; Sisler, J.R.; et al. Human monkeypox and smallpox viruses: Genomic comparison. FEBS Lett. 2001, 509, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Huggins, J.; Goff, A.; Hensley, L.; Mucker, E.; Shamblin, J.; Wlazlowski, C.; Johnson, W.; Chapman, J.; Larsen, T.; Twenhafel, N.; et al. Non-human primates are protected from smallpox virus or monkeypox virus challenges by the antiviral drug ST-246. Antimicrob. Agents Chemother. 2009, 53, 2620–2625. [Google Scholar] [CrossRef]
- Falagas, M.E.; Papastamataki, P.A.; Bliziotis, I.A. A bibliometric analysis of research productivity in parasitology by different world regions during a 9-year period (1995–2003). BMC Infect. Dis. 2006, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Garg, K.C.; Rao, M.K.D. Bibliometric analysis of scientific productivity: A case study of an Indian physics laboratory. Scientometrics 1988, 13, 261–269. [Google Scholar] [CrossRef]
- Fan, J.; Gao, Y.; Zhao, N.; Dai, R.; Zhang, H.; Feng, X.; Shi, G.; Tian, J.; Chen, C.; Hambly, B.D.; et al. Bibliometric analysis on COVID-19: A comparison of research between English and Chinese studies. Front. Public Health 2020, 8, 477. [Google Scholar] [CrossRef]
Description | Results |
---|---|
MAIN INFORMATION ABOUT DATA | |
Timespan | 2001:2021 |
Sources (journals, books, etc.) | 203 |
Documents | 501 |
Annual growth Rate % | 4.84 |
Document average age | 11.1 |
Average citations per doc | 32.44 |
References | 18,320 |
DOCUMENT CONTENTS | |
Keywords plus (ID) | 4546 |
Author keywords (DE) | 767 |
AUTHORS | |
Authors | 2067 |
Authors of single-authored docs | 43 |
AUTHORS COLLABORATION | |
Single-authored documents | 52 |
Co-Authors per document | 7.35 |
International co-authorships % | 22.75 |
DOCUMENT TYPES | |
Article | 399 |
Review | 102 |
Journal | Most Significant Local Source Impact | Maximum Local Citation | Documents | |||
---|---|---|---|---|---|---|
h_Index | g_Index | m_Index | TC. | |||
Journal of Virology | 18 | 31 | 0.947 | 1294 | Journal of Virology | 1829 |
Emerging Infectious Disease | 16 | 19 | 0.727 | 1194 | Virology | 1128 |
PLoS ONE | 14 | 23 | 0.875 | 538 | Journal of General Virology | 582 |
Virology | 14 | 20 | 0.7 | 817 | Emerging Infectious Diseases | 580 |
Vaccine | 11 | 16 | 0.688 | 496 | Vaccine | 412 |
American Journal of Tropical Medicine and Hygiene | 10 | 14 | 0.556 | 526 | The Journal of Infectious Diseases | 383 |
Antimicrobial Agents and Chemotherapy | 9 | 9 | 0.429 | 388 | Nature | 329 |
Viruses | 9 | 15 | 0.692 | 235 | Science | 269 |
Antiviral Research | 8 | 12 | 0.381 | 441 | PLoS ONE | 257 |
Journal of General Virology | 8 | 9 | 0.421 | 755 | The Lancet | 243 |
Journal of Infectious Disease | 8 | 10 | 0.421 | 356 | New England Journal of Medicine | 222 |
Journal of Virology Methods | 7 | 9 | 0.5 | 125 | Bulletin of the World Health Organization | 217 |
Journal of Clinical Microbiology | 6 | 8 | 0.35 | 201 | Antiviral Research | 206 |
PLOS Neglected Tropical Diseases | 6 | 7 | 0.286 | 426 | Antimicrob Agents Chemother | 198 |
Clinical Infectious Diseases | 5 | 6 | 0.75 | 99 | American Journal of Tropical Medicine and Hygiene | 195 |
Journal of Medical Virology | 5 | 5 | 0.278 | 222 | Journal of Clinical Microbiology | 172 |
PLoS Pathogens | 5 | 7 | 0.278 | 123 | Clinical Infectious Diseases | 171 |
Journal of Clinical Virology | 4 | 7 | 0.385 | 219 | Journal of Infectious Disease | 156 |
Virus Research | 4 | 4 | 0.235 | 118 | Journal of Immunology | 154 |
Molecular and Cellular Proteomics | 4 | 4 | 0.308 | 57 | Cell | 128 |
Documents | Digital Object Identifier | Total Citation | Total Citation per Year | Normalized Total Citation |
---|---|---|---|---|
Galdiero S [29], 2011, MOLECULES | 10.3390/molecules16108894 | 552 | 46 | 12.77 |
Lloyd-Smith JO [30], 2009, SCIENCE | 10.1126/science.1177345 | 401 | 28.64 | 8.57 |
Reed KD [31], 2004, NEW ENGL J MED | 10.1056/NEJMoa032299 | 397 | 20.89 | 5.19 |
Wolfe ND [33], 2005, EMERG INFECT DIS | 10.3201/eid1112.040789 | 371 | 20.61 | 6.34 |
Rogers JV [34], 2008, NANOSCALE RES LETT | 10.1007/s11671-008-9128-2 | 315 | 21 | 8.1 |
Gubser C [35], 2004, J GEN VIROL | 10.1099/vir.0.19565-0 | 284 | 14.95 | 3.71 |
Earl PL [36], 2004, NATURE | 10.1038/nature02331 | 273 | 14.37 | 3.57 |
Yang G [37], 2005, J VIROL | 10.1128/JVI.79.20.13139-13149.2005 | 232 | 12.89 | 3.96 |
Hurin YJ [38], 2001, EMERGING INFECT DIS | 10.3201/eid0703.017311 | 229 | 10.41 | 3 |
Di Giulio DB [14], 2004, LANCET INFECT DIS | 10.1016/S1473-3099(03)00856-9 | 214 | 11.26 | 2.8 |
Edghill-Smith Y [39], 2005, NAT MED | 10.1038/nm1261 | 211 | 11.72 | 3.61 |
Hooper JW [40], 2004, J VIROL | 10.1128/JVI.78.9.4433-4443.2004 | 186 | 9.79 | 2.43 |
Likos AM [41], 2005, J GEN VIROL | 10.1099/vir.0.81215-0 | 183 | 10.17 | 3.13 |
Baker RO [42], 2003, ANTIVIRAL RES | 10.1016/S0166-3542(02)00196-1 | 153 | 7.65 | 4.49 |
Zaucha GM [43], 2001, LAB INVEST | 10.1038/labinvest.3780373 | 142 | 6.45 | 1.86 |
Chen N [44], 2005, VIROLOGY | 10.1016/j.virol.2005.05.030 | 139 | 7.72 | 2.38 |
Parker S [45], 2007, FUTURE MICROBIOL | 10.2217/17460913.2.1.17 | 125 | 7.81 | 3.27 |
Guarner J [46], 2004, EMERG INFECT DIS | 10.3201/eid1003.030878 | 125 | 6.58 | 1.63 |
Learned LA [47], 2005, AM J TROP MED HYG | 10.4269/ajtmh.2005.73.428 | 116 | 6.44 | 1.98 |
Stittelaar KJ [48], 2006, NATURE | 10.1038/nature04295 | 111 | 6.53 | 2.44 |
Document | Digital Object Identifier | Year | LC. | GC. | LC/GC Ratio (%) |
---|---|---|---|---|---|
Reed KD [31], 2004, NEW ENGL J MED | 10.1056/NEJMoa032299 | 2004 | 127 | 397 | 31.99 |
Likos AM [41], 2005, J GEN VIROL | 10.1099/vir.0.81215-0 | 2005 | 85 | 183 | 46.45 |
Chen N [44], 2005, VIROLOGY | 10.1016/j.virol.2005.05.030 | 2005 | 67 | 139 | 48.2 |
Zaucha GM [43], 2001, LAB INVEST | 10.1038/labinvest.3780373 | 2001 | 67 | 142 | 47.18 |
Hutin YJ [49], 2001, EMERGING INFECT DIS | 10.3201/eid0703.017311 | 2001 | 64 | 229 | 27.95 |
Dl Glulio DB [50], 2004, LANCET INFECT DIS | 10.1016/S1473-3099(03)00856-9 | 2004 | 58 | 214 | 27.1 |
Earl PL [51], 2004, NATURE | 10.1038/nature02331 | 2004 | 51 | 273 | 18.68 |
Meyer H [52], 2002, J CLIN MICROBIOL | 10.1128/JCM.40.8.2919-2921.2002 | 2002 | 51 | 105 | 48.57 |
Parker S [45], 2007, FUTURE MICROBIOL | 10.2217/17460913.2.1.17 | 2007 | 49 | 125 | 39.2 |
Huhn GD [53], 2005, CLIN INFECT DIS | 10.1086/498115 | 2005 | 47 | 87 | 54.02 |
Huston CL [54], 2007, AM J TROP MED HYG | 10.4269/ajtmh.2007.76.757 | 2007 | 46 | 87 | 52.87 |
Yang G [55], 2005, J VIROL | 10.1128/JVI.79.20.13139-13149.2005 | 2005 | 45 | 232 | 19.4 |
Hooper JW [56], 2004, J VIROL | 10.1128/JVI.78.9.4433-4443.2004 | 2004 | 43 | 186 | 23.12 |
Reynolds MG [57], 2006, J INFECT DIS | 10.1086/505880 | 2006 | 42 | 91 | 46.15 |
LI Y [58], 2006, J CLIN VIROL | 10.1016/j.jcv.2006.03.012 | 2006 | 42 | 84 | 50 |
Huston CL [59], 2009, J GEN VIROL | 10.1099/vir.0.005108-0 | 2009 | 39 | 66 | 59.09 |
Guarner J [46], 2004, EMERG INFECT DIS | 10.3201/eid1003.030878 | 2004 | 38 | 125 | 30.4 |
Edghill-Smith Y [39], 2005, NAT MED | 10.1038/nm1261 | 2005 | 37 | 211 | 17.54 |
Shchelkunov SN [60], 2001, FEBS LETT | 10.1016/S0014-5793(01)03144-1 | 2001 | 36 | 103 | 34.95 |
Huggins J [61], 2009, ANTIMICROB AGENTS CHEMOTHER | 10.1128/AAC.00021-09 | 2009 | 31 | 87 | 35.63 |
Country | Total Citations | Article Average Citations |
---|---|---|
USA | 10,809 | 39.31 |
Germany | 839 | 32.27 |
United Kingdom | 670 | 44.67 |
Italy | 597 | 74.63 |
Australia | 383 | 54.71 |
Netherlands | 281 | 56.2 |
France | 162 | 16.2 |
Israel | 149 | 29.8 |
Japan | 132 | 18.86 |
Canada | 114 | 28.5 |
Spain | 112 | 18.67 |
Greece | 81 | 81 |
India | 63 | 21 |
Nigeria | 60 | 20 |
Finland | 54 | 27 |
Belgium | 46 | 23 |
Switzerland | 44 | 44 |
Ireland | 41 | 41 |
Kenya | 34 | 34 |
Austria | 33 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeeshan, H.M.; Rubab, A.; Dhlakama, H.; Ogunsakin, R.E.; Okpeku, M. Global Research Trends on Monkeypox Virus: A Bibliometric and Visualized Study. Trop. Med. Infect. Dis. 2022, 7, 402. https://doi.org/10.3390/tropicalmed7120402
Zeeshan HM, Rubab A, Dhlakama H, Ogunsakin RE, Okpeku M. Global Research Trends on Monkeypox Virus: A Bibliometric and Visualized Study. Tropical Medicine and Infectious Disease. 2022; 7(12):402. https://doi.org/10.3390/tropicalmed7120402
Chicago/Turabian StyleZeeshan, Hafiz Muhammad, Aqsa Rubab, Hilda Dhlakama, Ropo Ebenezer Ogunsakin, and Moses Okpeku. 2022. "Global Research Trends on Monkeypox Virus: A Bibliometric and Visualized Study" Tropical Medicine and Infectious Disease 7, no. 12: 402. https://doi.org/10.3390/tropicalmed7120402
APA StyleZeeshan, H. M., Rubab, A., Dhlakama, H., Ogunsakin, R. E., & Okpeku, M. (2022). Global Research Trends on Monkeypox Virus: A Bibliometric and Visualized Study. Tropical Medicine and Infectious Disease, 7(12), 402. https://doi.org/10.3390/tropicalmed7120402