Artificial Neural Networks for the Prediction of Monkeypox Outbreak
Abstract
:1. Introduction
Related Works
2. Methods and Materials
2.1. Artificial Neural Network
2.2. Levenberg–Marquardt Algorithm (LM)
2.3. Long Short-Term Memory (LSTM)
2.4. Gated Recurrent Unit (GRU)
2.5. Adaptive Moment Estimation Optimization (ADAM)
2.6. Network Modelling Process
- (1)
- Training dataset: in order to reduce the error function, the model’s synaptic weights were adjusted to correspond to the perfect number of hidden layer neurons. The cross-validation method was used to further split the training dataset into “K” subsets in order to find the ideal number of iterations (or “epochs”) before the model training should be terminated.
- (2)
- Testing dataset: following the training phase, it was used to evaluate the model’s accuracy and forecasting capability.
2.7. Data Preparation
2.8. Netwok Model Evaluation
2.9. K-Fold Cross-Validation
- (1)
- Each fold in the “K” disjoint fold partition of the training dataset has the same number of samples.
- (2)
- In each of the “K” iterations, the model has trained on the first (K-1) folds.
- (3)
- The trained model is subsequently assessed on the final fold (also known as the validation fold) in order to calculate its RMSE.
- (4)
- The number of epochs versus the average RMSE is displayed on the validation folds.
2.10. Network Model Testing
3. Results and Discussion
3.1. Observing the Monkeypox Outbreak Using the ANN-LM Models in the Five Countries
3.2. Observing the Monkeypox Outbreak Using the LSTM-ADAM Models in the Five Countries
3.3. Observing the Monkeypox Outbreak Using the GRU-ADAM Models in the Five Countries
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McCollum, A.M.; Damon, I.K. Human Monkeypox. Clin. Infect. Dis. 2014, 58, 260–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ola, P. What Predicts the Severity of Monkeypox and Other Infections? Available online: https://osf.io/phgfq/ (accessed on 8 October 2022). [CrossRef]
- Alakunle, E.; Moens, U.; Nchinda, G.; Viruses, M.O. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution. Viruses 2020, 12, 1257. [Google Scholar] [CrossRef] [PubMed]
- Rahmanian, V.; Jahanbin, K.; Jokar, M. Using twitter and web news mining to predict the monkeypox outbreak. Asian Pac. J. Trop. Med. 2022, 15, 236. [Google Scholar] [CrossRef]
- Moore, M.J.; Rathish, B.; Zahra, F. Monkeypox; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Chen, H.; Shen, J.; Wang, L.; Song, J. A Framework towards Data Analytics on Host–Pathogen Protein–Protein Interactions. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 4667–4679. [Google Scholar] [CrossRef]
- Nolen, L.D.; Osadebe, L.; Katomba, J.; Likofata, J.; Mukadi, D.; Monroe, B.; Doty, J.; Hughes, C.M.; Kabamba, J.; Malekani, J.; et al. Extended Human-to-Human Transmission during a Monkeypox Outbreak in the Democratic Republic of the Congo. Emerg. Infect. Dis. 2016, 22, 1014–1021. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Shang, J.; Weng, S.; Aliyari, S.R.; Ji, C.; Cheng, G.; Wu, A. Genomic Annotation and Molecular Evolution of Monkeypox Virus Outbreak in 2022. J. Med. Virol. 2022, 95, e28036. [Google Scholar] [CrossRef]
- Yinka-Ogunleye, A.; Aruna, O.; Ogoina, D.; Aworabhi, N.; Eteng, W.; Badaru, S.; Mohammed, A.; Agenyi, J.; Etebu, E.N.; Numbere, T.-W.; et al. Reemergence of Human Monkeypox in Nigeria, 2017. Emerg. Infect. Dis. 2018, 24, 1149–1151. [Google Scholar] [CrossRef]
- Nguyen, P.Y.; Ajisegiri, W.S.; Costantino, V.; Chughtai, A.A.; MacIntyre, C.R. Reemergence of Human Monkeypox and Declining Population Immunity in the Context of Urbanization, Nigeria, 2017–2020. Emerg. Infect. Dis. 2021, 27, 1007–1014. [Google Scholar] [CrossRef]
- Thomassen, H.A.; Fuller, T.; Asefi-Najafabady, S.; Shiplacoff, J.A.G.; Mulembakani, P.M.; Blumberg, S.; Johnston, S.C.; Kisalu, N.K.; Kinkela, T.L.; Fair, J.N.; et al. Pathogen-Host Associations and Predicted Range Shifts of Human Monkeypox in Response to Climate Change in Central Africa. PLoS ONE 2013, 8, e66071. [Google Scholar] [CrossRef]
- Thornhill, J.P.; Barkati, S.; Walmsley, S.; Rockstroh, J.; Antinori, A.; Harrison, L.B.; Palich, R.; Nori, A.; Reeves, I.; Habibi, M.S.; et al. Monkeypox Virus Infection in Humans across 16 Countries—April–June 2022. N. Engl. J. Med. 2022, 387, 679–691. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, H.; Shen, J.; Zhou, R.; Zhou, Q. Supervised Machine Learning Model for High Dimensional Gene Data in Colon Cancer Detection. In Proceedings of the 2015 IEEE International Congress on Big Data, New York, NY, USA, 27 June–2 July 2015; pp. 134–141. [Google Scholar]
- Ahsan, M.M.; Uddin, M.R.; Farjana, M.; Sakib, A.N.; Momin, K.A.l.; Luna, S.A. Image Data Collection and Implementation of Deep Learning-Based Model in Detecting Monkeypox Disease Using Modified VGG16. arXiv 2022, arXiv:2206.01862. [Google Scholar]
- Saba, A.I.; Elsheikh, A.H. Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks. Process. Saf. Environ. Prot. 2020, 141, 1–8. [Google Scholar] [CrossRef]
- Chavda, V.P.; Vora, L.K.; Apostolopoulos, V. Monkeypox: A new face of outbreak. Expert Rev. Vaccines 2022, 21, 1537–1540. [Google Scholar] [CrossRef]
- Mohbey, K.K.; Meena, G.; Kumar, S.; Lokesh, K. A CNN-LSTM-Based Hybrid Deep Learning Approach to Detect Sentiment Polarities on Monkeypox Tweets. arXiv 2022, arXiv:2208.12019. [Google Scholar]
- Mathieu, E.; Spooner, F.; Dattani, S.; Ritchie, H.; Roser, M. Monkeypox. Our World in Data. 2022. Available online: https://ourworldindata.org/monkeypox (accessed on 8 October 2022).
- Petersen, B.W.; Harms, T.J.; Reynolds, M.G.; Harrison, L.H. Use of Vaccinia Virus Smallpox Vaccine in Laboratory and Health Care Personnel at Risk for Occupational Exposure to Orthopoxviruses—Recommendations of the Advisory Committee on Immunization Practices (ACIP), 2015. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 257–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogoina, D.; Iroezindu, M.; James, H.I.; Oladokun, R.; Yinka-Ogunleye, A.; Wakama, P.; Otike-Odibi, B.; Usman, L.M.; Obazee, E.; Aruna, O.; et al. Clinical Course and Outcome of Human Monkeypox in Nigeria. Clin. Infect. Dis. 2020, 71, e210–e214. [Google Scholar] [CrossRef]
- Adler, H.; Gould, S.; Hine, P.; Snell, L.B.; Wong, W.; Houlihan, C.F.; Osborne, J.C.; Rampling, T.; Beadsworth, M.B.; Duncan, C.J.; et al. Clinical features and management of human monkeypox: A retrospective observational study in the UK. Lancet Infect. Dis. 2022, 22, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Uversky, V.N.; Kurgan, L. Comprehensive Review of Methods for Prediction of Intrinsic Disorder and Its Molecular Functions. Cell. Mol. Life Sci. 2017, 74, 3069–3090. [Google Scholar] [CrossRef]
- Al-Qaness, M.A.A.; Ewees, A.A.; Fan, H.; El Aziz, M.A. Optimization Method for Forecasting Confirmed Cases of COVID-19 in China. J. Clin. Med. 2020, 9, 674. [Google Scholar] [CrossRef] [Green Version]
- Hamadneh, N.N.; Khan, W.A.; Ashraf, W.; Atawneh, S.H.; Khan, I.; Hamadneh, B.N. Artificial Neural Networks for Prediction of Covid-19 in Saudi Arabia. Comput. Mater. Contin. 2021, 66, 2787–2796. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Qu, H.; Liu, S. Optimal Forecast Combination Based on Neural Networks for Time Series Forecasting. Appl. Soft Comput. 2018, 66, 1–17. [Google Scholar] [CrossRef]
- Apaydin, H.; Feizi, H.; Sattari, M.T.; Colak, M.S.; Shamshirband, S.; Chau, K.-W. Comparative Analysis of Recurrent Neural Network Architectures for Reservoir Inflow Forecasting. Water 2020, 12, 1500. [Google Scholar] [CrossRef]
- Borghi, P.H.; Zakordonets, O.; Teixeira, J.P. A COVID-19 time series forecasting model based on MLP ANN. Procedia Comput. Sci. 2021, 181, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Zeroual, A.; Harrou, F.; Dairi, A.; Sun, Y. Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study. Chaos Solitons Fractals 2020, 140, 110121. [Google Scholar] [CrossRef] [PubMed]
- Hamadneh, N.N.; Tahir, M.; Khan, W.A. Using Artificial Neural Network with Prey Predator Algorithm for Prediction of the COVID-19: The Case of Brazil and Mexico. Mathematics 2021, 9, 180. [Google Scholar] [CrossRef]
- Niazkar, H.R.; Niazkar, M. Application of artificial neural networks to predict the COVID-19 outbreak. Glob. Health Res. Policy 2020, 5, 50. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, J.H.; Lee, K.; Gim, G.Y. The Prediction of COVID-19 Using LSTM Algorithms. Int. J. Netw. Distrib. Comput. 2021, 9, 59–74. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, X.; Ai, G.; Liu, D.; Zhu, B. Time Series Prediction for the Epidemic Trends of COVID-19 Using the Improved LSTM Deep Learning Method: Case Studies in Russia, Peru and Iran. Chaos Solitons Fractals 2020, 140, 11021. [Google Scholar] [CrossRef]
- Manohar, B.; Das, R. Artificial Neural Networks for Prediction of COVID-19 in India by Using Backpropagation. Expert Syst. 2022, e13105. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/exsy.13105 (accessed on 14 June 2022). [CrossRef]
- Geirhos, R.; Janssen DH, J.; Schütt, H.H.; Rauber, J.; Bethge, M.; Wichmann, F.A. Comparing Deep Neural Networks against Humans: Object Recognition When the Signal Gets Weaker. arXiv 2017, arXiv:1706.06969. [Google Scholar]
- Rashidi, M.; Ali, M.; Freidoonimehr, N.; Nazari, F. Parametric Analysis and Optimization of Entropy Generation in Unsteady MHD Flow over a Stretching Rotating Disk Using Artificial Neural Network and Particle Swarm optimization algorithm. Energy 2013, 55, 497–510. [Google Scholar] [CrossRef]
- Asadi, S.; Shahrabi, J.; Abbaszadeh, P.; Tabanmehr, S. A new hybrid artificial neural networks for rainfall–runoff process modeling. Neurocomputing 2013, 121, 470–480. [Google Scholar] [CrossRef]
- Aichouri, I.; Hani, A.; Bougherira, N.; Djabri, L.; Chaffai, H.; Lallahem, S. River Flow Model Using Artificial Neural Networks. Energy Procedia 2015, 74, 1007–1014. [Google Scholar] [CrossRef] [Green Version]
- Mirzazadeh, A.; Abdollahpour, S.; Mahmoudi, A.; Bukat, A. Intelligent Modeling of Material Separation in Combine Harvester’s Thresher by ANN. Int. J. Agric. Crop Sci. 2012, 4, 1767–1777. [Google Scholar]
- Khalesi, S.; Mahmoudi, A.; Hosainpour, A.; Alipour, A. Detection of Walnut Varieties Using Impact Acoustics and Artificial Neural Networks (ANNs). Mod. Appl. Sci. 2011, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Ayodele, B.V.; Cheng, C.K.; Khan, M.R. Artificial neural network modeling of hydrogen-rich syngas production from methane dry reforming over novel Ni/CaFe2O4 catalysts. Int. J. Hydrogen Energy 2016, 41, 11119–11130. [Google Scholar] [CrossRef] [Green Version]
- Taghavifar, H.; Mardani, A. Wavelet Neural Network Applied for Prognostication of Contact Pressure between Soil and Driving Wheel. Inf. Process. Agric. 2014, 1, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Sharabiani, V.R.; Kassar, F.H.; Gilandeh, Y.A.; Ardabili, S.F. Application of Soft Computing Methods and Spectral Reflectance Data for Wheat Growth Monitoring. Iraqi J. Agric. Sci. 2019, 50, 1064–1076. [Google Scholar]
- Reshadsedghi, A.; Mahmoudi, A. Detection of Almond Varieties Using Impact Acoustics and Artificial Neural Networks. Int. J. Agric. Crop Sci. 2013, 6, 1008–1017. [Google Scholar]
- Hassoun, M.H. Fundamentals of Artificial Neural Networks; The MIT Press: Cambridge, MA, USA, 1995; Volume 84. [Google Scholar]
- Padhi, P.C.; Mahapatra, S.S.; Yadav, S.N.; Tripathy, D.K. Performance Characteristic Prediction of WEDM Process Using Response Surface Methodology and Artificial Neural Network. Int. J. Ind. Syst. Eng. 2014, 18, 433–453. [Google Scholar] [CrossRef]
- Chalisgaonkar, R.; Kumar, J.; Pant, P. Prediction of Machining Characteristics of Finish Cut WEDM Process for Pure Titanium Using Feed Forward Back Propagation Neural Network. Mater. Today Proc. 2020, 25, 592–601. [Google Scholar] [CrossRef]
- Janmanee, P.; Kumjing, S. A Study of Tungsten Carbide Surfaces during the Electrical Discharge Machining Using Artificial Neural Network Model. Int. J. Appl. Eng. Res. 2017, 12, 3214–3227. [Google Scholar]
- Chimmula, V.K.R.; Zhang, L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solitons Fractals 2020, 135, 109864. [Google Scholar] [CrossRef] [PubMed]
- Shahid, F.; Zameer, A.; Muneeb, M. Predictions for COVID-19 with Deep Learning Models of LSTM, GRU and Bi-LSTM. Chaos Solitons Fractals 2020, 140, 110212. [Google Scholar] [CrossRef]
- Liu, C.-H.; Gu, J.-C.; Yang, M.-T. A Simplified LSTM Neural Networks for One Day-Ahead Solar Power Forecasting. IEEE Access 2021, 9, 17174–17195. [Google Scholar] [CrossRef]
- Yu, S.; Han, R.; Zheng, Y.; Gong, C. An Integrated AMPSO-CLSTM Model for Photovoltaic Power Generation Prediction. Front. Energy Res. 2022, 10, 264. [Google Scholar] [CrossRef]
- Al-Haija, A.; Gui, G.; Su, R.; Yu, R.; Alsulami, A.A.; Abu Al-Haija, Q.; Alqahtani, A.; Alsini, R. Symmetrical Simulation Scheme for Anomaly Detection in Autonomous Vehicles Based on LSTM Model. Symmetry 2022, 14, 1450. [Google Scholar]
- Amoudi, G.; Albalawi, R.; Baothman, F.; Jamal, A.; Alghamdi, H.; Alhothali, A. Arabic rumor detection: A comparative study. Alex. Eng. J. 2022, 61, 12511–12523. [Google Scholar] [CrossRef]
- GitHub—Globaldothealth/Monkeypox: Monkeypox 2022 Repository. Available online: https://github.com/globaldothealth/monkeypox (accessed on 8 October 2022).
- Fedotenkova, M. Extraction of Multivariate Components in Brain Signals Obtained during General Anesthesia. Ph.D. Thesis, Université de Lorraine, Metz, France, 2016. [Google Scholar]
- Salehi, R.; Lestari, R.A.S. Predicting the performance of a desulfurizing bio-filter using an artificial neural network (ANN) model. Environ. Eng. Res. 2020, 26, 200462. [Google Scholar] [CrossRef]
- Shaibani, M.J.; Emamgholipour, S.; Moazeni, S.S. Investigation of Robustness of Hybrid Artificial Neural Network with Artificial Bee Colony and Firefly Algorithm in Predicting COVID-19 New Cases: Case Study of Iran. Stoch. Environ. Res. Risk Assess. Res. J. 2022, 36, 2461–2476. [Google Scholar] [CrossRef]
- Silitonga, P.; Bustamam, A.; Muradi, H.; Mangunwardoyo, W.; Dewi, B.E. Comparison of Dengue Predictive Models Developed Using Artificial Neural Network and Discriminant Analysis with Small Dataset. Appl. Sci. 2021, 11, 943. [Google Scholar] [CrossRef]
- Karsoliya, S. Approximating Number of Hidden Layer Neurons in Multiple Hidden Layer BPNN Architecture. Int. J. Eng. Trends Technol. 2012, 3, 714–717. [Google Scholar]
- Laureano-Rosario, A.E.; Duncan, A.P.; Mendez-Lazaro, P.A.; Garcia-Rejon, J.E.; Gomez-Carro, S.; Farfan-Ale, J.; Savic, D.A.; Muller-Karger, F.E. Application of Artificial Neural Networks for Dengue Fever Outbreak Predictions in the Northwest Coast of Yucatan, Mexico and San Juan, Puerto Rico. Trop. Med. Infect. Dis. 2018, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gülcü, Ş. Training of the feed forward artificial neural networks using dragonfly algorithm. Appl. Soft Comput. 2022, 124, 109023. [Google Scholar] [CrossRef]
- Yarsky, P. Using a genetic algorithm to fit parameters of a COVID-19 SEIR model for US states. Math. Comput. Simul. 2021, 185, 687–695. [Google Scholar] [CrossRef]
- Zorlu, K.; Gokceoglu, C.; Ocakoglu, F.; Nefeslioglu, H.; Acikalin, S. Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng. Geol. 2008, 96, 141–158. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Noorbakhsh, A.; Ghaleini, E.N.; Armaghani, D.J.; Yagiz, S. A new approach for estimation of rock brittleness based on non-destructive tests. Nondestruct. Test. Evaluation 2019, 34, 354–375. [Google Scholar] [CrossRef]
Study | Year | Technique | Input | Output | Results |
---|---|---|---|---|---|
A COVID-19 time series forecasting model based on MLP ANN [27] | 2021 | MLP and ANN | Daily confirmed cases | Next 20 days | More than 90% |
Deep learning methods for forecasting COVID-19 time-series data: A comparative study [28] | 2020 | RNN, LSTM, Bi-LSTM and GRUs algorithms | Daily confirmed and recovered cases collected from six countries namely Italy, Spain, France, China, USA and Australia. | Forecasting of the number of new contaminated and recovered cases | VAE achieved MAPE values of 5.90%, 2.19%, 1.88%, 0.128%, 0.236% and 2.04%, respectively |
Artificial Neural Networks for Prediction of COVID-19 in Saudi Arabia [24] | 2021 | ANN and MLPNN–PPA | Confirmed cases and deaths | The number of infected persons will increase in the coming days | The number of recoveries will be 2000 to 4000 per day. |
Using Artificial Neural Network with Prey Predator Algorithm for Prediction of the COVID-19: the Case of Brazil and Mexico [29] | 2021 | ANN, PPA-BMLPNN and PPA-MMLPNN | Confirmed cases, recovered cases and deaths | The number of infected persons will increase in the coming days | The average active cases of COVID-19 in Brazil will go to 9 × 105, with 1.5 × 105 recovered cases per day, and more than 6 × 105 as the total deaths. |
Application of artificial neural networks to predict the COVID-19 outbreak [30] | 2020 | ANN-LM | Daily confirmed cases | The ANN-based model that takes into account the previous 14 days outperforms the other ones | The previous fourteen days for prediction are suggested to predict daily confirmed cases. |
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM [31] | 2020 | ARIMA, SVR, LSTM and Bi-LSTM | Daily confirmed cases and deaths | Prediction of confirmed cases and deaths | Bi-LSTM generates lowest MAE and RMSE values of 0.0070 and 0.0077, respectively |
Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran [32]. | 2020 | LSTM | Daily confirmed cases | Next 30 days | The proposed method can accurately analyze the trend of the epidemic. |
Artificial neural networks for prediction of COVID-19 in India by using backpropagation [33] | 2022 | ANN-BP | Daily confirmed cases | The ANN-based model that takes into account the previous 14 days outperforms the other ones | The previous fourteen days for prediction are suggested to predict daily confirmed cases. |
Monkeypox | Present | ANN-LM, LSTM-ADAM, GRU-ADAM | Daily confirmed cases | The number of infected persons will increase in the coming days | ANN-LM model (99%) perform better than LSTM and GRU (98%). |
Country | Data Description | Country-Code | WHO Region |
---|---|---|---|
United States | 18 May 2022 to 24 August 2022 | USA | Region of the Americas (AMR) |
Germany | 19 May 2022 to 24 August 2022 | DE | European of Region (EUR) |
United Kingdom | 6 May 2022 to 24 August 2022 | UK | European of Region (EUR) |
France | 19 May 2022 to 24 August 2022 | FR | European of Region (EUR) |
Canada | 19 May 2022 to 24 August 2022 | CA | Region of the Americas (AMR) |
Items | Neurons | No. of Hidden Layers | Train | Validation | Test | Train-Rank | Validation-Rank | Test-Rank | Overall Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||
1 | 1 | 1 | 0.99944 | 0.00664 | 0.995686 | 0.019571 | 0.850461 | 0.12549 | 6 | 6 | 12 | 11 | 14 | 16 | 65 |
2 | 2 | 1 | 0.99959 | 0.00571 | 0.996186 | 0.018451 | 0.853831 | 0.124226 | 8 | 7 | 16 | 15 | 23 | 20 | 89 |
3 | 3 | 1 | 0.99875 | 0.00993 | 0.996379 | 0.017769 | 0.84821 | 0.125533 | 3 | 3 | 21 | 20 | 7 | 14 | 68 |
4 | 4 | 1 | 0.99976 | 0.00429 | 0.996808 | 0.016497 | 0.849201 | 0.123598 | 17 | 17 | 24 | 24 | 10 | 21 | 113 |
5 | 5 | 1 | 0.99958 | 0.00570 | 0.996302 | 0.018165 | 0.851358 | 0.125562 | 7 | 8 | 18 | 19 | 17 | 13 | 82 |
6 | 6 | 1 | 0.99966 | 0.00519 | 0.99552 | 0.019826 | 0.850677 | 0.124633 | 11 | 11 | 7 | 8 | 15 | 18 | 70 |
7 | 7 | 1 | 0.99843 | 0.01092 | 0.996327 | 0.01819 | 0.856681 | 0.123359 | 2 | 2 | 19 | 18 | 24 | 24 | 89 |
8 | 8 | 1 | 0.99964 | 0.00529 | 0.995946 | 0.018947 | 0.852853 | 0.124228 | 10 | 10 | 13 | 14 | 20 | 19 | 86 |
9 | 9 | 1 | 0.99960 | 0.00558 | 0.996128 | 0.01833 | 0.847895 | 0.125273 | 9 | 9 | 15 | 17 | 6 | 17 | 73 |
10 | 10 | 1 | 0.99979 | 0.00407 | 0.995653 | 0.019472 | 0.847847 | 0.125773 | 18 | 18 | 11 | 12 | 5 | 11 | 75 |
11 | 11 | 1 | 0.99987 | 0.00317 | 0.996481 | 0.01761 | 0.848805 | 0.125995 | 23 | 23 | 22 | 22 | 9 | 10 | 109 |
12 | 12 | 1 | 0.99935 | 0.00718 | 0.995547 | 0.019842 | 0.853296 | 0.12359 | 4 | 4 | 8 | 7 | 22 | 22 | 67 |
13 | 13 | 1 | 0.99981 | 0.00389 | 0.994944 | 0.021484 | 0.84724 | 0.129037 | 22 | 22 | 6 | 6 | 4 | 6 | 66 |
14 | 14 | 1 | 0.99979 | 0.00403 | 0.996191 | 0.018423 | 0.850882 | 0.125673 | 20 | 20 | 17 | 16 | 16 | 12 | 101 |
15 | 15 | 1 | 0.9993 | 0.00699 | 0.995982 | 0.019144 | 0.852618 | 0.126268 | 5 | 5 | 14 | 13 | 19 | 8 | 64 |
16 | 16 | 1 | 0.99979 | 0.00406 | 0.996796 | 0.016956 | 0.850439 | 0.126403 | 19 | 19 | 23 | 23 | 13 | 7 | 104 |
17 | 17 | 1 | 0.99971 | 0.00474 | 0.992316 | 0.027267 | 0.852996 | 0.129848 | 15 | 15 | 2 | 2 | 21 | 4 | 59 |
18 | 18 | 1 | 0.99972 | 0.00472 | 0.995592 | 0.019731 | 0.848797 | 0.126132 | 16 | 16 | 9 | 9 | 8 | 9 | 67 |
19 | 19 | 1 | 0.99970 | 0.00481 | 0.99563 | 0.019641 | 0.849848 | 0.125492 | 13 | 13 | 10 | 10 | 12 | 15 | 73 |
20 | 20 | 1 | 0.99980 | 0.00394 | 0.996354 | 0.01764 | 0.849419 | 0.123588 | 21 | 21 | 20 | 21 | 11 | 23 | 117 |
21 | 21 | 1 | 0.99987 | 0.00314 | 0.993076 | 0.024351 | 0.83232 | 0.131779 | 24 | 24 | 4 | 4 | 1 | 2 | 59 |
22 | 22 | 1 | 0.99971 | 0.00475 | 0.994395 | 0.022199 | 0.841461 | 0.129095 | 14 | 14 | 5 | 5 | 3 | 5 | 46 |
23 | 23 | 1 | 0.99828 | 0.01138 | 0.987112 | 0.035651 | 0.852588 | 0.13128 | 1 | 1 | 1 | 1 | 18 | 3 | 25 |
24 | 24 | 1 | 0.99967 | 0.00508 | 0.99283 | 0.025737 | 0.840422 | 0.133195 | 12 | 12 | 3 | 3 | 2 | 1 | 33 |
Items | Neurons | No. of Hidden Layers | Train | Validation | Test | Train-Rank | Validation-Rank | Test-Rank | Overall Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||
1 | 5 | 2 | 0.99958 | 0.0057 | 0.996302 | 0.018165 | 0.851358 | 0.125562 | 7 | 8 | 18 | 19 | 17 | 13 | 82 |
2 | 11 | 2 | 0.99987 | 0.00317 | 0.996481 | 0.01761 | 0.848805 | 0.125995 | 23 | 23 | 22 | 22 | 9 | 10 | 109 |
3 | 12 | 2 | 0.99935 | 0.00718 | 0.995547 | 0.019842 | 0.853296 | 0.12359 | 4 | 4 | 8 | 7 | 22 | 22 | 67 |
4 | 16 | 2 | 0.99979 | 0.00406 | 0.996796 | 0.016956 | 0.850439 | 0.126403 | 19 | 19 | 23 | 23 | 13 | 7 | 104 |
5 | 19 | 2 | 0.9997 | 0.00481 | 0.99563 | 0.019641 | 0.849848 | 0.125492 | 13 | 13 | 10 | 10 | 12 | 15 | 73 |
Items | Neurons | No. of Hidden Layers | Train | Validation | Test | Train-Rank | Validation-Rank | Test-Rank | Overall Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||
1 | 7 | 1 | 0.99981 | 0.00506 | 0.998549 | 0.012344 | 0.960484 | 0.065853 | 18 | 18 | 12 | 12 | 16 | 16 | 92 |
2 | 15 | 1 | 0.99972 | 0.00604 | 0.998841 | 0.011029 | 0.959775 | 0.066482 | 9 | 9 | 16 | 17 | 12 | 10 | 73 |
3 | 20 | 1 | 0.99977 | 0.00554 | 0.998526 | 0.012422 | 0.961158 | 0.065168 | 11 | 11 | 11 | 11 | 19 | 19 | 82 |
4 | 22 | 1 | 0.99983 | 0.00476 | 0.997861 | 0.014981 | 0.962513 | 0.064003 | 21 | 21 | 2 | 2 | 22 | 23 | 91 |
5 | 24 | 1 | 0.99993 | 0.00305 | 0.999307 | 0.008547 | 0.961561 | 0.06505 | 24 | 24 | 24 | 24 | 20 | 20 | 136 |
6 | 5 | 2 | 0.99971 | 0.00633 | 0.998842 | 0.011072 | 0.960826 | 0.065823 | 7 | 7 | 17 | 16 | 17 | 17 | 81 |
7 | 10 | 2 | 0.99982 | 0.00487 | 0.999036 | 0.010025 | 0.960202 | 0.065854 | 20 | 20 | 23 | 23 | 15 | 15 | 116 |
8 | 11 | 2 | 0.99979 | 0.00532 | 0.99891 | 0.010686 | 0.959587 | 0.066564 | 16 | 16 | 19 | 19 | 9 | 9 | 88 |
9 | 12 | 2 | 0.99988 | 0.00395 | 0.998736 | 0.011531 | 0.962649 | 0.06398 | 23 | 23 | 14 | 15 | 23 | 24 | 122 |
10 | 21 | 2 | 0.99980 | 0.00509 | 0.998238 | 0.013561 | 0.959688 | 0.066353 | 17 | 17 | 7 | 7 | 11 | 13 | 72 |
Items | Neurons | No. of Hidden layers | Train | Validation | Test | Train-Rank | Validation-Rank | Test-Rank | Overall Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||
1 | 4 | 1 | 0.99616 | 0.0174 | 0.997668 | 0.011402 | 0.631966 | 0.223179 | 12 | 12 | 15 | 15 | 13 | 15 | 82 |
2 | 7 | 1 | 0.99613 | 0.01742 | 0.998503 | 0.009161 | 0.632303 | 0.222859 | 10 | 11 | 22 | 22 | 14 | 16 | 95 |
3 | 15 | 1 | 0.9964 | 0.01678 | 0.998149 | 0.010213 | 0.634408 | 0.221676 | 18 | 19 | 20 | 20 | 18 | 20 | 115 |
4 | 18 | 1 | 0.99707 | 0.01515 | 0.998546 | 0.00899 | 0.631227 | 0.222802 | 22 | 23 | 24 | 24 | 12 | 17 | 122 |
5 | 20 | 1 | 0.9971 | 0.01516 | 0.996542 | 0.014373 | 0.635039 | 0.227021 | 23 | 22 | 6 | 4 | 19 | 2 | 76 |
6 | 6 | 2 | 0.99596 | 0.01784 | 0.997928 | 0.010815 | 0.629863 | 0.225646 | 8 | 8 | 18 | 18 | 8 | 4 | 64 |
7 | 9 | 2 | 0.99614 | 0.01742 | 0.998515 | 0.009107 | 0.630533 | 0.224038 | 11 | 10 | 23 | 23 | 11 | 10 | 88 |
8 | 14 | 2 | 0.99647 | 0.01658 | 0.997121 | 0.012745 | 0.637717 | 0.218903 | 20 | 20 | 14 | 13 | 22 | 24 | 113 |
9 | 16 | 2 | 0.99639 | 0.01693 | 0.997793 | 0.011191 | 0.635548 | 0.222772 | 17 | 17 | 16 | 16 | 20 | 18 | 104 |
10 | 22 | 2 | 0.99629 | 0.01723 | 0.997893 | 0.011138 | 0.638272 | 0.223483 | 16 | 13 | 17 | 17 | 24 | 13 | 100 |
Items | Neurons | No. of Hidden layers | Train | Validation | Test | Train-Rank | Validation-Rank | Test-Rank | Overall Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||
1 | 3 | 1 | 0.99437 | 0.02372 | 0.997974 | 0.016372 | 0.949289 | 0.08408 | 10 | 8 | 20 | 20 | 20 | 21 | 99 |
2 | 5 | 1 | 0.99479 | 0.02259 | 0.998057 | 0.01597 | 0.948348 | 0.084555 | 15 | 15 | 22 | 22 | 18 | 17 | 109 |
3 | 6 | 1 | 0.99435 | 0.02356 | 0.997897 | 0.016645 | 0.946519 | 0.086316 | 9 | 10 | 16 | 16 | 15 | 14 | 80 |
4 | 14 | 1 | 0.99442 | 0.02325 | 0.99691 | 0.019969 | 0.947747 | 0.084289 | 11 | 11 | 9 | 10 | 16 | 19 | 76 |
5 | 21 | 1 | 0.9952 | 0.02176 | 0.993804 | 0.02864 | 0.955583 | 0.078299 | 18 | 19 | 2 | 2 | 23 | 23 | 87 |
6 | 7 | 2 | 0.99465 | 0.02308 | 0.997937 | 0.016588 | 0.949004 | 0.084624 | 13 | 14 | 17 | 18 | 19 | 16 | 97 |
7 | 9 | 2 | 0.99452 | 0.02319 | 0.998034 | 0.016004 | 0.944522 | 0.087533 | 12 | 12 | 21 | 21 | 12 | 11 | 89 |
8 | 16 | 2 | 0.99525 | 0.02161 | 0.996716 | 0.020902 | 0.945894 | 0.087204 | 19 | 20 | 8 | 7 | 14 | 13 | 81 |
9 | 18 | 2 | 0.99604 | 0.01973 | 0.997475 | 0.018082 | 0.942191 | 0.089217 | 23 | 24 | 14 | 14 | 7 | 8 | 90 |
10 | 20 | 2 | 0.996 | 0.01982 | 0.997155 | 0.019208 | 0.94329 | 0.08837 | 22 | 22 | 11 | 11 | 10 | 10 | 86 |
Items | Neurons | No. of Hidden Layers | Train | Validation | Test | Train-Rank | Validation-Rank | Test-Rank | Overall Score | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | RMSE | RMSE | RMSE | RMSE | RMSE | ||||||||||
1 | 2 | 1 | 0.99754 | 0.01453 | 0.999267 | 0.010368 | 0.923376 | 0.110758 | 9 | 9 | 18 | 18 | 23 | 23 | 100 |
2 | 6 | 1 | 0.99743 | 0.01477 | 0.99944 | 0.009105 | 0.920556 | 0.113625 | 4 | 4 | 24 | 24 | 12 | 9 | 77 |
3 | 10 | 1 | 0.99756 | 0.01446 | 0.999316 | 0.010048 | 0.923644 | 0.110944 | 10 | 11 | 20 | 20 | 24 | 22 | 107 |
4 | 16 | 1 | 0.99818 | 0.01248 | 0.999352 | 0.009834 | 0.921499 | 0.113232 | 19 | 19 | 23 | 23 | 19 | 13 | 116 |
5 | 24 | 1 | 0.99844 | 0.01156 | 0.998198 | 0.016301 | 0.92087 | 0.112905 | 23 | 23 | 2 | 2 | 16 | 16 | 82 |
6 | 7 | 2 | 0.9976 | 0.01435 | 0.99933 | 0.009967 | 0.920149 | 0.113964 | 12 | 13 | 22 | 22 | 9 | 8 | 86 |
7 | 8 | 2 | 0.99781 | 0.0137 | 0.99915 | 0.011158 | 0.920551 | 0.112932 | 14 | 14 | 14 | 14 | 11 | 15 | 82 |
8 | 20 | 2 | 0.99789 | 0.01341 | 0.99915 | 0.011127 | 0.920659 | 0.112564 | 17 | 17 | 15 | 15 | 14 | 18 | 96 |
9 | 21 | 2 | 0.9984 | 0.01172 | 0.998421 | 0.015152 | 0.922865 | 0.110642 | 22 | 22 | 3 | 3 | 21 | 24 | 95 |
10 | 23 | 2 | 0.99848 | 0.01228 | 0.999123 | 0.011263 | 0.922201 | 0.110967 | 24 | 20 | 13 | 13 | 20 | 21 | 111 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manohar, B.; Das, R. Artificial Neural Networks for the Prediction of Monkeypox Outbreak. Trop. Med. Infect. Dis. 2022, 7, 424. https://doi.org/10.3390/tropicalmed7120424
Manohar B, Das R. Artificial Neural Networks for the Prediction of Monkeypox Outbreak. Tropical Medicine and Infectious Disease. 2022; 7(12):424. https://doi.org/10.3390/tropicalmed7120424
Chicago/Turabian StyleManohar, Balakrishnama, and Raja Das. 2022. "Artificial Neural Networks for the Prediction of Monkeypox Outbreak" Tropical Medicine and Infectious Disease 7, no. 12: 424. https://doi.org/10.3390/tropicalmed7120424
APA StyleManohar, B., & Das, R. (2022). Artificial Neural Networks for the Prediction of Monkeypox Outbreak. Tropical Medicine and Infectious Disease, 7(12), 424. https://doi.org/10.3390/tropicalmed7120424