The Effectiveness of the Use of Regdanvimab (CT-P59) in Addition to Remdesivir in Patients with Severe COVID-19: A Single Center Retrospective Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Patients
2.2. Study Design
2.3. Primary and Secondary Outcomes
2.4. Statistical Analysis
3. Results
3.1. Enrolled Patients and Baseline Characteristics
3.2. Primary Outcome
3.3. Secondary Outcomes
3.4. Independent Factors Associated with Oxygen-Free Days on Day 28
3.5. Adverse Events Associated with Regdanvimab Use
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, S.E. Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin. Exp. Pediatr. 2020, 63, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 30 June 2021).
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef] [PubMed]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the treatment of COVID-19—final report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.C.; McDonald, E.G.; Butler-Laporte, G.; Harrison, L.B.; Cheng, M.P.; Brophy, J.M. Remdesivir and systemic corticosteroids for the treatment of COVID-19: A Bayesian re-analysis. Int. J. Infect. Dis. 2021, 104, 671–676. [Google Scholar] [CrossRef]
- Lee, J.; Lim, D.S.; Hong, S.O.; Park, M.-J.; Kim, G.; Lim, N.-K.; Lee, S.Y.; Park, J.K.; Song, D.S.; Chai, H.y.; et al. The primary report of clinical data analysis on the COVID-19 in the Republic of Korea. Public Health Wkly. Rep. 2020, 13, 2054–2058. [Google Scholar]
- Olivas-Martínez, A.; Cárdenas-Fragoso, J.L.; Jiménez, J.V.; Lozano-Cruz, O.A.; Ortiz-Brizuela, E.; Tovar-Méndez, V.H.; Medrano-Borromeo, C.; Martínez-Valenzuela, A.; Román-Montes, C.M.; Martínez-Guerra, B.; et al. In-hospital mortality from severe COVID-19 in a tertiary care center in Mexico City; causes of death, risk factors and the impact of hospital saturation. PLoS ONE 2021, 16, e0245772. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z. Identification of risk factors for in-hospital death of COVID-19 pneumonia -- lessions from the early outbreak. BMC Infect. Dis. 2021, 21, 113. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Ryu, D.K.; Lee, J.; Kim, Y.I.; Seo, J.M.; Kim, Y.G.; Jeong, J.H.; Kim, M.; Kim, J.I.; Kim, P.; et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat. Commun. 2021, 12, 288. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jang, Y.R.; Hong, J.H.; Jung, J.G.; Park, J.H.; Streinu-Cercel, A.; Streinu-Cercel, A.; Săndulescu, O.; Lee, S.J.; Kim, S.H.; et al. Safety, Virologic Efficacy, and Pharmacokinetics of CT-P59, a Neutralizing Monoclonal Antibody Against SARS-CoV-2 Spike Receptor-Binding Protein: Two Randomized, Placebo-Controlled, Phase I Studies in Healthy Individuals and Patients With Mild SARS-CoV-2 Infection. Clin. Ther. 2021, 43, 1706–1727. [Google Scholar] [CrossRef]
- Eom, J.S.; Ison, M.; Streinu-Cercel, A.; Săndulescu, O.; Preotescu, L.-L.; Kim, Y.-S.; Kim, J.Y.; Cheon, S.H.; Jang, Y.R.; Lee, S.J.; et al. Efficacy and safety of CT-P59 plus standard of care: A phase 2/3 randomized, double-blind, placebo-controlled trial in outpatients with mild-to-moderate SARS-CoV-2 infection. Res. Sq. 2021; in preprint. [Google Scholar] [CrossRef]
- Ryu, D.K.; Kang, B.; Noh, H.; Woo, S.J.; Lee, M.H.; Nuijten, P.M.; Kim, J.I.; Seo, J.M.; Kim, C.; Kim, M.; et al. The in vitro and in vivo efficacy of CT-P59 against Gamma, Delta and its associated variants of SARS-CoV-2. Biochem. Biophys. Res. Commun. 2021, 578, 91–96. [Google Scholar] [CrossRef]
- Ministry of Health and Welfare; Korea Disease Control and Prevention Agency (KDCA). Supplying Remdesivir for the Treatment of COVID-19 (Korean). Available online: http://www.mohw.go.kr/react/al/sal0301vw.jsp?PAR_MENU_ID=04&MENU_ID=0403&page=1&CONT_SEQ=355233 (accessed on 9 July 2021).
- Ministry of Health and Welfare; Korea Disease Control and Prevention Agency (KDCA). Guide to Administration Management Plan for COVID-19 Antibody Treatment (Regkirona) (Ver.02) (Release Date: FEB 14, 2021) (Korean). Available online: http://ncov.mohw.go.kr/upload/ncov/file/202108/1627978032143_20210803170712.pdf (accessed on 14 February 2021).
- Rice, T.W.; Wheeler, A.P.; Bernard, G.R.; Hayden, D.L.; Schoenfeld, D.A.; Ware, L.B.; National Institutes of Health, National Heart, Lung, and Blood Institute ARDS Network. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest 2007, 132, 410–417. [Google Scholar] [CrossRef]
- Borghesi, A.; Maroldi, R. COVID-19 outbreak in Italy: Experimental chest X-ray scoring system for quantifying and monitoring disease progression. Radiol. Med. 2020, 125, 509–513. [Google Scholar] [CrossRef]
- Choi, K.J.; Hong, H.L.; Kim, E.J. The association between mortality and the oxygen saturation and fraction of inhaled oxygen in patients requiring oxygen therapy due to COVID-19-associated pneumonia. Tuberc. Respir. Dis. 2021, 84, 125–133. [Google Scholar] [CrossRef]
- Simonis, F.D.; Serpa Neto, A.; Binnekade, J.M.; Braber, A.; Bruin, K.C.M.; Determann, R.M.; Goekoop, G.J.; Heidt, J.; Horn, J.; Innemee, G.; et al. Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS: A randomized clinical trial. JAMA 2018, 320, 1872–1880. [Google Scholar] [CrossRef] [Green Version]
- Waghmare, A.; Xie, H.; Kimball, L.; Yi, J.; Özkök, S.; Leisenring, W.; Cheng, G.S.; Englund, J.A.; Watkins, T.R.; Chien, J.W.; et al. Supplemental oxygen-free days in hematopoietic cell transplant recipients with respiratory syncytial virus. J. Infect. Dis. 2017, 216, 1235–1244. [Google Scholar] [CrossRef]
- Ulrich, R.J.; Troxel, A.B.; Carmody, E.; Eapen, J.; Bäcker, M.; DeHovitz, J.A.; Prasad, P.J.; Li, Y.; Delgado, C.; Jrada, M.; et al. Treating COVID-19 with hydroxychloroquine (TEACH): A multicenter, double-blind randomized controlled trial in hospitalized patients. Open Forum Infect. Dis. 2020, 7, ofaa446. [Google Scholar] [CrossRef]
- Sheikh, A.; McMenamin, J.; Taylor, B.; Robertson, C.; Public Health Scotland and the EAVE II Collaborators. SARS-CoV-2 Delta VOC in Scotland: Demographics, risk of hospital admission, and vaccine effectiveness. Lancet 2021, 397, 2461–2462. [Google Scholar] [CrossRef]
- Taylor, P.C.; Adams, A.C.; Hufford, M.M.; de la Torre, I.; Winthrop, K.; Gottlieb, R.L. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 2021, 21, 382–393. [Google Scholar] [CrossRef]
- Kim, S.B.; Kim, J.; Huh, K.; Choi, W.S.; Kim, Y.J.; Joo, E.J.; Kim, Y.J.; Yoon, Y.K.; Heo, J.Y.; Seo, Y.B.; et al. Korean Society of Infectious Diseases/National Evidence-based Healthcare Collaborating Agency recommendations for anti-SARS-CoV-2 monoclonal antibody treatment of patients with COVID-19. Infect. Chemother. 2021, 53, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, S.O.; Lee, J.E.; Kim, K.H.; Lee, S.H.; Hwang, S.; Kim, S.W.; Chang, H.H.; Kim, Y.; Bae, S.; et al. Regdanvimab in patients with mild-to-moderate SARS-CoV-2 infection: A propensity score-matched retrospective cohort study. Int. Immunopharmacol. 2022, 106, 108570. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lee, J.Y.; Ko, J.H.; Hyun, M.; Kim, H.A.; Cho, S.; Lee, Y.D.; Song, J.; Shin, S.; Peck, K.R. Effectiveness of Regdanvimab Treatment in High-Risk COVID-19 Patients to Prevent Progression to Severe Disease. Front. Immunol. 2021, 12, 772320. [Google Scholar] [CrossRef] [PubMed]
- ACTIV-3/TICO LY-CoV555 Study Group; Lundgren, J.D.; Grund, B.; Barkauskas, C.E.; Holland, T.L.; Gottlieb, R.L.; Sandkovsky, U.; Brown, S.M.; Knowlton, K.U.; Self, W.H.; et al. A neutralizing monoclonal antibody for hospitalized patients with COVID-19. N. Engl. J. Med. 2021, 384, 905–914. [Google Scholar] [CrossRef]
- Regeneron. REGEN-COV™ (Casirivimab and Imdevimab) Phase 3 Recovery Trial Meets Primary Outcome, Improving Survival in Hospitalized COVID-19 Patients Lacking an Immune Response to SARS-COV-2. Available online: https://investor.regeneron.com/news-releases/news-release-details/regen-covtm-casirivimab-and-imdevimab-phase-3-recovery-trial (accessed on 21 January 2022).
Variables | Total (n = 124) | Remdesivir Alone (n = 99) | Regdanvimab/ Remdesivir (n = 25) | p-Value | |
---|---|---|---|---|---|
Age (years) | 57.59 ± 12.24 | 56.64 ± 12.13 | 61.36 ± 12.20 | 0.085 | |
Age (years), distribution | 0.413 | ||||
20–29 | 2 (1.6) | 2 (2.0) | 0 (0.0) | ||
30–39 | 8 (6.5) | 8 (8.1) | 0 (0.0) | ||
40–49 | 18 (14.5) | 14 (14.1) | 4 (16.0) | ||
50–59 | 36 (29.0) | 29 (29.3) | 7 (28.0) | ||
60–69 | 47 (37.9) | 37 (37.4) | 10 (40.0) | ||
70–79 | 7 (5.6) | 6 (6.1) | 1 (4.0) | ||
80–89 | 6 (4.8) | 3 (3.0) | 3 (12.0) | ||
Sex | 1.000 | ||||
Male | 54 (43.5) | 43 (43.4) | 11 (44.0) | ||
Female | 70 (56.5) | 56 (56.6) | 14 (56.0) | ||
Body weight (kg) | 68.56 ± 12.68 | 67.66 ± 11.78 | 72.12 ± 15.52 | 0.116 | |
Height (cm) | 164.17 ± 8.52 | 164.35 ± 8.04 | 163.47 ± 10.34 | 0.645 | |
BMI (kg/m2) | 25.31 ± 3.40 | 24.94 ± 3.19 | 26.79 ± 3.83 | 0.014 | |
Race | 1.000 | ||||
Asian | 123 (99.2) | 98 (99.0) | 25 (100.0) | ||
White | 1 (0.8) | 1 (1.0) | 0 (0.0) | ||
Underlying diseases | |||||
Hypertension | 32 (25.8) | 25 (25.3) | 7 (28.0) | 0.779 | |
Diabetes | 16 (12.9) | 12 (12.1) | 4 (16.0) | 0.738 | |
Dyslipidemia | 20 (16.1) | 15 (15.2) | 5 (20.0) | 0.551 | |
Chronic heart disease | 3 (2.4) | 2 (2.0) | 1 (4.0) | 0.494 | |
Chronic lung disease | 3 (2.4) | 2 (2.0) | 1 (4.0) | 0.494 | |
Chronic kidney disease | 5 (4.0) | 4 (4.0) | 1 (4.0) | 1.000 | |
Chronic liver disease | 5 (4.0) | 3 (3.0) | 2 (8.0) | 0.264 | |
Rheumatologic disease | 2 (1.6) | 2 (2.0) | 0 (0.0) | 1.000 | |
Neurologic disease | 6 (4.8) | 5 (5.1) | 1 (4.0) | 1.000 | |
Psychiatiric disease | 2 (1.6) | 2 (2.0) | 0 (0.0) | 1.000 | |
Active malignancy | 3 (2.4) | 2 (2.0) | 1 (4.0) | 0.494 | |
Days from symptom onset | |||||
To admission | 2.90 ± 3.19 | 3.19 ± 3.14 | 1.76 ± 3.21 | 0.045 | |
To regdanvimab | NA | NA | 3.68 ± 3.00 | NA | |
To remdesivir | 5.17 ± 3.25 | 5.21 ± 3.29 | 5.00 ± 3.12 | 0.772 | |
Days from admission | |||||
To regdanvimab | NA | NA | 1.92 ± 2.08 | NA | |
To remdesivir | 2.27 ± 2.84 | 2.02 ± 2.89 | 3.24 ± 2.47 | 0.055 | |
Days from regdanvimab | |||||
To remdesivir | NA | NA | 1.32 ± 1.77 | NA | |
Respiratory support at the time of initiation of remdesivir | 0.460 | ||||
Oxygen with nasal prong or simple mask | 113 (91.1) | 89 (89.9) | 24 (96.0) | ||
Advanced respiratory support | 11 (8.9) | 10 (10.1) | 1 (4.0) | ||
Mask with reservoir bag | 2 (1.6) | 2 (2.0) | 0 (0.0) | ||
HFNC | 9 (7.3) | 8 (8.1) | 1 (4.0) | ||
NIV | 0 (0.0) | 0 (0.0) | 0 (0.0) | ||
Invasive ventilation | 0 (0.0) | 0 (0.0) | 0 (0.0) | ||
ECMO | 0 (0.0) | 0 (0.0) | 0 (0.0) | ||
FiO2 at the time of initiation of remdesivir | 0.34 ± 013 | 0.35 ± 0.14 | 0.30 ± 0.08 | 0.078 | |
SpO2/FiO2 ratio at the time of initiation of remdesivir | 297.46 ± 69.67 | 290.09 ± 69.76 | 326.63 ± 62.39 | 0.018 | |
SpO2/FiO2 ratio distribution at the time of initiation of remdesivir | 0.213 | ||||
0–99 | 3 (2.4) | 3 (3.0) | 0 (0.0) | ||
100–199 | 8 (6.5) | 7 (7.1) | 1 (4.0) | ||
200–299 | 39 (31.5) | 33 (33.3) | 6 (24.0) | ||
300–399 | 69 (55.6) | 54 (54.5) | 15 (60.0) | ||
400–499 | 5 (4.0) | 2 (2.0) | 3 (12.0) | ||
CXR score at the time of initiation of remdesivir | 5.16 ± 4.31 | 5.42 ± 4.42 | 4.16 ± 3.75 | 0.194 | |
Systemic corticosteroids use | 122 (98.4) | 97 (98.0) | 25 (100.0) | 1.000 | |
Dexamethasone | 121 (97.6) | 97 (98) | 24 (96.0) | ||
Prednisolone | 1 (0.8) | 0 (0.0) | 1 (4.0) |
Variables | Total (n = 124) | Remdesivir Alone (n = 99) | Regdanvimab/ Remdesivir (n = 25) | p-Value |
---|---|---|---|---|
Primary outcome | ||||
Oxygen-free days on day 28 | 0.003 | |||
Mean ± SD | 20.04 ± 7.33 | 19.36 ± 7.87 | 22.72 ± 3.66 | |
Median (IQR) | 22.0 (20.0–24.5) | 22.0 (19.0–24.0) | 23.0 (22.0–25.0) | |
Secondary outcomes | ||||
Oxygen-free days on day 14 | 0.074 | |||
Mean ± SD | 7.48 ± 4.15 | 7.14 ± 4.26 | 8.80 ± 3.43 | |
Median (IQR) | 8.0 (6.0–10.5) | 8.0 (5.0–10.0) | 9.0 (8.0–11.0) | |
Oxygen-free days on day 56 | 0.001 | |||
Mean ± SD | 46.85 ± 11.52 | 45.87 ± 12.59 | 50.72 ± 3.66 | |
Median (IQR) | 50.0 (48.0–52.5) | 50.0 (47.0–52.0) | 51.0 (50.0–53.0) | |
Oxygen off and live on day 14 | 104 (83.9) | 80 (80.8) | 24 (96.0) | 0.074 |
Oxygen off and live on day 28 | 116 (93.5) | 91 (91.9) | 25 (100.0) | 0.357 |
Oxygen off and live on day 56 | 119 (96.0) | 94 (94.9) | 25 (100.0) | 0.582 |
The highest FiO2 during treatment | 0.45 ± 0.24 | 0.48 ± 0.26 | 0.34 ± 0.15 | 0.001 |
The lowest SpO2/FiO2 ratio during treatment | 248.86 ± 89.43 | 237.05 ± 89.68 | 295.63 ± 72.74 | 0.003 |
The lowest SpO2/FiO2 ratio distribution during treatment | 0.087 | |||
0–99 | 15 (12.1) | 15 (15.2) | 0 (0.0) | |
100–199 | 17 (13.7) | 14 (14.1) | 3 (12.0) | |
200–299 | 41 (33.1) | 34 (34.3) | 7 (28.0) | |
300–399 | 50 (40.3) | 35 (35.4) | 15 (60.0) | |
400–499 | 1 (0.8) | 1 (1.0) | 0 (0.0) | |
The highest degree of respiratory support during treatment | 0.077 | |||
Oxygen with nasal prong or simple mask | 92 (74.2) | 70 (70.7) | 22 (88.0) | |
Advanced respiratory support | 32 (25.8) | 29 (29.3) | 3 (12.0) | |
Mask with Reservoir bag | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
HFNC | 20 (16.1) | 18 (18.2) | 2 (8.0) | |
NIV | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Invasive ventilation | 12 (9.7) | 11 (11.1) | 1 (4.0) | |
ECMO | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
Changes in CXR | ||||
Days from the first scored CXR | 10.93 ± 6.69 | 11.45 ± 7.03 | 8.96 ± 4.80 | 0.098 |
Difference between the two CXR scores (initial minus post) | 1.36 ± 4.66 | 1.58 ± 4.59 | 0.48 ± 4.95 | 0.294 |
Duration of hospital stay (days) | 15.40 ± 10.38 | 15.67 ± 11.12 | 14.32 ± 6.78 | 0.563 |
Mortality * | ||||
Death at day 14 | 1 (0.8) | 1 (1.0) | 0 (0.0) | 1.000 |
Death at day 28 | 2 (1.6) | 2 (2.0) | 0 (0.0) | 1.000 |
Death at day 56 | 2 (1.6) | 2 (2.0) | 0 (0.0) | 1.000 |
All-cause mortality | 2 (1.6) | 2 (2.0) | 0 (0.0) | 1.000 |
Variables | Simple Linear Regression | Multiple Linear Regression | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | β | t | p-Value | 95% CI for B | B | SE | β | t | p-Value | 95% CI for B | |||
Lower | Upper | Lower | Upper | |||||||||||
Regdanvimab use | 3.356 | 1.619 | 0.184 | 2.073 | 0.040 | 0.151 | 6.562 | 3.568 | 1.501 | 0.196 | 2.377 | 0.019 | 0.596 | 6.539 |
Age (per year) | −0.246 | 0.049 | −0.411 | −4.981 | <0.001 | −0.344 | −0.148 | −0.254 | 0.049 | −0.424 | −5.126 | <0.001 | −0.352 | −0.156 |
Female sex | 2.761 | 1.309 | 0.188 | 2.109 | 0.037 | 0.169 | 5.353 | 1.742 | 1.140 | 0.118 | 1.528 | 0.129 | −0.516 | 4.000 |
BMI (per kg/m2) | 0.306 | 0.193 | 0.142 | 1.585 | 0.116 | −0.076 | 0.689 | −0.043 | 0.181 | −0.020 | −0.238 | 0.812 | −0.402 | 0.316 |
Baseline SpO2/FiO2 ratio | 0.040 | 0.009 | 0.383 | 4.582 | <0.001 | 0.023 | 0.058 | 0.029 | 0.009 | 0.280 | 3.461 | 0.001 | 0.013 | 0.046 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chae, G.; Choi, A.; Lim, S.; Park, S.; Lee, S.; Ahn, Y.; Kim, J.; Ra, S.; Jegal, Y.; Ahn, J.; et al. The Effectiveness of the Use of Regdanvimab (CT-P59) in Addition to Remdesivir in Patients with Severe COVID-19: A Single Center Retrospective Study. Trop. Med. Infect. Dis. 2022, 7, 51. https://doi.org/10.3390/tropicalmed7030051
Chae G, Choi A, Lim S, Park S, Lee S, Ahn Y, Kim J, Ra S, Jegal Y, Ahn J, et al. The Effectiveness of the Use of Regdanvimab (CT-P59) in Addition to Remdesivir in Patients with Severe COVID-19: A Single Center Retrospective Study. Tropical Medicine and Infectious Disease. 2022; 7(3):51. https://doi.org/10.3390/tropicalmed7030051
Chicago/Turabian StyleChae, Ganghee, Aram Choi, Soyeoun Lim, Sooneun Park, Seungjun Lee, Youngick Ahn, Jinhyoung Kim, Seungwon Ra, Yangjin Jegal, Jongjoon Ahn, and et al. 2022. "The Effectiveness of the Use of Regdanvimab (CT-P59) in Addition to Remdesivir in Patients with Severe COVID-19: A Single Center Retrospective Study" Tropical Medicine and Infectious Disease 7, no. 3: 51. https://doi.org/10.3390/tropicalmed7030051
APA StyleChae, G., Choi, A., Lim, S., Park, S., Lee, S., Ahn, Y., Kim, J., Ra, S., Jegal, Y., Ahn, J., Park, E., Jun, J., Kwon, W., & Lee, T. (2022). The Effectiveness of the Use of Regdanvimab (CT-P59) in Addition to Remdesivir in Patients with Severe COVID-19: A Single Center Retrospective Study. Tropical Medicine and Infectious Disease, 7(3), 51. https://doi.org/10.3390/tropicalmed7030051