Microbiological Characterisation of Community-Acquired Urinary Tract Infections in Bagamoyo, Tanzania: A Prospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Area and Timing
2.3. Study Design and Population
2.4. Laboratory Procedures
2.5. Confirmatory Microbiological Laboratory Testing
2.6. Sample Size and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medina, M.; Castillo-Pino, E. An introduction to the epidemiology and burden of urinary tract infections. Ther. Adv. Urol. 2019, 11, 1756287219832172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öztürk, R.; Murt, A. Epidemiology of urological infections: A global burden. World J. Urol. 2020, 38, 2669–2679. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.; Nicolle, L.; Bartoletti, R.; Gales, A.C.; Grigoryan, L.; Huang, H.; Hooton, T.; Lopardo, G.; Naber, K.; Poojary, A.; et al. A global perspective on improving patient care in uncomplicated urinary tract infection: Expert consensus and practical guidance. J. Glob. Antimicrob. Resist. 2021, 28, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Steiger, S.N.; Comito, R.R.; Nicolau, D.P. Clinical and economic implications of urinary tract infections. Expert Rev. Pharm. Outcomes Res. 2017, 17, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Uwaezuoke, S.N.; Ndu, I.; Eze, I.C. The prevalence and risk of urinary tract infection in malnourished children: A systematic review and meta-analysis. BMC Pediatr. 2019, 19, 261. [Google Scholar] [CrossRef] [Green Version]
- Guiral, E.; Pons, M.J.; Vubil, D.; Marí-Almirall, M.; Sigaúque, B.; Soto, S.M.; Alonso, P.L.; Ruiz, J.; Vila, J.; Mandomando, I. Epidemiology and molecular characterization of multidrug-resistant Escherichia coli isolates harboring blaCTX-M group 1 extended-spectrum β-lactamases causing bacteremia and urinary tract infection in Manhiça, Mozambique. Infect. Drug Resist. 2018, 11, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Petti, C.A.; Polage, C.; Quinn, T.C.; Ronald, A.; Sande, M.A. Laboratory medicine in Africa: A barrier to effective health care. Clin. Infect. Dis. 2006, 42, 377–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mchomvu, E.; Mbunda, G.; Simon, N.; Kitila, F.; Temba, Y.; Msumba, I.; Namamba, J.; Kilindimo, S.; Mgubike, H.; Gingo, W.; et al. Diagnoses made in an emergency department in rural sub-Saharan Africa. Swiss Med. Wkly. 2019, 149, w20018. [Google Scholar] [CrossRef] [Green Version]
- Gidabayda, J.; Philemon, R.; Abdallah, M.; Saajan, A.; Temu, T.; Kunjumu, I.; Mmbaga, B.; Msuya, L. Prevalence, aetiology, and antimicrobial susceptibility patterns of urinary tract infection amongst children admitted at Kilimanjaro Christian Medical Centre, Moshi, Tanzania. East Afr. Health Res. J. 2017, 1, 53–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasuja, J.K.; Zimmermann, S.; Burckhardt, I. Evaluation of EUCAST rapid antimicrobial susceptibility testing (RAST) for positive blood cultures in clinical practice using a total lab automation. Eur. J. Clin. Microbiol. 2020, 39, 1305–1313. [Google Scholar] [CrossRef]
- Mushi, M.F.; Alex, V.G.; Seugendo, M.; Silago, V.; Mshana, E.S. C—reactive protein and urinary tract infection due to Gram-negative bacteria in a pediatric population at a tertiary hospital, Mwanza, Tanzania. Afr. Health Sci. 2019, 19, 3217–3224. [Google Scholar] [CrossRef] [PubMed]
- Ryakitimbo, A.; Philemon, R.; Mazuguni, F.; Msuya, L. Prevalence and antimicrobial sensitivity pattern of urinary tract infection among children with cerebral palsy, Moshi, Tanzania. Pediatr. Health Med. Ther. 2018, 9, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngowi, B.N.; Sunguya, B.; Herman, A.; Chacha, A.; Maro, E.; Rugarabamu, L.F.; Bartlett, J.; Balandya, E.; Mteta, K.A.; Mmbaga, B.T. Prevalence of multidrug resistant UTI among people living with HIV in northern Tanzania. Infect. Drug Resist. 2021, 14, 1623–1633. [Google Scholar] [CrossRef] [PubMed]
- Masinde, A.; Gumodoka, B.; Kilonzo, A.; Mshana, E.S. Prevalence of urinary tract infection among pregnant women at Bugando Medical Centre, Mwanza, Tanzania. Tanzan. J. Health Res. 2009, 11, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Madut, D.B.; Rubach, M.; Kalengo, N.; Carugati, M.; Maze, M.J.; Morrissey, A.B.; Mmbaga, B.T.; Lwezaula, B.F.; Kilonzo, K.G.; Maro, V.P.; et al. A prospective study of Escherichia coli bloodstream infection among adolescents and adults in northern Tanzania. Trans. R. Soc. Trop. Med. Hyg. 2019, 114, 378–384. [Google Scholar] [CrossRef]
- Tandogdu, Z.; Wagenlehner, F.M. Global epidemiology of urinary tract infections. Curr. Opin. Infect. Dis. 2016, 29, 73–79. [Google Scholar] [CrossRef]
- The United Republic of Tanzania Ministry of Health and Social Welfare. Standard Treatment Guidelines and Essential Medicines List. Fourth Edition. 2013. Available online: https://www.who.int/selection_medicines/country_lists/Tanzania_STG_052013.pdf (accessed on 5 May 2022).
- Malmros, K.; Huttner, B.D.; McNulty, C.A.M.; Rodríguez-Baño, J.; Pulcini, C.; Tängdén, T. Comparison of antibiotic treatment guidelines for urinary tract infections in 15 European countries: Results of an online survey. Int. J. Antimicrob. Agents 2019, 54, 478–486. [Google Scholar] [CrossRef]
- Mboya, E.A.; Sanga, L.A.; Ngocho, J.S. Irrational use of antibiotics in the Moshi Municipality Northern Tanzania: A cross sectional study. Pan Afr. Med. J. 2018, 31, 165. [Google Scholar] [CrossRef]
- Church, A.J.; Fitzgerald, F.; Walker, A.S.; Gibb, D.M.; Prendergast, A.J. The expanding role of co-trimoxazole in developing countries. Lancet Infect. Dis. 2015, 15, 327–339. [Google Scholar] [CrossRef]
- Anyanwu, M.U.; Jaja, I.F.; Oguttu, J.W.; Jaja, C.J.; Chah, K.F.; Shoyinka, V.S. Is Africa ready for mobile colistin resistance threat? Infect. Ecol. Epidemiol. 2021, 11, 1962781. [Google Scholar] [CrossRef]
- Büdel, T.; Kuenzli, E.; Clément, M.; Bernasconi, O.J.; Fehr, J.; Mohammed, A.H.; Hassan, N.K.; Zinsstag, J.; Hatz, C.; Endimiani, A. Polyclonal gut colonization with extended-spectrum cephalosporin- and/or colistin-resistant Enterobacteriaceae: A normal status for hotel employees on the island of Zanzibar, Tanzania. J. Antimicrob. Chemother. 2019, 74, 2880–2890. [Google Scholar] [CrossRef] [PubMed]
Age (Years) | Total | Sex | UTI Pathogen Detected | ||
---|---|---|---|---|---|
Male | Female | Male | Female | ||
<18 | 38 | 14 | 24 | 1 (7%) | 10 (42%) |
18–35 | 135 | 12 | 123 | 2 (17%) | 44 (36%) |
36–59 | 64 | 15 | 49 | 3 (20%) | 25 (51%) |
≥60 | 33 | 9 | 24 | 2 (22%) | 17 (71%) |
Total | 270 | 50 | 220 | 8 (16%) | 96 (44%) |
Variable | Urine Culture Positivity (n = 104) | Odds Ratio (95% Confidence Interval) | p | |
---|---|---|---|---|
Leucocyturia | ||||
Positive | 169 | 98 | ||
Negative | 101 | 6 | 21.6 (8.8–63.8) | <0.001 |
Haematuria | ||||
Positive | 76 | 41 | ||
Negative | 194 | 63 | 2.4 (1.4–4.3) | 0.001 |
Nitrite | ||||
Positive | 44 | 42 | ||
Negative | 226 | 62 | 54.8 (13.6–480.1) | <0.001 |
Uropathogenic Bacteria | Prevalence | |
---|---|---|
n | % | |
Gram-negative Bacteria | 107 | 40 |
Escherichia coli | 62 | 23 |
Klebsiella spp. 1 | 18 | 7 |
Enterobacter cloacae complex | 7 | 3 |
Acinetobacter junii | 5 | 2 |
Pseudomonas spp. 2 | 4 | 2 |
Proteus mirabilis | 4 | 2 |
Other species 3 | 7 | 3 |
Gram-positive Bacteria | 12 | 4 |
Staphylococcus aureus | 6 | 2 |
Staphylococcus saprophyticus | 3 | 1 |
Streptococcus agalactiae | 2 | 1 |
Enterococcus faecalis | 1 | 0.4% |
Antibiotic | Escherichia coli (n = 62) | Klebsiella spp. (n = 18) | Enterobacter cloacae Complex (n = 7) | |||
---|---|---|---|---|---|---|
Resistant | Resistant | Resistant | ||||
n | % | n | % | n | % | |
Ampicillin 1 | 46 | 74 | 18 | 100 | 5 | 71 |
Amoxicillin/clavulanic acid | 46 | 18 | 1 | 6 | 6 | 86 |
Piperacillin 1 | 46 | 74 | 18 | 100 | 3 | 43 |
Piperacillin/tazobactam | 2 | 3 | 0 | 0 | 0 | 0 |
Cefuroxime | 15 | 24 | 1 | 6 | 6 | 86 |
Cefotaxime | 15 | 24 | 1 | 6 | 0 | 0 |
Ceftazidime | 9 | 15 | 1 | 6 | 0 | 0 |
Meropenem | 0 | 0 | 0 | 0 | 0 | 0 |
Ciprofloxacin | 23 | 37 | 0 | 0 | 0 | 0 |
Levofloxacin | 23 | 37 | 0 | 0 | 0 | 0 |
Gentamicin | 12 | 20 | 0 | 0 | 0 | 0 |
Cotrimoxazole | 47 | 76 | 6 | 33 | 1 | 15 |
Colistin | 0 | 0 | 0 | 0 | 3 | 43 |
Fosfomycin 2 | 1 | 2 |
Escherichia coli (n = 61 1) | c.a. | % | MinE | % | ME | % | VME | % |
Cefotaxime 2 | 59 | 97 | 0 | 0 | 1 | 2 | 1 | 2 |
Cefuroxime | 60 | 98 | 0 | 0 | 0 | 0 | 1 | 2 |
Ciprofloxacin | 51 | 84 | 5 | 8 | 3 | 5 | 2 | 3 |
Fosfomycin | 59 | 97 | 0 | 0 | 1 | 2 | 1 | 2 |
Piperacillin/tazobactam | 54 | 89 | 5 | 8 | 2 | 3 | 0 | 0 |
Cotrimoxazole | 60 | 98 | 0 | 0 | 0 | 0 | 1 | 2 |
Amoxicillin/clavulanic acid 3 | 58 | 95 | 0 | 0 | 2 | 3 | 1 | 2 |
Klebsiella spp. (n = 18) | c.a. | % | MinE | % | ME | % | VME | % |
Cefotaxime 2 | 18 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
Cefuroxime | 18 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
Ciprofloxacin | 18 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
Piperacillin/tazobactam | 17 | 94 | 0 | 0 | 1 | 6 | 0 | 0 |
Cotrimoxazole | 17 | 94 | 0 | 0 | 0 | 0 | 1 | 6 |
Amoxicillin/clavulanic acid 3 | 18 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
Enterobacter cloacae Complex (n = 7) | c.a. | % | MinE | % | ME | % | VME | % |
Cefotaxime 2 | 7 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
Cefuroxime | 0 | 0 | 1 | 14 | 0 | 0 | 6 | 86 |
Ciprofloxacin | 5 | 71 | 2 | 29 | 0 | 0 | 0 | 0 |
Piperacillin/tazobactam | 7 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
Cotrimoxazole | 5 | 71 | 0 | 0 | 1 | 14 | 1 | 14 |
Amoxicillin/clavulanic acid 3 | 2 | 29 | 0 | 0 | 0 | 0 | 5 | 71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmider, J.; Bühler, N.; Mkwatta, H.; Lechleiter, A.; Mlaganile, T.; Utzinger, J.; Mzee, T.; Kazimoto, T.; Becker, S.L. Microbiological Characterisation of Community-Acquired Urinary Tract Infections in Bagamoyo, Tanzania: A Prospective Study. Trop. Med. Infect. Dis. 2022, 7, 100. https://doi.org/10.3390/tropicalmed7060100
Schmider J, Bühler N, Mkwatta H, Lechleiter A, Mlaganile T, Utzinger J, Mzee T, Kazimoto T, Becker SL. Microbiological Characterisation of Community-Acquired Urinary Tract Infections in Bagamoyo, Tanzania: A Prospective Study. Tropical Medicine and Infectious Disease. 2022; 7(6):100. https://doi.org/10.3390/tropicalmed7060100
Chicago/Turabian StyleSchmider, Joseph, Nina Bühler, Hasina Mkwatta, Anna Lechleiter, Tarsis Mlaganile, Jürg Utzinger, Tutu Mzee, Theckla Kazimoto, and Sören L. Becker. 2022. "Microbiological Characterisation of Community-Acquired Urinary Tract Infections in Bagamoyo, Tanzania: A Prospective Study" Tropical Medicine and Infectious Disease 7, no. 6: 100. https://doi.org/10.3390/tropicalmed7060100
APA StyleSchmider, J., Bühler, N., Mkwatta, H., Lechleiter, A., Mlaganile, T., Utzinger, J., Mzee, T., Kazimoto, T., & Becker, S. L. (2022). Microbiological Characterisation of Community-Acquired Urinary Tract Infections in Bagamoyo, Tanzania: A Prospective Study. Tropical Medicine and Infectious Disease, 7(6), 100. https://doi.org/10.3390/tropicalmed7060100