Challenges, Recent Advances and Perspectives in the Treatment of Human Cytomegalovirus Infections
Abstract
:1. Introduction
1.1. Structure and Classification of Human Herpesviruses
1.2. Life Cycle of HHV
1.3. Human Cytomegalovirus (HCMV) Molecular Biology and Infection
2. Diseases Caused by HCMV Infections
2.1. Congenital Infection for Infant
2.2. Glioblastoma (GBM) for Adults
3. Challenges for the Treatment of HCMV Infections
3.1. Traditional Antiviral Drugs Are Only Indicated for Acute Infections, Have Side Effects and Induce Resistance Issues
3.2. Gene-Targeting Approaches Have Difficulty in Delivery Tool Option and Safety Concerns
3.3. Cell Therapy
3.3.1. Adoptive T Cell Therapy for Transplantation Recipients
3.3.2. Immunotherapy for GBM Patients
4. Recent Advances and Perspectives
4.1. Novel Antiviral Drugs with Fewer Side Effects and/or Resistance Issues Have Been Developed or under Investigation
4.2. The Combination of Drugs Is Testing
4.3. Gene-Targeting Approaches and Cell Therapy Are Feasible for Compassionate Use
4.4. Further More Studies Have Been Conducted to Clearly Define the Efficacy and Risks of Cell Therapy
4.5. HCMV Vaccine Is Being Developed
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Mettenleiter, T.C. Herpesvirus assembly and egress. J. Virol. 2002, 76, 1537–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manservigi, R.; Cassai, E. The glycoproteins of the human herpesviruses. Comp. Immunol. Microbiol. Infect. Dis. 1991, 14, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Schleiss, M.R. Persistent and recurring viral infections: The human herpesviruses. Curr. Probl. Pediatr. Adolesc. Health Care 2009, 39, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.J.; Wang, S.C.; Chen, Y.C. Antiviral Agents as Therapeutic Strategies Against Cytomegalovirus Infections. Viruses 2019, 12, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connolly, S.A.; Jardetzky, T.S.; Longnecker, R. The structural basis of herpesvirus entry. Nat. Rev. Microbiol. 2021, 19, 110–121. [Google Scholar] [CrossRef]
- Ligat, G.; Muller, C.; Alain, S.; Hantz, S. The terminase complex, a relevant target for the treatment of HCMV infection. Med. Sci. 2020, 36, 367–375. [Google Scholar] [CrossRef]
- Ligat, G.; Cazal, R.; Hantz, S.; Alain, S. The human cytomegalovirus terminase complex as an antiviral target: A close-up view. FEMS Microbiol. Rev. 2018, 42, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Heming, J.D.; Conway, J.F.; Homa, F.L. Herpesvirus Capsid Assembly and DNA Packaging. Adv. Anat. Embryol. Cell Biol. 2017, 223, 119–142. [Google Scholar] [CrossRef] [Green Version]
- Cohrs, R.J.; Gilden, D.H. Human herpesvirus latency. Brain Pathol. 2001, 11, 465–474. [Google Scholar] [CrossRef]
- Cohen, J.I. Herpesvirus latency. J. Clin. Investig. 2020, 130, 3361–3369. [Google Scholar] [CrossRef]
- Murphy, E.; Shenk, T. Human cytomegalovirus genome. Curr. Top Microbiol. Immunol. 2008, 325, 1–19. [Google Scholar] [CrossRef]
- Landolfo, S.; Gariglio, M.; Gribaudo, G.; Lembo, D. The human cytomegalovirus. Pharmacol. Ther. 2003, 98, 269–297. [Google Scholar] [CrossRef]
- Vanarsdall, A.L.; Johnson, D.C. Human cytomegalovirus entry into cells. Curr. Opin. Virol. 2012, 2, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Stein, K.R.; Gardner, T.J.; Hernandez, R.E.; Kraus, T.A.; Duty, J.A.; Ubarretxena-Belandia, I.; Moran, T.M.; Tortorella, D. CD46 facilitates entry and dissemination of human cytomegalovirus. Nat. Commun. 2019, 10, 2699. [Google Scholar] [CrossRef] [Green Version]
- Gerna, G.; Kabanova, A.; Lilleri, D. Human cytomegalovirus cell tropism and host cell receptors. Vaccines 2019, 7, 70. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.C.; Kamil, J.P. Pathogen at the gates: Human cytomegalovirus entry and cell tropism. Viruses 2018, 10, 704. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Abenes, G.; Zhan, X.; Dunn, W.; Haghjoo, E.; Tong, T.; Tam, A.; Chan, K.; Liu, F. Genetic analyses of gene function and pathogenesis of murine cytomegalovirus by transposon-mediated mutagenesis. J. Clin. Virol. 2002, 25, S111–S122. [Google Scholar] [CrossRef]
- Zhan, X.; Lee, M.; Xiao, J.; Liu, F. Construction and characterization of murine cytomegaloviruses that contain transposon insertions at open reading frames M09 and M83. J. Virol. 2000, 74, 7411–7421. [Google Scholar] [CrossRef] [Green Version]
- Marschall, M.; Freitag, M.; Weiler, S.; Sorg, G.; Stamminger, T. Recombinant green fluorescent protein-expressing human cytomegalovirus as a tool for screening antiviral agents. Antimicrob. Agents Chemother. 2000, 44, 1588–1597. [Google Scholar] [CrossRef] [Green Version]
- Scholz, M.; Doerr, H.W.; Cinatl, J. Inhibition of cytomegalovirus immediate early gene expression: A therapeutic option? Antiviral. Res. 2001, 49, 129–145. [Google Scholar] [CrossRef]
- Dunn, W.; Chou, C.; Li, H.; Hai, R.; Patterson, D.; Stolc, V.; Zhu, H.; Liu, F. Functional profiling of a human cytomegalovirus genome. Proc. Natl. Acad. Sci. USA 2003, 100, 14223–14228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, P.; Baraniak, I.; Reeves, M. The pathogenesis of human cytomegalovirus. J. Pathol. 2015, 235, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Fulkerson, H.L.; Nogalski, M.T.; Collins-McMillen, D.; Yurochko, A.D. Overview of Human Cytomegalovirus Pathogenesis. Methods Mol. Biol. 2021, 2244, 1–18. [Google Scholar] [CrossRef]
- La, Y.; Kwon, D.E.; Yoo, S.G.; Lee, K.H.; Han, S.H.; Song, Y.G. Human cytomegalovirus seroprevalence and titers in solid organ transplant recipients and transplant donors in Seoul, South Korea. BMC Infect. Dis. 2019, 19, 948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melnick, M.; Sedghizadeh, P.P.; Allen, C.M.; Jaskoll, T. Human cytomegalovirus and mucoepidermoid carcinoma of salivary glands: Cell-specific localization of active viral and oncogenic signaling proteins is confirmatory of a causal relationship. Exp. Mol. Pathol. 2012, 92, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Francis, S.S.; Wiemels, J.L.; Yang, W.; Shaw, G.M. Herpesvirus Infection in Infants with Gastroschisis. Epidemiology 2018, 29, 571–573. [Google Scholar] [CrossRef]
- Leung, A.K.; Sauve, R.S.; Davies, H.D. Congenital cytomegalovirus infection. J. Natl. Med. Assoc. 2003, 95, 213–218. [Google Scholar]
- Bale, J.F., Jr. Congenital cytomegalovirus infection. Handb. Clin. Neurol. 2014, 123, 319–326. [Google Scholar] [CrossRef]
- Davis, N.L.; King, C.C.; Kourtis, A.P. Cytomegalovirus infection in pregnancy. Birth Defects Res. 2017, 109, 336–346. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Fang, F. Congenital human cytomegalovirus infection and neurologic diseases in newborns. Chin. Med. J. 2019, 132, 2109–2118. [Google Scholar] [CrossRef]
- Krstanović, F.; Britt, W.J.; Jonjić, S.; Brizić, I. Cytomegalovirus Infection and Inflammation in Developing Brain. Viruses 2021, 13, 1078. [Google Scholar] [CrossRef]
- Wang, S.C.; Chen, S.J.; Chen, Y.C. Potential Therapeutic Approaches Against Brain Diseases Associated with Cytomegalovirus Infections. Int. J. Mol. Sci. 2020, 21, 1376. [Google Scholar] [CrossRef] [Green Version]
- Soroceanu, L.; Matlaf, L.; Bezrookove, V.; Harkins, L.; Martinez, R.; Greene, M.; Soteropoulos, P.; Cobbs, C.S. Human cytomegalovirus US28 found in glioblastoma promotes an invasive and angiogenic phenotype. Cancer Res. 2011, 71, 6643–6653. [Google Scholar] [CrossRef] [Green Version]
- McFaline-Figueroa, J.R.; Wen, P.Y. The viral connection to glioblastoma. Curr. Infect. Dis. Rep. 2017, 19, 5. [Google Scholar] [CrossRef]
- Krenzlin, H.; Behera, P.; Lorenz, V.; Passaro, C.; Zdioruk, M.; Nowicki, M.O.; Grauwet, K.; Zhang, H.; Skubal, M.; Ito, H.; et al. Cytomegalovirus promotes murine glioblastoma growth via pericyte recruitment and angiogenesis. J. Clin. Investig. 2011, 130, 1671–1683. [Google Scholar] [CrossRef] [Green Version]
- Solomon, I.H.; Ramkissoon, S.H.; Milner DAJr Folkerth, R.D. Cytomegalovirus and glioblastoma: A review of evidence for their association and indications for testing and treatment. J. Neuropathol. Exp. Neurol. 2014, 73, 994–998. [Google Scholar] [CrossRef] [Green Version]
- Lawler, S.E. Cytomegalovirus and glioblastoma; controversies and opportunities. J. Neurooncol. 2015, 123, 465–471. [Google Scholar] [CrossRef]
- Krenzlin, H.; Zdioruk, M.; Nowicki, M.O.; Finkelberg, T.; Keric, N.; Lemmermann, N.; Skubal, M.; Chiocca, E.A.; Cook, C.H.; Lawler, S.E. Cytomegalovirus infection of glioblastoma cells leads to NF-κB dependent upregulation of the c-MET oncogenic tyrosine kinase. Cancer Lett. 2021, 513, 26–35. [Google Scholar] [CrossRef]
- Yang, T.; Liu, D.; Fang, S.; Ma, W.; Wang, Y. Cytomegalovirus and Glioblastoma: A Review of the Biological Associations and Therapeutic Strategies. J. Clin. Med. 2022, 11, 5221. [Google Scholar] [CrossRef]
- Plosa, E.J.; Esbenshade, J.C.; Fuller, M.P.; Weitkamp, J.H. Cytomegalovirus infection. Pediatr. Rev. 2012, 33, 156–163. [Google Scholar] [CrossRef]
- Meesing, A.; Razonable, R.R. New Developments in the Management of Cytomegalovirus Infection After Transplantation. Drugs 2018, 78, 1085–1103. [Google Scholar] [CrossRef] [PubMed]
- El Chaer, F.; Shah, D.P.; Chemaly, R.F. How I treat resistant cytomegalovirus infection in hematopoietic cell transplantation recipients. Blood 2016, 128, 2624–2636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asberg, A.; Humar, A.; Rollag, H.; Jardine, A.G.; Mouas, H.; Pescovitz, M.D.; Sgarabotto, D.; Tuncer, M.; Noronha, I.L.; Hartmann, A.; et al. Oral valganciclovir is noninferior to intravenous ganciclovir for the treatment of cytomegalovirus disease in solid organ transplant recipients. Am. J. Transplant. 2007, 7, 2106–2113. [Google Scholar] [CrossRef] [PubMed]
- Mareri, A.; Lasorella, S.; Iapadre, G.; Maresca, M.; Tambucci, R.; Nigro, G. Anti-viral therapy for congenital cytomegalovirus infection: Pharmacokinetics, efficacy and side effects. J. Matern. Fetal. Neonatal. Med. 2016, 29, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Marshall, B.C.; Koch, W.C. Antivirals for cytomegalovirus infection in neonates and infants: Focus on pharmacokinetics, formulations, dosing, and adverse events. Paediatr. Drugs 2009, 11, 309–321. [Google Scholar] [CrossRef]
- Deng, Q.; Liu, Y.; Li, X.; Yan, B.; Sun, X.; Tang, W.; Trang, P.; Yang, Z.; Gong, H.; Wang, Y.; et al. Inhibition of human cytomegalovirus major capsid protein expression and replication by ribonuclease P-associated external guide sequences. RNA 2019, 25, 645–655. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Wang, Y.; Li, R.; Trang, P.; Tang, W.; Yang, Z.; Wang, Y.; Sun, X.; Xing, X.; et al. Engineered RNase P ribozymes effectively inhibit the infection of murine cytomegalovirus in animals. Theranostics 2018, 8, 5634–5644. [Google Scholar] [CrossRef]
- Li, W.; Sheng, J.; Xu, M.; Vu, G.P.; Yang, Z.; Liu, Y.; Sun, X.; Trang, P.; Lu, S.; Liu, F. Inhibition of murine cytomegalovirus infection in animals by RNase P-associated external guide sequences. Mol. Ther. Nucleic. Acids 2017, 9, 322–332. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Sheng, J.; Trang, P.; Liu, F. Potential Application of the CRISPR/Cas9 System against Herpesvirus Infections. Viruses 2018, 10, 291. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Deng, J.; Zhang, Q.; Ma, P.; Lv, L.; Zhang, Y.; Li, C.; Zhang, Y. Targeting human cytomegalovirus IE genes by CRISPR/Cas9 nuclease effectively inhibits viral replication and reactivation. Arch. Virol. 2020, 165, 1827–1835. [Google Scholar] [CrossRef]
- Gergen, J.; Coulon, F.; Creneguy, A.; Elain-Duret, N.; Gutierrez, A.; Pinkenburg, O.; Verhoeyen, E.; Anegon, I.; Nguyen, T.H.; Halary, F.A.; et al. Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene. PLoS ONE 2018, 13, e0192602. [Google Scholar] [CrossRef] [PubMed]
- van Diemen, F.R.; Kruse, E.M.; Hooykaas, M.J.; Bruggeling, C.E.; Schürch, A.C.; van Ham, P.M.; Imhof, S.M.; Nijhuis, M.; Wiertz, E.J.; Lebbink, R.J. CRISPR/Cas9-mediated genome editing of herpesviruses limits productive and latent Infections. PloS Pathog. 2016, 12, e1005701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.J.; Chen, Y.C. Potential application of TALENs against murine cytomegalovirus latent infections. Viruses 2019, 11, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luther, D.C.; Lee, Y.W.; Nagaraj, H.; Scaletti, F.; Rotello, V.M. Delivery approaches for CRISPR/Cas9 therapeutics in vivo: Advances and challenges. Expert. Opin. Drug Deliv. 2018, 15, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Lino, C.A.; Harper, J.C.; Carney, J.P.; Timlin, J.A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 2018, 25, 1234–1257. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Mao, A.; Xu, M.; Weng, Q.; Mao, J.; Ji, J. CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Lett. 2019, 447, 48–55. [Google Scholar] [CrossRef]
- Khan, S.H. Genome-editing technologies: Concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol. Ther. Nucleic. Acids 2019, 16, 326–334. [Google Scholar] [CrossRef] [Green Version]
- Hirakawa, M.P.; Krishnakumar, R.; Timlin, J.A.; Carney, J.P.; Butler, K.S. Gene editing and CRISPR in the clinic: Current and future perspectives. Biosci. Rep. 2020, 40, BSR20200127. [Google Scholar] [CrossRef] [Green Version]
- Kallay, K.; Kassa, C.; Reti, M.; Karaszi, E.; Sinko, J.; Goda, V.; Stréhn, A.; Csordás, K.; Horváth, O.; Szederjesi, A.; et al. Early experience with Clini MACS prodigy CCS (IFN-gamma) system in selection of virus specific T cells from third-party donors for pediatric patients with severe viral infections after hematopoietic stem cell transplantation. J. Immunother. 2018, 41, 158–163. [Google Scholar] [CrossRef]
- Smith, C.; Beagley, L.; Rehan, S.; Neller, M.A.; Crooks, P.; Solomon, M.; Holmes-Liew, C.L.; Holmes, M.; McKenzie, S.C.; Hopkins, P.; et al. Autologous adoptive T-cell therapy for recurrent or drug-resistant cytomegalovirus complications in solid organ transplant recipients: A single-arm open-label phase I clinical trial. Clin. Infect. Dis. 2019, 68, 632–640. [Google Scholar] [CrossRef]
- Pierucci, P.; Malouf, M.; Glanville, A.R.; Beagley, L.; Smith, C.; Khanna, R. Novel autologous T-cell therapy for drug-resistant cytomegalovirus disease after lung transplantation. J. Heart Lung Transplant. 2016, 35, 685–687. [Google Scholar] [CrossRef]
- Macesic, N.; Langsford, D.; Nicholls, K.; Hughes, P.; Gottlieb, D.J.; Clancy, L.; Blyth, E.; Micklethwaite, K.; Withers, B.; Majumdar, S.; et al. Adoptive T cell immunotherapy for treatment of ganciclovir-resistant cytomegalovirus disease in a renal transplant recipient. Am. J. Transplant. 2015, 15, 827–832. [Google Scholar] [CrossRef]
- Ahn, J.; Shin, C.; Kim, Y.S.; Park, J.S.; Jeun, S.S.; Ahn, S. Cytomegalovirus-Specific Immunotherapy for Glioblastoma Treatments. Brain Tumor. Res. Treat. 2022, 10, 135–143. [Google Scholar] [CrossRef]
- Schuessler, A.; Walker, D.G.; Khanna, R. Cytomegalovirus as a novel target for immunotherapy of glioblastoma multiforme. Front. Oncol. 2014, 4, 275. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, S.D.; Srinivasan, V.M.; Ghali, M.G.; Heimberger, A.B. Cytomegalovirus-targeted immunotherapy and glioblastoma: Hype or hope? Immunotherapy 2016, 8, 413–423. [Google Scholar] [CrossRef]
- Lamano, J.B.; Quaggin-Smith, J.A.; Horbinski, C.M.; Tate, M.C.; Grimm, S.A.; Kumthekar, P.U.; Bloch, O. Long-term glioblastoma survival following recovery from cytomegalovirus colitis: A case report. J. Clin. Neurosci. 2019, 64, 18–21. [Google Scholar] [CrossRef]
- Batich, K.A.; Reap, E.A.; Archer, G.E.; Sanchez-Perez, L.; Nair, S.K.; Schmittling, R.J.; Norberg, P.; Xie, W.; Herndon, J.E., 2nd; Healy, P.; et al. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. Clin. Cancer Res. 2017, 23, 1898–1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, S.K.; De Leon, G.; Boczkowski, D.; Schmittling, R.; Xie, W.; Staats, J.; Liu, R.; Johnson, L.A.; Weinhold, K.; Archer, G.E.; et al. Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp65-specific cytotoxic T cells. Clin. Cancer Res. 2014, 20, 2684–2694. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.K.; Sampson, J.H.; Mitchell, D.A. Immunological targeting of cytomegalovirus for glioblastoma therapy. Oncoimmunology 2014, 3, e29289. [Google Scholar] [CrossRef]
- Chou, S. A third component of the human cytomegalovirus terminase complex is involved in letermovir resistance. Antiviral. Res. 2017, 148, 1–4. [Google Scholar] [CrossRef]
- Krishna, B.A.; Wills, M.R.; Sinclair, J.H. Advances in the treatment of cytomegalovirus. Br. Med. Bull. 2019, 131, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Helou, G.E.; Razonable, R.R. Letermovir for the prevention of cytomegalovirus infection and disease in transplant recipients: An evidence-based review. Infect. Drug Resist. 2019, 12, 1481–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, A.; Maloy, M.; Su, Y.; Bhatt, V.; DeRespiris, L.; Griffin, M.; Lau, C.; Proli, A.; Barker, J.; Shaffer, B.; et al. Letermovir for primary and secondary cytomegalovirus prevention in allogeneic hematopoietic cell transplant recipients: Real-world experience. Transpl. Infect. Dis. 2019, 21, e13187. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.; Katugaha, S.B.; Cochrane, A.; Brown, A.W.; Nathan, S.D.; Shlobin, O.A.; Ahmad, K.; Marinak, L.; Chun, J.; Fregoso, M.; et al. Single-center experience with use of letermovir for CMV prophylaxis or treatment in thoracic organ transplant recipients. Transpl. Infect. Dis. 2019, 21, e13166. [Google Scholar] [CrossRef] [PubMed]
- Veit, T.; Munker, D.; Kauke, T.; Zoller, M.; Michel, S.; Ceelen, F.; Schiopu, S.; Barton, J.; Arnold, P.; Milger, K.; et al. Letermovir for difficult to treat cytomegalovirus infection in lung transplant recipients. Transplantation 2019, 104, 410–414. [Google Scholar] [CrossRef]
- Frange, P.; Leruez-Ville, M. Maribavir, brincidofovir and letermovir: Efficacy and safety of new antiviral drugs for treating cytomegalovirus infections. Med. Mal. Infect. 2018, 48, 495–502. [Google Scholar] [CrossRef]
- Avery, R.K.; Alain, S.; Alexander, B.D.; Blumberg, E.A.; Chemaly, R.F.; Cordonnier, C.; Duarte, R.F.; Florescu, D.F.; Kamar, N.; Kumar, D.; et al. Maribavir for Refractory Cytomegalovirus Infections with or without Resistance Post-Transplant: Results from a Phase 3 Randomized Clinical Trial. Clin. Infect. Dis. 2022, 75, 690–701. [Google Scholar] [CrossRef]
- Maertens, J.; Cordonnier, C.; Jaksch, P.; Poiré, X.; Uknis, M.; Wu, J.; Wijatyk, A.; Saliba, F.; Witzke, O.; Villano, S. Maribavir for Preemptive Treatment of Cytomegalovirus Reactivation. N. Engl. J. Med. 2019, 381, 1136–1147. [Google Scholar] [CrossRef]
- Imlay, H.N.; Kaul, D.R. Letermovir and Maribavir for the Treatment and Prevention of Cytomegalovirus Infection in Solid Organ and Stem Cell Transplant Recipients. Clin. Infect. Dis. 2021, 73, 156–160. [Google Scholar] [CrossRef]
- Papanicolaou, G.A.; Silveira, F.P.; Langston, A.A.; Pereira, M.R.; Avery, R.K.; Uknis, M.; Wijatyk, A.; Wu, J.; Boeckh, M.; Marty, F.M.; et al. Maribavir for Refractory or Resistant Cytomegalovirus Infections in Hematopoietic-cell or Solid-organ Transplant Recipients: A Randomized, Dose-ranging, Double-blind, Phase 2 Study. Clin. Infect. Dis. 2019, 68, 1255–1264. [Google Scholar] [CrossRef] [Green Version]
- Marty, F.M.; Winston, D.J.; Chemaly, R.F.; Mullane, K.M.; Shore, T.B.; Papanicolaou, G.A.; Chittick, G.; Brundage, T.M.; Wilson, C.; Morrison, M.E.; et al. A Randomized, Double-Blind, Placebo-Controlled Phase 3 Trial of Oral Brincidofovir for Cytomegalovirus Prophylaxis in Allogeneic Hematopoietic Cell Transplantation. Biol. Blood Marrow. Transplant. 2019, 25, 369–381. [Google Scholar] [CrossRef]
- Lanier, E.R.; Foster, S.; Brundage, T.; Chou, S.; Prichard, M.N.; Kleiboeker, S.; Wilson, C.; Colville, D.; Mommeja-Marin, H. Analysis of Mutations in the Gene Encoding Cytomegalovirus DNA Polymerase in a Phase 2 Clinical Trial of Brincidofovir Prophylaxis. J. Infect. Dis. 2016, 214, 32–35. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, P. New vaccines and antiviral drugs for cytomegalovirus. J. Clin. Virol. 2019, 116, 58–61. [Google Scholar] [CrossRef]
- Hussein, I.T.M.; Brooks, J.; Bowlin, T.L. The discovery and development of filociclovir for the prevention and treatment of human cytomegalovirus-related disease. Antiviral. Res. 2020, 176, 104710. [Google Scholar] [CrossRef]
- Rouphael, N.G.; Hurwitz, S.J.; Hart, M.; Beck, A.; Anderson, E.J.; Deye, G.; Osborn, B.; Cai, S.Y.; Focht, C.; Amegashie, C.; et al. Phase Ib Trial To Evaluate the Safety and Pharmacokinetics of Multiple Ascending Doses of Filociclovir (MBX-400, Cyclopropavir) in Healthy Volunteers. Antimicrob. Agents Chemother. 2019, 63, e00717–e00719. [Google Scholar] [CrossRef] [Green Version]
- Hakki, M. Moving Past Ganciclovir and Foscarnet: Advances in CMV Therapy. Curr. Hematol. Malig. Rep. 2020, 15, 90–102. [Google Scholar] [CrossRef]
- Ornaghi, S.; Hsieh, L.S.; Bordey, A.; Vergani, P.; Paidas, M.J.; van den Pol, A.N. Valnoctamide Inhibits Cytomegalovirus Infection in Developing Brain and Attenuates Neurobehavioral Dysfunctions and Brain Abnormalities. J. Neurosci. 2017, 37, 6877–6893. [Google Scholar] [CrossRef] [Green Version]
- Ornaghi, S.; Davis, J.N.; Gorres, K.L.; Miller, G.; Paidas, M.J.; van den Pol, A.N. Mood stabilizers inhibit cytomegalovirus infection. Virology 2016, 499, 121–135. [Google Scholar] [CrossRef]
- Chou, S.; Ercolani, R.J.; Derakhchan, K. Antiviral activity of maribavir in combination with other drugs active against human cytomegalovirus. Antiviral. Res. 2018, 157, 128–133. [Google Scholar] [CrossRef]
- Mercorelli, B.; Celegato, M.; Luganini, A.; Gribaudo, G.; Lepesheva, G.I.; Loregian, A. The antifungal drug isavuconazole inhibits the replication of human cytomegalovirus (HCMV) and acts synergistically with anti-HCMV drugs. Antiviral. Res. 2021, 189, 105062. [Google Scholar] [CrossRef]
- Lawrence Drew, W. Is combination antiviral therapy for CMV superior to monotherapy? J. Clin. Virol. 2006, 35, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Pérez Marín, M.; Decosterd, L.A.; Andre, P.; Buclin, T.; Mercier, T.; Murray, K.; Rizzi, M.; Meylan, P.; Jaton-Ogay, K.; Opota, O.; et al. Compassionate use of letermovir in a 2-year-old immunocompromised child with resistant cytomegalovirus disease. J. Pediatric. Infect. Dis. Soc. 2020, 9, 96–99. [Google Scholar] [CrossRef]
- Robin, C.; Thiebaut, A.; Alain, S.; Sicre de Fontbrune, F.; Berceanu, A.; D’Aveni, M.; Ceballos, P.; Redjoul, R.; Nguyen-Quoc, S.; Bénard, N.; et al. Letermovir for secondary prophylaxis of cytomegalovirus infection and disease after allogeneic hematopoietic cell transplantation: Results from the French compassionate program. Biol. Blood Marrow. Transplant. 2020, 26, 978–984. [Google Scholar] [CrossRef] [PubMed]
- US FDA Website. Available online: https://www.fda.gov/news-events/public-health-focus/expanded-access (accessed on 28 November 2022).
- EMA Website. Available online: https://www.ema.europa.eu/en/human-regulatory/research-development/compassionate-use. (accessed on 1 January 2021).
- Neill, L.; Peggs, K. Cell therapy for cytomegalovirus infection. Expert. Opin. Biol. Ther. 2021, 21, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Yong, M.K.; Shigle, T.L.; Kim, Y.J.; Carpenter, P.A.; Chemaly, R.F.; Papanicolaou, G.A. American Society for Transplantation and Cellular Therapy Series: #4-Cytomegalovirus treatment and management of resistant or refractory infections after hematopoietic cell transplantation. Transplant. Cell Ther. 2021, 27, 957–967. [Google Scholar] [CrossRef]
- Zamora, D.; Duke, E.R.; Xie, H.; Edmison, B.C.; Akoto, B.; Kiener, R.; Stevens-Ayers, T.; Wagner, R.; Mielcarek, M.; Leisenring, W.M.; et al. Cytomegalovirus-specific T-cell reconstitution following letermovir prophylaxis after hematopoietic cell transplantation. Blood 2021, 138, 34–43. [Google Scholar] [CrossRef]
- Farrell, H.E.; Bruce, K.; Stevenson, P.G. A Live Olfactory Mouse Cytomegalovirus Vaccine, Attenuated for Systemic Spread, Protects against Superinfection. J. Virol. 2021, 95, e0126421. [Google Scholar] [CrossRef]
- Kschonsak, M.; Johnson, M.C.; Schelling, R.; Green, E.M.; Rougé, L.; Ho, H.; Patel, N.; Kilic, C.; Kraft, E.; Arthur, C.P.; et al. Structural basis for HCMV Pentamer receptor recognition and antibody neutralization. Sci. Adv. 2022, 8, eabm2536. [Google Scholar] [CrossRef]
- Gerna, G.; Lilleri, D. Human cytomegalovirus (HCMV) infection/re-infection: Development of a protective HCMV vaccine. New Microbiol. 2019, 42, 1–20. [Google Scholar]
- Ligat, G.; Alain, S.; Hantz, S. Towards a Prophylactic Vaccine for the Prevention of HCMV Infection. Vaccines 2021, 9, 968. [Google Scholar] [CrossRef]
- Scarpini, S.; Morigi, F.; Betti, L.; Dondi, A.; Biagi, C.; Lanari, M. Development of a Vaccine against Human Cytomegalovirus: Advances, Barriers, and Implications for the Clinical Practice. Vaccines 2021, 9, 551. [Google Scholar] [CrossRef]
- Cytomegalovirus (CMV) and Congenital CMV Infection–CDC. Available online: https://www.cdc.gov/cmv/index.html (accessed on 18 August 2020).
- Zuhair, M.; Smit, G.S.A.; Wallis, G.; Jabbar, F.; Smith, C.; Devleesschauwer, B.; Griffiths, P. Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev. Med. Virol. 2019, 29, e2034. [Google Scholar] [CrossRef]
- Antona, D.; Lepoutre, A.; Fonteneau, L.; Baudon, C.; Halftermeyer-Zhou, F.; LEStrat, Y.; Lévy-Bruhl, D. Seroprevalence of cytomegalovirus infection in France in 2010. Epidemiol. Infect. 2017, 145, 1471–1478. [Google Scholar] [CrossRef] [Green Version]
- Staras, S.A.; Dollard, S.C.; Radford, K.W.; Flanders, W.D.; Pass, R.F.; Cannon, M.J. Seroprevalence of cytomegalovirus infection in the United States, 1988-1994. Clin. Infect. Dis. 2006, 43, 1143–1151. [Google Scholar] [CrossRef]
- Lachmann, R.; Loenenbach, A.; Waterboer, T.; Brenner, N.; Pawlita, M.; Michel, A.; Thamm, M.; Poethko-Müller, C.; Wichmann, O.; Wiese-Posselt, M. Cytomegalovirus (CMV) seroprevalence in the adult population of Germany. PLoS ONE 2018, 13, e0200267. [Google Scholar] [CrossRef] [Green Version]
- Kenneson, A.; Cannon, M.J. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev. Med. Virol. 2007, 17, 253–276. [Google Scholar] [CrossRef]
Strategy | Adoption | Current Status | Main Problem |
---|---|---|---|
Antiviral drugs | Traditional: ganciclovir, valganciclovir, cidofovir, foscarnet Novel: letermovir, maribavir | Extensively used clinically for the treatment of acute infections | Side effects, toxicity, resistance issues including drug resistance and cross resistance |
Nucleic acid-based gene targeting approach | EGSs-RNase, CRISPRs/Cas9, TALENs | Only under study for basic research, not for clinical application so far | Option of delivery tool, safety concerns |
Cell therapy | ACT, immunotherapy | Not universal, only used conditionally in limited patient population or special cases | Efficacy evaluation is difficult, Random controlled clinical trials and prognosis manifestation is still lacking |
Drug | Structure | Mechanism | Main Side Effects |
---|---|---|---|
Ganciclovir | A synthetic analogue of 2′-deoxy-guanosine | Viral UL54 DNA polymerase inhibitor | A potential carcinogen, granulocytopenia, neutropenia, anemia, thrombocytopenia |
Valganciclovir | L-valyl ester of ganciclovir | Viral UL54 DNA polymerase inhibitor | A potential carcinogen, granulocytopenia, neutropenia, anemia, thrombocytopenia |
Cidofovir | A monophosphate nucleotide analogue | Viral UL54 DNA polymerase inhibitor | Nephrotoxicity, neutropenia, nausea, uveitis, iritis, asthenia, alopecia, ocular hypotony |
Foscarnet | Pyrophosphate analogue, a structural mimic of the anion pyrophosphate | Inhibitor of the pyrophosphate- binding site on viral DNA polymerase (or reverse transcriptase); Noncompetitive inhibitor of many RNA and UL54 DNA polymerase | Nephrotoxicity, electrolyte disturbance, genital ulceration, paranesthesia, irritability, hallucination |
Drug | Structure | Mechanism | Main Side Effects | Current Status | Reference |
---|---|---|---|---|---|
Letermovir | A non-nucleoside, 3,4-dihydroquinazolinyl acetic acid | Viral terminase complex inhibitor encoded by gene UL56, UL51, UL89 | Nausea, diarrhea, vomiting, swelling in arms and legs, cough, headache, tiredness, hepatitis, stomach pain | Approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) in 2017 | [71,72,73,74,75,76] |
Maribavir | A benzimidazole riboside | Viral protein kinase (UL97) inhibitor | Taste disturbance, nausea, diarrhea, vomiting and fatigue | Approved by USA FDA in 2021 | [77,78,79,80] |
Brincidofovir | An alkoxyalkyl ester prodrug containing the synthetic, acyclic nucleoside monophosphate analog cidofovir | Viral UL54 DNA polymerase inhibitor | Diarrhea, nausea, vomiting, and abdominal pain and others (under study) | Under clinical trial | [76,81,82,83] |
Filociclovir | A guanosine nucleoside analog | Viral UL54 DNA polymerase and the UL97 kinase inhibitor | Mild to extreme stomach upset, headaches, mild fever and others (under study) | Under clinical trial | [84,85,86] |
Valnoctamide | A structural isomer of valpromide, a valproic acid prodrug | Inhibition of viral attachment to the host cell | Sommolence, the slight motor impairments and others (under study) | Under study | [87,88] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-J.; Wang, S.-C.; Chen, Y.-C. Challenges, Recent Advances and Perspectives in the Treatment of Human Cytomegalovirus Infections. Trop. Med. Infect. Dis. 2022, 7, 439. https://doi.org/10.3390/tropicalmed7120439
Chen S-J, Wang S-C, Chen Y-C. Challenges, Recent Advances and Perspectives in the Treatment of Human Cytomegalovirus Infections. Tropical Medicine and Infectious Disease. 2022; 7(12):439. https://doi.org/10.3390/tropicalmed7120439
Chicago/Turabian StyleChen, Shiu-Jau, Shao-Cheng Wang, and Yuan-Chuan Chen. 2022. "Challenges, Recent Advances and Perspectives in the Treatment of Human Cytomegalovirus Infections" Tropical Medicine and Infectious Disease 7, no. 12: 439. https://doi.org/10.3390/tropicalmed7120439
APA StyleChen, S. -J., Wang, S. -C., & Chen, Y. -C. (2022). Challenges, Recent Advances and Perspectives in the Treatment of Human Cytomegalovirus Infections. Tropical Medicine and Infectious Disease, 7(12), 439. https://doi.org/10.3390/tropicalmed7120439