Telehealth Reduces Missed Appointments in Pediatric Patients with Tuberculosis Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Settings/Patients
2.2. Study Design
3. Results
3.1. Missed Appointments before Telehealth Implementation
3.2. Incomplete Therapy before Telehealth Implementation
3.3. Missed Appointments after Telehealth Implementation
3.4. Incomplete Therapy after Telehealth Implementation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Tuberculosis Report 2021; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-924-003-702-1.
- Mendonça, A.M.C.; Kritski, A.L.; Land, M.G.P.; Sant’Anna, C.C. Abandonment of Treatment for Latent Tuberculosis Infection and Socioeconomic Factors in Children and Adolescents: Rio De Janeiro, Brazil. PLoS ONE 2016, 11, e0154843. [Google Scholar] [CrossRef] [Green Version]
- Matteelli, A.; Sulis, G.; Capone, S.; D’Ambrosio, L.; Migliori, G.B.; Getahun, H. Tuberculosis elimination and the challenge of latent tuberculosis. Presse Med. 2017, 46, e13–e21. [Google Scholar] [CrossRef]
- Horsburgh, C.R., Jr.; Rubin, E.J. Clinical Practice. Latent Tuberculosis Infection in the United States. N. Engl. J. Med. 2011, 364, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Guix-Comellas, E.M.; Rozas-Quesada, L.; Velasco-Arnaiz, E.; Ferrés-Canals, A.; Estrada-Masllorens, J.M.; Force-Sanmartín, E.; Noguera-Julian, A. Impact of nursing interventions on adherence to treatment with antituberculosis drugs in children and young people: A nonrandomized controlled trial. J. Adv. Nurs. 2018, 74, 1819–1830. [Google Scholar] [CrossRef] [PubMed]
- Rogo, T.; Eleanya, C.; Hirway, P.; Pelland, D.; Lewis, C.; Dennehy, P.; Losikoff, P. Adherence to Latent Tuberculosis Infec-tion Treatment in a Population with a High Number of Refugee Children. Rhode Isl. Med. J. 2013, 100, 34–38. [Google Scholar]
- Bishara, H.; Ore, L.; Vinitsky, O.; Bshara, H.; Armaly, N.; Weiler-Ravell, D. Cost of nurse-managed latent tuberculous infection treatment among hard-to-reach immigrants in Israel. Int. J. Tuberc. Lung Dis. 2015, 19, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Gaensbauer, J.; Aiona, K.; Haas, M.; Reves, R.; Young, J.; Belknap, R. Better Completion of Pediatric Latent Tuberculosis Treatment Using 4 Months of Rifampin in a US-based Tuberculosis Clinic. Pediatr. Infect. Dis. J. 2018, 37, 224–228. [Google Scholar] [CrossRef]
- Menzies, D.; Adjobimey, M.; Ruslami, R.; Trajman, A.; Sow, O.; Kim, H.; Baah, J.O.; Marks, G.; Long, R.; Hoeppner, V.; et al. Four Months of Rifampin or Nine Months of Isoniazid for Latent Tuberculosis in Adults. N. Engl. J. Med. 2018, 379, 440–453. [Google Scholar] [CrossRef]
- Nolt, D.; Starke, J.R. Tuberculosis Infection in Children and Adolescents: Testing and Treatment. AAP Comm. Infect. Diseases. Pediatrics 2021, 148, 6. [Google Scholar] [CrossRef]
- Pai, M.; Kasaeva, T.; Swaminathan, S. Covid-19’s Devastating Effect on Tuberculosis Care—A Path to Recovery. N. Engl. J. Med. 2022. [Google Scholar] [CrossRef]
- Wosik, J.; Fudim, M.; Cameron, B.; Gellad, Z.F.; Cho, A.; Phinney, D.; Curtis, S.; Roman, M.; Poon, E.G.; Ferranti, J.; et al. Telehealth transformation: COVID-19 and the rise of virtual care. J. Am. Med. Inform. Assoc. 2020, 27, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Hjelm, N.M. Benefits and drawbacks of telemedicine. J. Telemed. Telecare 2005, 11, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Drerup, B.; Espenschied, J.; Wiedemer, J.; Hamilton, L. Reduced No-Show Rates and Sustained Patient Satisfaction of Telehealth During the COVID-19 Pandemic. Telemed. e-Health 2021, 27, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Doraiswamy, S.; Abraham, A.; Mamtani, R.; Cheema, S. Use of Telehealth during the COVID-19 Pandemic: Scoping Review. J. Med. Internet Res. 2020, 22, e24087. [Google Scholar] [CrossRef]
- Migliori, G.B.; Thong, P.M.; Alffenaar, J.-W.; Denholm, J.; Tadolini, M.; Alyaquobi, F.; Blanc, F.-X.; Buonsenso, D.; Cho, J.-G.; Codecasa, L.R.; et al. Gauging the impact of the COVID-19 pandemic on tuberculosis services: A global study. Eur. Respir. J. 2021, 58, 2101786. [Google Scholar] [CrossRef]
- Fekadu, G.; Jiang, X.; Yao, J.; You, J.H. Cost-effectiveness of video-observed therapy for ambulatory management of active tuberculosis during the COVID-19 pandemic in a high-income country. Int. J. Infect. Dis. 2021, 113, 271–278. [Google Scholar] [CrossRef]
- Holzman, S.B.; Atre, S.; Sahasrabudhe, T.; Ambike, S.; Jagtap, D.; Sayyad, Y.; Kakrani, A.L.; Gupta, A.; Mave, V.; Shah, M.; et al. Use of Smartphone-Based Video Directly Observed Therapy (vDOT) in Tuberculosis Care: Single-Arm, Prospective Feasibility Study. JMIR Form. Res. 2019, 3, e13411. [Google Scholar] [CrossRef]
- Rabinovich, L.; Molton, J.S.; Ooi, W.T.; Paton, N.I.; Batra, S.; Yoong, J. Perceptions and Acceptability of Digital Interventions Among Tuberculosis Patients in Cambodia: Qualitative Study of Video-Based Directly Observed Therapy. J. Med. Internet Res. 2020, 22, e16856. [Google Scholar] [CrossRef]
- Lam, C.K.; Fluegge, K.; Macaraig, M.; Burzynski, J. Cost savings associated with video directly observed therapy for treatment of tuberculosis. Int. J. Tuberc. Lung Dis. 2019, 23, 1149–1154. [Google Scholar] [CrossRef]
- Asay, G.R.B.; Lam, C.K.; Stewart, B.; Mangan, J.M.; Romo, L.; Marks, S.M.; Morris, S.B.; Gummo, C.L.; Keh, C.E.; Hill, A.N.; et al. Cost of Tuberculosis Therapy Directly Observed on Video for Health Departments and Patients in New York City; San Francisco, California; and Rhode Island (2017–2018). Am. J. Public Health 2020, 110, 1696–1703. [Google Scholar] [CrossRef]
- Turnbull, L.; Bell, C.; Davies, S.; Child, F. Delivering tertiary tuberculosis care virtually. Arch. Dis. Child. 2021, 106, 1226–1228. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.C.; Silva, J.B.; Rangel, M.A.; Barbosa, L.; Carvalho, I. Preventive therapy compliance in pediatric tuberculosis—A single center experience. Pulmonology 2020, 26, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Belgaumkar, V.; Chandanwale, A.; Valvi, C.; Pardeshi, G.; Lokhande, R.; Kadam, D.; Joshi, S.; Gupte, N.; Jain, D.; Dhumal, G.; et al. Barriers to screening and isoniazid preventive therapy for child contacts of tuberculosis patients. Int. J. Tuberc. Lung Dis. 2018, 22, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Garie, K.T.; Yassin, M.A.; Cuevas, L.E. Lack of Adherence to Isoniazid Chemoprophylaxis in Children in Contact with Adults with Tuberculosis in Southern Ethiopia. PLoS ONE 2011, 6, e26452. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Prior to Telehealth (2016–2019) (N = 129), No. (%) | After Telehealth (2021) (N = 29), No. (%) | p-Value * |
---|---|---|---|
Race/Ethnicity | 0.207 | ||
NH # White | 14 (10.9) | 0 (0.0) | |
NH Black | 17 (13.2) | 3 (10.3) | |
NH Asian | 25 (19.4) | 10 (34.5) | |
Hispanic | 56 (43.4) | 13 (44.8) | |
NH Other | 17 (13.2) | 3 (10.3) | |
Gender, Female | 58 (45.0) | 13 (44.8) | 0.990 |
Language | 0.179 | ||
English | 81 (62.8) | 13 (44.8) | |
Spanish | 33 (25.6) | 10 (34.5) | |
Other | 15 (11.6) | 6 (20.7) | |
Distance to clinic, miles | 0.154 | ||
0–5 | 69 (53.5) | 9 (31.0) | |
5–10 | 19 (14.7) | 5 (17.2) | |
10–20 | 18 (14.0) | 6 (20.7) | |
>20 | 23 (17.8) | 9 (31.0) | |
Medication | <0.001 | ||
Isoniazid (9H) | 67 (51.9) | 0 (0.0) | |
Rifampin (4R) | 15 (11.6) | 18 (62.1) | |
Both/Multi-drug ^ | 9 (7.0) | 1 (3.5) | |
No Medication | 38 (29.5) | 10 (34.5) | |
Referring provider | 0.766 | ||
Private Office | 99 (76.7) | 23 (79.3) | |
Self-referral/Other | 30 (23.3) | 6 (20.7) | |
Age Group (3 Categories) | 0.183 | ||
<6 years | 28 (21.7) | 2 (6.9) | |
6–12 years | 47 (36.4) | 13 (44.8) | |
>12 years | 54 (41.9) | 14 (48.3) |
Characteristic | No. of Appointments | No. (%) of Missed Appointments, (N = 80) | p-Value |
---|---|---|---|
Race/Ethnicity | 0.003 * | ||
NH # White | 45 | 8 (17.8) | |
NH Black | 62 | 17 (27.4) | |
NH Asian | 108 | 9 (8.3) | |
Hispanic | 193 | 28 (14.5) | |
NH Other | 66 | 18 (27.3) | |
Gender | 0.347 | ||
Male | 238 | 44 (18.5) | |
Female | 236 | 36 (15.3) | |
Language | 0.003 * | ||
English | 320 | 46 (14.4) | |
Spanish | 96 | 15 (15.6) | |
Other | 58 | 19 (32.8) | |
Distance to clinic, miles | 0.002 * | ||
0–5 | 211 | 49 (23.2) | |
5–10 | 101 | 17 (16.8) | |
10–20 | 69 | 4 (5.8) | |
>20 | 93 | 10 (10.8) | |
Medication | 0.032 * | ||
Isoniazid (9H) | 316 | 55 (17.4) | |
Rifampin (4R) | 36 | 11 (30.6) | |
Both/Multi-drug ^ | 66 | 10 (15.2) | |
No Medication | 56 | 4 (7.1) | |
Referring provider | 0.033 * | ||
Private Office | 353 | 52 (14.7) | |
Self-referral/Other | 121 | 28 (23.1) | |
Age Group (3 Categories) | 0.826 | ||
<6 years | 96 | 18 (18.8) | |
6–12 years | 177 | 28 (15.8) | |
>12 years | 201 | 34 (16.9) |
Characteristic | No. | No. (%) Failure to Complete Therapy, (N = 24) | p-Value |
---|---|---|---|
Missed Appointments | 0.050 | ||
0 | 44 | 7 (15.9) | |
1 | 26 | 8 (30.8) | |
2 | 13 | 7 (53.8) | |
3+ | 8 | 2 (25.0) | |
Race/Ethnicity | 0.147 | ||
NH # White | 7 | 1 (14.3) | |
NH Black | 13 | 4 (30.8) | |
NH Asian | 18 | 2 (11.1) | |
Hispanic | 39 | 15 (38.5) | |
NH Other | 14 | 2 (14.3) | |
Gender, Female | 42 | 9 (21.4) | 0.322 |
Language | 0.031 * | ||
English | 60 | 13 (21.7) | |
Spanish | 21 | 10 (47.6) | |
Other | 10 | 1 (10.0) | |
Distance to clinic, miles | 0.029 * | ||
0–5 | 46 | 16 (34.8) | |
5–10 | 17 | 0 (0.0) | |
10–20 | 15 | 3 (20.0) | |
>20 | 13 | 5 (38.5) | |
Medication | 0.027 * | ||
Isoniazid (9H) | 67 | 15 (22.4) | |
Rifampin (4R) | 15 | 8 (53.3) | |
Both/Multi-drug ^ | 9 | 1 (11.1) | |
Referring provider | 0.409 | ||
Private Office | 70 | 17 (24.3) | |
Self-referral/Other | 21 | 7 (33.3) | |
Age Group (3 Categories) | 0.104 | ||
<6 years | 17 | 1 (5.9) | |
6–12 years | 36 | 11 (30.6) | |
>12 years | 38 | 12 (31.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, A.; Butala, N.; Luc, C.M.; Feinn, R.; Murray, T.S. Telehealth Reduces Missed Appointments in Pediatric Patients with Tuberculosis Infection. Trop. Med. Infect. Dis. 2022, 7, 26. https://doi.org/10.3390/tropicalmed7020026
Zhao A, Butala N, Luc CM, Feinn R, Murray TS. Telehealth Reduces Missed Appointments in Pediatric Patients with Tuberculosis Infection. Tropical Medicine and Infectious Disease. 2022; 7(2):26. https://doi.org/10.3390/tropicalmed7020026
Chicago/Turabian StyleZhao, Angela, Nirali Butala, Casey Morgan Luc, Richard Feinn, and Thomas S. Murray. 2022. "Telehealth Reduces Missed Appointments in Pediatric Patients with Tuberculosis Infection" Tropical Medicine and Infectious Disease 7, no. 2: 26. https://doi.org/10.3390/tropicalmed7020026
APA StyleZhao, A., Butala, N., Luc, C. M., Feinn, R., & Murray, T. S. (2022). Telehealth Reduces Missed Appointments in Pediatric Patients with Tuberculosis Infection. Tropical Medicine and Infectious Disease, 7(2), 26. https://doi.org/10.3390/tropicalmed7020026