Systematic Review and Meta-Analysis on the Infection Rates of Schistosome Transmitting Snails in Southern Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategies and Inclusion Criteria
2.2. Data Extraction and Quality Appraisal
2.3. Statistical Analysis
3. Results
3.1. Search Results
3.2. Study Characteristics and PPE Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colley, D.G.; Bustinduy, A.L.; Secor, W.E.; King, C.H. Human schistosomiasis. Lancet 2014, 383, 2253–2264. [Google Scholar] [CrossRef]
- Nwoko, O.E.; Mogaka, J.J.; Chimbari, M.J. Challenges and Opportunities Presented by Current Techniques for Detecting Schistosome Infections in Intermediate Host Snails: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 5403. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Schistosomiasis. Available online: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (accessed on 18 May 2021).
- Centers for Disease Control and Prevention. Biology: Parasite-Schistosomiasis. Available online: https://www.cdc.gov/parasites/schistosomiasis/biology.html/ (accessed on 14 August 2019).
- Braun, L.; Grimes, J.E.; Templeton, M.R. The effectiveness of water treatment processes against schistosome cercariae: A systematic review. PLoS Negl. Trop. Dis. 2018, 12, e0006364. [Google Scholar] [CrossRef] [PubMed]
- Nelwan, M.L. Schistosomiasis: Life cycle, diagnosis, and control. Curr. Ther. Res. 2019, 91, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Zacharia, A.; Mushi, V.; Makene, T. A systematic review and meta-analysis on the rate of human schistosomiasis reinfection. PLoS ONE 2020, 15, e0243224. [Google Scholar]
- Moloo, A. Schistosomiasis Elimination: Refocusing on Snail Control to Sustain Progress. Available online: https://www.who.int/news/item/25-03-2020-schistosomiasis-elimination-refocusing-on-snail-control-to-sustain-progress (accessed on 25 March 2020).
- Hailegebriel, T.; Nibret, E.; Munshea, A. Prevalence of Schistosoma mansoni and S. haematobium in Snail Intermediate Hosts in Africa: A Systematic Review and Meta-analysis. J. Trop. Med. 2020, 2020, 8850840. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munn, Z.; Moola, S.; Riitano, D.; Lisy, K. The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. Int. J. Health Policy Manag. 2014, 3, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doi, S.A.; Barendregt, J.J.; Khan, S.; Thalib, L.; Williams, G.M. Advances in the meta-analysis of heterogeneous clinical trials I: The inverse variance heterogeneity model. Contemp. Clin. Trials 2015, 45, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doi, S.A.; Furuya-Kanamori, L. Selecting the best meta-analytic estimator for evidence-based practice: A simulation study. JBI Evid. Implement. 2020, 18, 86–94. [Google Scholar] [CrossRef]
- Furuya-Kanamori, L.; Thalib, L.; Barendregt, J.J. Meta-analysis in evidence-based healthcare: A paradigm shift away from random effects is overdue. Int. J. Evid.-Based Healthc. 2017, 15, 152–160. [Google Scholar]
- Ahn, E.; Kang, H. Introduction to systematic review and meta-analysis. Korean J. Anesthesiol. 2018, 71, 103. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G.J.B. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioannidis, J.P. Interpretation of tests of heterogeneity and bias in meta-analysis. J. Eval. Clin. Pract. 2008, 14, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Allan, F.; Sousa-Figueiredo, J.C.; Emery, A.M.; Paulo, R.; Mirante, C.; Sebastião, A.; Brito, M.; Rollinson, D. Mapping freshwater snails in north-western Angola: Distribution, identity and molecular diversity of medically important taxa. Parasites Vectors 2017, 10, 460. [Google Scholar] [CrossRef] [PubMed]
- Chimbari, M.J.; Kalinda, C.; Siziba, N. Changing patterns of Schistosoma host snail population densities in Maun, Botswana. Afr. J. Aquat. Sci. 2020, 45, 493–499. [Google Scholar] [CrossRef]
- van Rensburg, C.J.; King, P.H.; van As, J.G. Furcocercous cercariae shed by the freshwater snails Pila occidentalis (Mousson, 1887) and Biomphalaria pfeifferi (Krauss, 1848) in the Okavango Delta, Botswana. Afr. J. Aquat. Sci. 2016, 41, 193–203. [Google Scholar] [CrossRef]
- Cetron, M.S.; Chitsulo, L.; Sullivan, J.J.; Pilcher, J.; Wilson, M.; Noh, J.; Tsang, V.C.; Hightower, A.W.; Addiss, D.G. Schistosomiasis in Lake Malawi. Lancet 1996, 348, 1274–1278. [Google Scholar] [CrossRef]
- Madsen, H.; Bloch, P.; Makaula, P.; Phiri, H.; Furu, P.; Stauffer, J.R., Jr. Schistosomiasis in Lake Malaŵi villages. EcoHealth 2011, 8, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Madsen, H.; Stauffer, J.R. Density of Trematocranus placodon (Pisces: Cichlidae): A predictor of density of the schistosome intermediate host, Bulinus nyassanus (Gastropoda: Planorbidae), in Lake Malaŵi. EcoHealth 2011, 8, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Madsen, H.; Bloch, P.; Phiri, H.; Kristensen, T.; Furu, P. Bulinus nyassanus is an intermediate host for Schistosoma haematobium in Lake Malawi. Ann. Trop. Med. Parasitol. 2001, 95, 353–360. [Google Scholar] [CrossRef]
- Poole, H.; Terlouw, D.J.; Naunje, A.; Mzembe, K.; Stanton, M.; Betson, M.; Lalloo, D.G.; Stothard, J.R. Schistosomiasis in pre-school-age children and their mothers in Chikhwawa district, Malawi with notes on characterization of schistosomes and snails. Parasites Vectors 2014, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traquinho, G.A.; Quintó, L.; Nalá, R.M.; Gama Vaz, R.; Corachan, M. Schistosomiasis in northern Mozambique. Trans. R. Soc. Trop. Med. Hyg. 1998, 92, 279–281. [Google Scholar] [CrossRef]
- Bayer, F.A.H. Schistosome infection of snails in a dam traced to pollution with sewage. Trans. R. Soc. Trop. Med. Hyg. 1954, 48, 347–350. [Google Scholar] [CrossRef]
- Donnelly, F.A.; Appleton, C.C. Observations on the field transmission dynamics of Schistosoma mansoni and S. mattheei in southern Natal, South Africa. Parasitology 1985, 91, 281–290. [Google Scholar] [CrossRef] [PubMed]
- de Kock, K.N.; Wolmarans, C.T.; Bornman, M. Distribution and habitats of Biomphalaria pfeifferi, snail intermediate host of Schistosoma mansoni, in South Africa. Water SA 2004, 30, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Manyangadze, T.; Chimbari, M.J.; Rubaba, O.; Soko, W.; Mukaratirwa, S. Spatial and seasonal distribution of Bulinus globosus and Biomphalaria pfeifferi in Ingwavuma, uMkhanyakude district, KwaZulu-Natal, South Africa: Implications for schistosomiasis transmission at micro-geographical scale. Parasites Vectors 2021, 14, 222. [Google Scholar] [CrossRef]
- Wolmarans, C.T.; de Kock, K.N.; Strauss, H.D.; Bornman, M. Daily emergence of Schistosoma mansoni and S. haematobium cercariae from naturally infected snails under field conditions. J. Helminthol. 2002, 76, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Munbomba, L.M. Epidemiology of Human Schistosomiasis on the Shores of Lake Kariba at Siavonga, Zambia. Ph.D. Thesis, University of Liverpool, Liiverpool, UK, 1995; pp. 142–195. [Google Scholar]
- Chimbari, M.J.; Dhlomo, E.; Mwadiwa, E.; Mubila, L. Transmission of schistosomiasis in Kariba, Zimbabwe, and a cross-sectional comparison of schistosomiasis prevalences and intensities in the town with those in Siavonga in Zambia. Ann. Trop. Med. Parasitol. 2003, 97, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Chandiwana, S.K. How schistosoma-mansoni eggs reach natural waterbodies. Trans. R. Soc. Trop. Med. Hyg. 1986, 80, 963–964. [Google Scholar] [CrossRef]
- Chandiwana, S.K. Community water-contact patterns and the transmission of schistosoma haematobium in the highveld region of Zimbabwe. Soc. Sci. Med. 1987, 25, 495–505. [Google Scholar] [CrossRef]
- Chandiwana, S.K. Spatial heterogeneity in patterns of human schistosomiasis infection in the zimbabwean highveld. Cent. Afr. J. Med. 1988, 34, 212–221. [Google Scholar] [PubMed]
- Chandiwana, S.K.; Christensen, N.O.; Frandsen, F. Seasonal patterns in the transmission of Schistosoma haematobium, S. mattheei and S. mansoni in the highveld region of Zimbabwe. Acta Trop. 1987, 44, 433–444. [Google Scholar] [PubMed]
- Chandiwana, S.K.; Taylor, P.; De Clarke, V.V. Prevalence and intensity of schistosomiasis in two rural areas in Zimbabwe and their relationship to village location and snail infection rates. Ann. Trop. Med. Parasitol. 1988, 82, 163–173. [Google Scholar] [CrossRef]
- Chandiwana, S.K.; Woolhouse, M.E. Heterogeneities in water contact patterns and the epidemiology of Schistosoma haematobium. Parasitology 1991, 103 Pt 3, 363–370. [Google Scholar] [CrossRef]
- Chingwena, G.; Mukaratirwa, S.; Kristensen, T.K.; Chimbari, M. Larval trematode infections in freshwater snails from the highveld and lowveld areas of Zimbabwe. J. Helminthol. 2002, 76, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Chirundu, D.; Chimusoro, A.; Jones, D.; Midzi, N.; Mabaera, B.; Apollo, T.; Tshimanga, M. Schistosomiasis infection among school children in the Zhaugwe resettlement area, Zimbabwe April 2005. Cent. Afr. J. Med. 2007, 53, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Mutsaka-Makuvaza, M.J.; Zhou, X.N.; Tshuma, C.; Abe, E.; Manasa, J.; Manyangadze, T.; Allan, F.; Chin’ombe, N.; Webster, B.; Midzi, N. Genetic diversity of Biomphalaria pfeifferi, the intermediate host of Schistosoma mansoni in Shamva district, Zimbabwe: Role on intestinal schistosomiasis transmission. Mol. Biol. Rep. 2020, 47, 4975–4987. [Google Scholar] [CrossRef]
- Mutsaka-Makuvaza, M.J.; Zhou, X.N.; Tshuma, C.; Abe, E.; Manasa, J.; Manyangadze, T.; Allan, F.; Chinómbe, N.; Webster, B.; Midzi, N. Molecular diversity of Bulinus species in Madziwa area, Shamva district in Zimbabwe: Implications for urogenital schistosomiasis transmission. Parasites Vectors 2020, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.P.; Davies, C.M.; Hoffman, J.I.; Ndamba, J.; Noble, L.R.; Woolhouse, M.E. Population genetics of the schistosome intermediate host Biomphalaria pfeifferi in the Zimbabwean highveld: Implications for co-evolutionary theory. Ann. Trop. Med. Parasitol. 2001, 95, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.E.; Chandiwana, S.K.; Bradley, M. On the distribution of schistosome infections among host snails. Int. J. Parasitol. 1990, 20, 325–327. [Google Scholar] [CrossRef]
- Imrey, P.B. Limitations of meta-analyses of studies with high heterogeneity. JAMA Netw. Open 2020, 3, e1919325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mnkugwe, R.H.; Minzi, O.S.; Kinung’hi, S.M.; Kamuhabwa, A.A.; Aklillu, E. Prevalence and correlates of intestinal schistosomiasis infection among school-aged children in North-Western Tanzania. PLoS ONE 2020, 15, e0228770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verjee, M.A. Schistosomiasis: Still a cause of significant morbidity and mortality. Res. Rep. Trop. Med. 2019, 10, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mawa, P.A.; Kincaid-Smith, J.; Tukahebwa, E.M.; Webster, J.P.; Wilson, S. Schistosomiasis morbidity hotspots: Roles of the human host, the parasite and their interface in the development of severe morbidity. Front. Immunol. 2021, 12, 751. [Google Scholar] [CrossRef]
- Alzaylaee, H.; Collins, R.A.; Rinaldi, G.; Shechonge, A.; Ngatunga, B.; Morgan, E.R.; Genner, M.J. Schistosoma species detection by environmental DNA assays in African freshwaters. PLoS Negl. Trop. Dis. 2020, 14, e0008129. [Google Scholar]
- Angelo, T.; Shahada, F.; Kassuku, A.; Mazigo, H.; Kariuki, C.; Gouvras, A. Population abundance and disease transmission potential of snail intermediate hosts of human schistosomiasis in fishing communities of Mwanza region, north-western, Tanzania. Int. J. Sci. Res. 2014, 3, 1230–1236. [Google Scholar]
- Gandasegui, J.; Fernández-Soto, P.; Muro, A.; Simões Barbosa, C.; Lopes de Melo, F.; Loyo, R.; de Souza Gomes, E.C. A field survey using LAMP assay for detection of Schistosoma mansoni in a low-transmission area of schistosomiasis in Umbuzeiro, Brazil: Assessment in human and snail samples. PLoS Negl. Trop. Dis. 2018, 12, e0006314. [Google Scholar] [CrossRef]
- Satrija, F.; Ridwan, Y.; Rauf, A. Current status of schistosomiasis in Indonesia. Acta Trop. 2015, 141, 349–353. [Google Scholar] [CrossRef]
- Odiere, M.R.; Opisa, S.; Odhiambo, G.; Jura, W.G.; Ayisi, J.M.; Karanja, D.M.; Mwinzi, P.N. Geographical distribution of schistosomiasis and soil-transmitted helminths among school children in informal settlements in Kisumu City, Western Kenya. Parasitology 2011, 138, 1569–1577. [Google Scholar] [CrossRef] [PubMed]
- Opisa, S.; Odiere, M.R.; Jura, W.G.; Karanja, D.M.; Mwinzi, P.N. Malacological survey and geographical distribution of vector snails for schistosomiasis within informal settlements of Kisumu City, western Kenya. Parasites Vectors 2011, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kariuki, H.C.; Clennon, J.A.; Brady, M.S.; Kitron, U.; Sturrock, R.F.; Ouma, J.H.; Ndzovu, S.T.M.; Mungai, P.; Hoffman, O.; Hamburger, J. Distribution patterns and cercarial shedding of Bulinus nasutus and other snails in the Msambweni area, Coast Province, Kenya. Am. J. Trop. Med. Hyg. 2004, 70, 449–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clennon, J.A.; Mungai, P.L.; Muchiri, E.M.; King, C.H.; Kitron, U. Spatial and temporal variations in local transmission of Schistosoma haematobium in Msambweni, Kenya. Am. J. Trop. Med. Hyg. 2006, 75, 1034–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinauer, M.L.; Mwangi, I.N.; Maina, G.M.; Kinuthia, J.M.; Mutuku, M.W.; Agola, E.L.; Mungai, B.; Mkoji, G.M.; Loker, E.S. Interactions between natural populations of human and rodent schistosomes in the Lake Victoria region of Kenya: A molecular epidemiological approach. PLoS Negl. Trop. Dis. 2008, 2, e222. [Google Scholar] [CrossRef] [Green Version]
- Odiere, M.R.; Rawago, F.O.; Ombok, M.; Secor, W.E.; Karanja, D.M.; Mwinzi, P.N.; Lammie, P.J.; Won, K. High prevalence of schistosomiasis in Mbita and its adjacent islands of Lake Victoria, western Kenya. Parasites Vectors 2012, 5, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalano, S.; Léger, E.; Fall, C.B.; Borlase, A.; Diop, S.D.; Berger, D.; Webster, B.L.; Faye, B.; Diouf, N.D.; Rollinson, D. Multihost transmission of Schistosoma mansoni in Senegal, 2015–2018. Emerg. Infect. Dis. 2020, 26, 1234. [Google Scholar] [CrossRef] [PubMed]
- Ibikounlé, M.; Mouahid, G.; Sakiti, N.; Massougbodji, A.; Moné, H. Freshwater snail diversity in Benin (West Africa) with a focus on human schistosomiasis. Acta Trop. 2009, 111, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Pennance, T.; Person, B.; Muhsin, M.A.; Khamis, A.N.; Muhsin, J.; Khamis, I.S.; Mohammed, K.A.; Kabole, F.; Rollinson, D.; Knopp, S. Urogenital schistosomiasis transmission on Unguja Island, Zanzibar: Characterisation of persistent hot-spots. Parasites Vectors 2016, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ismail, H.A.H.A.; Ahmed, A.e.A.A.e.R.M.; Cha, S.; Jin, Y. The Life Histories of Intermediate Hosts and Parasites of Schistosoma haematobium and Schistosoma mansoni in the White Nile River, Sudan. Int. J. Environ. Res. Public Health 2022, 19, 1508. [Google Scholar] [CrossRef]
- Phillips, A.E.; Gazzinelli-Guimaraes, P.H.; Aurelio, H.O.; Ferro, J.; Nala, R.; Clements, M.; King, C.H.; Fenwick, A.; Fleming, F.M.; Dhanani, N. Assessing the benefits of five years of different approaches to treatment of urogenital schistosomiasis: A SCORE project in Northern Mozambique. PLoS Negl. Trop. Dis. 2017, 11, e0006061. [Google Scholar] [CrossRef] [Green Version]
- Gouvras, A.N.; Allan, F.; Kinung’hi, S.; Rabone, M.; Emery, A.; Angelo, T.; Pennance, T.; Webster, B.; Nagai, H.; Rollinson, D.J.P.; et al. Longitudinal survey on the distribution of Biomphalaria sudanica and B. choanomophala in Mwanza region, on the shores of Lake Victoria, Tanzania: Implications for schistosomiasis transmission and control. Parasites Vectors 2017, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kruger, F.; Joubert, P.; Pretorius, S. Ratio of Schistosoma haematobium to S. mattheei infections in Bulinus africanus snails from rural areas in the eastern Transvaal lowveld in South Africa. Trans. R. Soc. Trop. Med. Hyg. 1990, 84, 556. [Google Scholar] [CrossRef]
- Malek, E.A. Factors conditioning the habitat of bilharziasis intermediate hosts of the family Planorbidae. Bull. World Health Organ. 1958, 18, 785. [Google Scholar]
- Joubert, P.; Pretorius, S.; De Kock, K.; Van Eeden, J. The effect of constant low temperatures on the survival of Bulinus africanus (Krauss), Bulinus globosus (Morelet) and Biomphalaria pfeifferi (Krauss). S. Afr. J. Zool. 1984, 19, 314–316. [Google Scholar]
- Kinanpara, K.; Yves, B.K.; Félix, K.K.; Edia, E.O.; Théophile, G.; Germain, G. Freshwater snail dynamics focused on potential risk of using urine as fertilizer in Katiola, an endemic area of schistosomiasis (Ivory Coast; West Africa). J. Entomol. Zool. Stud. 2013, 1, 110–115. [Google Scholar]
- Fuss, A.; Mazigo, H.D.; Mueller, A. Malacological survey to identify transmission sites for intestinal schistosomiasis on Ijinga Island, Mwanza, north-western Tanzania. Acta Trop. 2020, 203, 105289. [Google Scholar] [CrossRef]
- Farghaly, A.; Saleh, A.A.; Mahdy, S.; Abd El-Khalik, D.; Abd El-Aal, N.F.; Abdel-Rahman, S.A.; Salama, M.A. Molecular approach for detecting early prepatent Schistosoma mansoni infection in Biomphalaria alexandrina snail host. J. Parasit. Dis. 2016, 40, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Abath, F.G.; Gomes, A.L.d.V.; Melo, F.L.; Barbosa, C.S.; Werkhauser, R.P. Molecular approaches for the detection of Schistosoma mansoni: Possible applications in the detection of snail infection, monitoring of transmission sites, and diagnosis of human infection. Mem. Do Inst. Oswaldo Cruz 2006, 101, 145–148. [Google Scholar] [CrossRef]
- Abbasi, I.; King, C.H.; Muchiri, E.M.; Hamburger, J. Detection of Schistosoma mansoni and Schistosoma haematobium DNA by loop-mediated isothermal amplification: Identification of infected snails from early prepatency. Am. J. Trop. Med. Hyg. 2010, 83, 427. [Google Scholar] [CrossRef] [Green Version]
- Bakuza, J.S.; Gillespie, R.; Nkwengulila, G.; Adam, A.; Kilbride, E.; Mable, B.K. Assessing S. mansoni prevalence in Biomphalaria snails in the Gombe ecosystem of western Tanzania: The importance of DNA sequence data for clarifying species identification. Parasites Vectors 2017, 10, 1–11. [Google Scholar] [CrossRef]
- Hamburger, J.; Hoffman, O.; Kariuki, H.C.; Muchiri, E.M.; Ouma, J.H.; Koech, D.K.; Sturrock, R.F.; King, C.H. Large-scale, polymerase chain reaction-based surveillance of Schistosoma haematobium DNA in snails from transmission sites in coastal Kenya: A new tool for studying the dynamics of snail infection. Am. J. Trop. Med. Hyg. 2004, 71, 765–773. [Google Scholar] [CrossRef]
- Okeke, O.C.; Akinwale, O.P.; Ubachukwu, P.O.; Gyang, P.V.; Henry, E.U.; Nwafor, T.E.; Daniel, B.M.; Ebi, S.E.; Anorue, C.O.; Chukwuka, C.O. Report of high prevalence of schistosome infection in Biomphalaria snails from a geographic area with no previous prevalence of human schistosomiasis in Nigeria. Acta Trop. 2020, 210, 105326. [Google Scholar] [CrossRef]
- Sengupta, M.E.; Hellström, M.; Kariuki, H.C.; Olsen, A.; Thomsen, P.F.; Mejer, H.; Willerslev, E.; Mwanje, M.T.; Madsen, H.; Kristensen, T.K. Environmental DNA for improved detection and environmental surveillance of schistosomiasis. Proc. Natl. Acad. Sci. USA 2019, 116, 8931–8940. [Google Scholar] [CrossRef] [Green Version]
- Moser, W.; Greter, H.; Schindler, C.; Allan, F.; Ngandolo, B.N.; Moto, D.D.; Utzinger, J.; Zinsstag, J. The spatial and seasonal distribution of Bulinus truncatus, Bulinus forskalii and Biomphalaria pfeifferi, the intermediate host snails of schistosomiasis, in N’Djamena, Chad. Geospat. Health 2014, 9, 109–118. [Google Scholar] [CrossRef]
- Rabone, M.; Wiethase, J.H.; Allan, F.; Gouvras, A.N.; Pennance, T.; Hamidou, A.A.; Webster, B.L.; Labbo, R.; Emery, A.M.; Garba, A.D.J.P.; et al. Freshwater snails of biomedical importance in the Niger River Valley: Evidence of temporal and spatial patterns in abundance, distribution and infection with Schistosoma spp. Parasites Vectors 2019, 12, 1–20. [Google Scholar] [CrossRef] [Green Version]
Citation Name | Study Duration | Sample Size | Positive | Infection Rate (%) | Snail Species | Country | Method of Diagnosis | Sampling Type |
---|---|---|---|---|---|---|---|---|
Chimbari et al. (2003) [a] [33] | 1 year | 120 | 4 | 3.33 | B. globosus | Zimbabwe | Cercarial shedding | Longitudinal |
Chimbari et al. (2003) [33] [b] | 1 year | 42 | 2 | 4.76 | B. pfeifferi | Zimbabwe | Cercarial shedding | Longitudinal |
Chimbari et al. 2020 [a] [19] | 3 years | 303 | 0 | 0 | B. globosus | Botswana | Cercarial shedding | Longitudinal |
Chimbari et al. (2020) [b] [19] | 3 years | 199 | 0 | 0 | B. pfeifferi | Botswana | Cercarial shedding | Longitudinal |
Chandiwana et al. (1988) [1a] [38] | 2 years | 4237 | 142 | 3.35 | B. globosus | Zimbabwe | Cercarial shedding | Longitudinal |
Chandiwana et al. (1988) [1b] [38] | 2 years | 1163 | 9 | 0.77 | B. pfeifferi | Zimbabwe | Cercarial shedding | Longitudinal |
Mutsaka-Makuvaza et al. (2020) [43] | 1 year | 1542 | 30 | 1.95 | B. globosus | Zimbabwe | Cercarial shedding | Longitudinal |
Chirundo et al. (2005) [a] [41] | 1 month | 34 | 0 | 0 | B. globosus | Zimbabwe | Cercarial shedding | Cross-sectional |
Chirundo et al. (2005) [b] [41] | 1 month | 86 | 0 | 0 | B. pfeifferi | Zimbabwe | Cercarial shedding | Cross-sectional |
Allan et al. (2017) [18] | 2 months | 173 | 25 | 14.45 | B. globosus | Angola | Cercarial shedding | Cross-sectional |
Manyangadze et al. (2021) [a] [30] | 1 year | 861 | 77 | 8.94 | B. globosus | South Africa | Cercarial shedding | Longitudinal |
Manyangadze et al. (2021) [a] [30] | 1 year | 985 | 1 | 0.10 | B. pfeifferi | South Africa | Cercarial shedding | Longitudinal |
Chandiwana et al. (1986) [34] | 2 years | 1347 | 41 | 3.04 | B. pfeifferi | Zimbabwe | Cercarial shedding | Longitudinal |
Woolhouse et al. (1989) [45] | 2 months | 225 | 28 | 12.44 | B. globosus | Zimbabwe | Cercarial shedding | Longitudinal |
Traquinho et al. (1998) [a] [26] | 2 months | 407 | 345 | 84.77 | Bulinus spp. | Mozambique | Cercarial shedding | Cross-sectional |
Traquinho et al. (1998) [b] [26] | 2 months | 31 | 19 | 61.29 | Biomphalaria spp. | Mozambique | Cercarial shedding | Cross-sectional |
Bayer et al. (1954) [a] [27] | 2 months | 482 | 31 | 6.43 | Bulinus spp. | South Africa | Cercarial shedding | Cross-sectional |
Bayer et al. (1954) [b] [27] | 2 months | 520 | 53 | 10.19 | Biomphalaria spp. | South Africa | Cercarial shedding | Cross-sectional |
Cetron et al. (1996) [21] | 2 months | 370 | 1 | 0.27 | Bulinus spp. | Malawi | Cercarial shedding | Cross-sectional |
Chingwena et al. (2002) [a] [40] | 2 years | 2934 | 73 | 2.49 | Bulinus spp. | Zimbabwe | Cercarial shedding | Longitudinal |
Chingwena et al. (2002) [b] [40] | 2 years | 2535 | 1 | 0.04 | Biomphalaria spp. | Zimbabwe | Cercarial shedding | Longitudinal |
KN de Kock et al. (2004) [29] | Not stated | 1639 | 0 | 0 | Biomphalaria spp. | South Africa | Cercarial shedding | Cross-sectional |
Donney et al. (1985) [28] | 1 year 4 months | 3062 | 62 | 2.02 | Biomphalaria spp. | South Africa | Cercarial shedding | Longitudinal |
Van Renburg et al. (2016) [a] [20] | 2 months | 333 | 0 | 0 | Bulinus spp. | Botswana | Cercarial shedding | Longitudinal |
Van Renburg et al. (2016) [b] [20] | 2 months | 325 | 8 | 2.46 | Biomphalaria spp. | Botswana | Cercarial shedding | Longitudinal |
Webster et al. (2010) [44] | 1 month | 1099 | 42 | 3.82 | Biomphalaria spp. | Zimbabwe | Cercarial shedding | Cross-sectional |
Wolmarans et al. (2001) [a] [31] | 1 year | 767 | 130 | 16.95 | Bulinus spp. | South Africa | Cercarial shedding | Longitudinal |
Wolmarans et al. (2001) [b] [31] | 1 year | 932 | 108 | 11.59 | Biomphalaria spp. | South Africa | Cercarial shedding | Longitudinal |
Mutsaka-Mukuvaza et al. (2020) [42] | 1 year | 542 | 4 | 0.74 | Biomphalaria spp. | Zimbabwe | Cercarial shedding | Longitudinal |
Madsen et al. (2011) [23] | 3 years 10 months | 122 | 0.25 | Bulinus spp. | Malawi | Cercarial shedding | Longitudinal | |
Madsen et al. (2011) [1a] [22] | 4 years | 1970 | 20 | 1.02 | Bulinus spp. | Malawi | Cercarial shedding | Longitudinal |
Madsen et al. (2011) [1b] [22] | 4 years | 6664 | 22 | 0.33 | Bulinus spp. | Malawi | Cercarial shedding | Longitudinal |
Chandiwana et al. (1987) [35] | 2 years | 4452 | 164 | 3.68 | Bulinus spp. | Zimbabwe | Cercarial shedding | Longitudinal |
Chandiwana et al. (1988) [2a] [36] | 2 years | 1851 | 222 | 11.99 | Bulinus spp. | Zimbabwe | Cercarial shedding | Longitudinal |
Chandiwana et al. (1988) [2b] [36] | 2 years | 715 | 16 | 2.24 | Biomphalaria spp. | Zimbabwe | Cercarial shedding | Longitudinal |
Chandiwana et al. (1987) [a] [37] | 2 years | 4452 | 617 | 13.86 | Bulinus spp. | Zimbabwe | Cercarial shedding | Longitudinal |
Chandiwana et al. (1987) [b] [37] | 2 years | 1347 | 41 | 3.04 | Biomphalaria spp. | Zimbabwe | Cercarial shedding | Longitudinal |
Chandiwana et al. (1991) [39] | 2 months | 285 | 12 | 4.21 | Bulinus spp. | Zimbabwe | Cercarial shedding | Cross-sectional |
Mungomba et al. (1995) [a] [32] | 1 month | 135 | 4 | 2.96 | Bulinus spp. | Zambia | Cercarial shedding | Cross-sectional |
Mungomba et al. (1995) [a] [32] | 1 month | 215 | 17 | 7.91 | Biomphalaria spp. | Zambia | Cercarial shedding | Cross-sectional |
Madsen et al. (2001) [24] | 1 month | 992 | 5 | 0.50 | Bulinus spp. | Malawi | Cercarial shedding | Cross-sectional |
Poole et al. (2014) [25] | 1 month | 250 | 0 | 0 | Bulinus spp. | Malawi | Cercarial shedding | Cross-sectional |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwoko, O.E.; Kalinda, C.; Chimbari, M.J. Systematic Review and Meta-Analysis on the Infection Rates of Schistosome Transmitting Snails in Southern Africa. Trop. Med. Infect. Dis. 2022, 7, 72. https://doi.org/10.3390/tropicalmed7050072
Nwoko OE, Kalinda C, Chimbari MJ. Systematic Review and Meta-Analysis on the Infection Rates of Schistosome Transmitting Snails in Southern Africa. Tropical Medicine and Infectious Disease. 2022; 7(5):72. https://doi.org/10.3390/tropicalmed7050072
Chicago/Turabian StyleNwoko, Onyekachi Esther, Chester Kalinda, and Moses John Chimbari. 2022. "Systematic Review and Meta-Analysis on the Infection Rates of Schistosome Transmitting Snails in Southern Africa" Tropical Medicine and Infectious Disease 7, no. 5: 72. https://doi.org/10.3390/tropicalmed7050072
APA StyleNwoko, O. E., Kalinda, C., & Chimbari, M. J. (2022). Systematic Review and Meta-Analysis on the Infection Rates of Schistosome Transmitting Snails in Southern Africa. Tropical Medicine and Infectious Disease, 7(5), 72. https://doi.org/10.3390/tropicalmed7050072