How Spatial Epidemiology Helps Understand Infectious Human Disease Transmission
Abstract
:1. Introduction
2. Disease Mapping
2.1. Location Mapping
2.2. Surface Mapping
3. Overall Spatial Patterns
3.1. Statistical Tests of Overall Clustering for Point Data
3.2. Statistical Tests of Overall Clustering for Aggregate Data
4. Localized Hot Spots
4.1. Detections of Localized Clusters for Point Data
4.2. Detections of Localized Clusters for Aggregate Data
5. Spatial Regressions for Identifying Risk Factors
5.1. Spatial Neighbourhood Effect
5.2. Spatial Heterogeneity
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. Lesson 1: Introduction to Epidemiology. Available online: https://www.cdc.gov/csels/dsepd/ss1978/lesson1/section10.html (accessed on 15 October 2020).
- Porta, M. (Ed.) A Dictionary of Epidemiology, 5th ed.; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- National Center for HIV/AIDS, V.H., STD, and TB Prevention, CDC. Managing HIV and Hepatitis C Outbreaks among People Who Inject Drugs—A Guide for State and Local Health Departments. Available online: https://www.cdc.gov/hiv/pdf/programresources/guidance/cluster-outbreak/cdc-hiv-hcv-pwid-guide.pdf (accessed on 30 October 2020).
- Koch, T. Knowing its place: Mapping as medical investigation. Lancet 2012, 379, 887–888. [Google Scholar] [CrossRef]
- Stevenson, L.G. Putting disease on the map. The early use of spot maps in the study of yellow fever. J. Hist. Med. Allied Sci. 1965, 20, 226–261. [Google Scholar] [CrossRef] [PubMed]
- Snow, J. On the Mode of Communication of Cholera, 2nd ed.; John Churchill: New Burlington Street, London, UK, 1855. [Google Scholar]
- Shannon, G.W. Disease mapping and early theories of yellow fever. Prof. Geogr. 1981, 33, 221–227. [Google Scholar] [CrossRef]
- Soetens, L.; Hahne, S.; Wallinga, J. Dot map cartograms for detection of infectious disease outbreaks: An application to Q fever, the Netherlands and pertussis, Germany. Euro. Surveill. 2017, 22, 30562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyayula, S.M.; Mutheneni, S.R.; Kumaraswamy, S.; Kadiri, M.R.; Pabbisetty, S.K.; Yellepeddi, V.S.M. Filaria monitoring visualization system: A geographical information system-based application to manage lymphatic filariasis in Andhra Pradesh, India. Vector Borne Zoonotic Dis. 2012, 12, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Marek, L.; Pászto, V.; Tuček, P. Bayesian Mapping of Medical Data. In Modern Trends in Cartography: Selected Papers of CARTOCON 2014; Brus, J., Vondrakova, A., Vozenilek, V., Eds.; Springer International Publishing: Cham, Switherland, 2015; pp. 489–505. [Google Scholar]
- Lawson, A. Bayesian Disease Mapping Hierarchical Modeling in Spatial Epidemiology/Andrew B. Lawson; Taylor & Francis: Boca Raton, FL, USA, 2008. [Google Scholar]
- Torres-Signes, A.; Dip, J.A. A Bayesian Functional Methodology for Dengue Risk Mapping in Latin America and the Caribbean. Acta Trop. 2021, 215, 105788. [Google Scholar] [CrossRef] [PubMed]
- Jaya, I.G.N.M.; Folmer, H. Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung, Indonesia. J. Geogr. Syst. 2020, 22, 105–142. [Google Scholar] [CrossRef]
- Paireau, J.; Pelat, C.; Caserio-Schönemann, C.; Pontais, I.; Le Strat, Y.; Lévy-Bruhl, D.; Cauchemez, S. Mapping influenza activity in emergency departments in France using Bayesian model-based geostatistics. Influenza Other Respir. Viruses 2018, 12, 772–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, O.; Ribeiro, A.I.; Krainski, E.T.; Rito, T.; Duarte, R.; Correia-Neves, M. Using Bayesian spatial models to map and to identify geographical hotspots of multidrug-resistant tuberculosis in Portugal between 2000 and 2016. Sci. Rep. 2020, 10, 16646. [Google Scholar] [CrossRef] [PubMed]
- Mossel, E.; Vigoda, E. Limitations of Markov chain Monte Carlo algorithms for Bayesian inference of phylogeny. Ann. Appl. Probab. 2006, 16, 2215–2234. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Prieto, V.; Martínez-López, B.; Barasona, J.Á.; Acevedo, P.; Romero, B.; Rodriguez-Campos, S.; Gortázar, C.; Sánchez-Vizcaíno, J.M.; Vicente, J. A Bayesian approach to study the risk variables for tuberculosis occurrence in domestic and wild ungulates in South Central Spain. BMC Vet. Res. 2012, 8, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Wang, X.; Li, Y.; Ma, J. Spatiotemporal Analysis of Influenza in China, 2005–2018. Sci. Rep. 2019, 9, 19650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murad, A.; Khashoggi, B.F. Using GIS for Disease Mapping and Clustering in Jeddah, Saudi Arabia. Isprs Int. J. Geo-Inf. 2020, 9, 328. [Google Scholar] [CrossRef]
- Telle, O.; Vaguet, A.; Yadav, N.K.; Lefebvre, B.; Cebeillac, A.; Nagpal, B.N.; Daude, E.; Paul, R.E. The spread of dengue in an endemic urban Milieu–the case of Delhi, India. PLoS ONE 2016, 11, e0146539. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Zhou, H.; Zou, Y.; Yin, W.; Yu, H.; Si, Y.; Li, J.; Zhou, Y.; Zhou, X.; Magalhaes, R.J.S. Geographical analysis of the distribution and spread of human rabies in China from 2005 to 2011. PLoS ONE 2013, 8, e72352. [Google Scholar] [CrossRef] [PubMed]
- Bermudi, P.M.M.; Guirado, M.M.; Rodas, L.A.C.; Dibo, M.R.; Chiaravalloti-Neto, F. Spatio-temporal analysis of the occurrence of human visceral leishmaniasis in Aracatuba, State of Sao Paulo, Brazil. Rev. Soc. Bras. Med. Trop. 2018, 51, 452–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, L.A.M.; Braga, J.U.; da Silva, J.P.; Cruz, M.d.S.P.; de Oliveira, A.L.S.; Werneck, G.L. Spatial distribution of Leishmania seropositive dogs in the Angelim neighborhood, Teresina, Piaui, Brazil: Appraisal of three spatial clustering methods. GeoJournal 2021, 86, 2457–2465. [Google Scholar] [CrossRef]
- Lai, P.C.; Wong, C.M.; Hedley, A.J.; Lo, S.V.; Leung, P.Y.; Kong, J.; Leung, G.M. Understanding the spatial clustering of severe acute respiratory syndrome (SARS) in Hong Kong. Environ. Health Perspect. 2004, 112, 1550–1556. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, D.C. A comparison of spatial clustering and cluster detection techniques for childhood leukemia incidence in Ohio, 1996-2003. Int. J. Health Geogr. 2007, 6, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, D.; Choi, H.; Kim, J.H.; Choi, J. Spatial epidemic dynamics of the COVID-19 outbreak in China. Int. J. Infect. Dis. 2020, 94, 96–102. [Google Scholar] [CrossRef]
- Su, D.; Chen, Y.; He, K.; Zhang, T.; Tan, M.; Zhang, Y.; Zhang, X. Influence of socio-ecological factors on COVID-19 risk: A cross-sectional study based on 178 countries/regions worldwide. medRxiv 2020. [Google Scholar] [CrossRef]
- Tsai, P.J.; Teng, H.J. Role of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) in local dengue epidemics in Taiwan. BMC Infect. Dis. 2016, 16, 662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.H.; Schioler, K.L.; Jepsen, M.R.; Ho, C.K.; Li, S.H.; Konradsen, F. Dengue outbreaks in high-income area, Kaohsiung City, Taiwan, 2003–2009. Emerg. Infect. Dis. 2012, 18, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Hamrick, P.N.; Aldighieri, S.; Machado, G.; Leonel, D.G.; Vilca, L.M.; Uriona, S.; Schneider, M.C. Geographic patterns and environmental factors associated with human yellow fever presence in the Americas. PLoS Negl. Trop. Dis. 2017, 11, e0005897. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Castro, M.C. Spatiotemporal pattern of COVID-19 and government response in South Korea (as of May 31, 2020). Int. J. Infect. Dis. 2020, 98, 328–333. [Google Scholar] [CrossRef]
- Kuo, F.Y.; Wen, T.H.; Sabel, C.E. Characterizing diffusion dynamics of disease clustering: A modified space-time DBSCAN (MST-DBSCAN) algorithm. Ann. Am. Assoc. Geogr. 2018, 108, 1168–1186. [Google Scholar] [CrossRef]
- De Ridder, D.; Sandoval, J.; Vuilleumier, N.; Stringhini, S.; Spechbach, H.; Joost, S.; Kaiser, L.; Guessous, I. Geospatial digital monitoring of COVID-19 cases at high spatiotemporal resolution. Lancet Digit. Health 2020, 2, e393–e394. [Google Scholar] [CrossRef]
- Hinman, S.E.; Blackburn, J.K.; Curtis, A. Spatial and temporal structure of typhoid outbreaks in Washington, D.C., 1906–1909: Evaluating local clustering with the Gi* statistic. Int. J. Health Geogr. 2006, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Alene, K.A.; Viney, K.; Gray, D.J.; McBryde, E.S.; Wagnew, M.; Clements, A.C.A. Mapping tuberculosis treatment outcomes in Ethiopia. BMC Infect. Dis. 2019, 19, 474. [Google Scholar] [CrossRef] [Green Version]
- Coleman, M.; Coleman, M.; Mabuza, A.M.; Kok, G.; Coetzee, M.; Durrheim, D.N. Using the SaTScan method to detect local malaria clusters for guiding malaria control programmes. Malar. J. 2009, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Brooker, S.; Clarke, S.; Njagi, J.K.; Polack, S.; Mugo, B.; Estambale, B.; Muchiri, E.; Magnussen, P.; Cox, J. Spatial clustering of malaria and associated risk factors during an epidemic in a highland area of western Kenya. Trop. Med. Int. Health 2004, 9, 757–766. [Google Scholar] [CrossRef]
- Chaurasia, H.; Srivastava, S.; Kumar Singh, J. Does seasonal variation affect diarrhoea prevalence among children in India? An analysis based on spatial regression models. Child. Youth Serv. Rev 2020, 118, 105453. [Google Scholar] [CrossRef]
- Mollalo, A.; Vahedi, B.; Rivera, K.M. GIS-based spatial modeling of COVID-19 incidence rate in the continental United States. Sci. Total Environ. 2020, 728, 138884. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.S.; Medronho, R.A.; Valencia, L.I. Spatial analysis of dengue and the socioeconomic context of the city of Rio de Janeiro (Southeastern Brazil). Rev. Saude Publica 2009, 43, 666–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.H.; Wen, T.H. Using geographically weighted regression (GWR) to explore spatial varying relationships of immature mosquitoes and human densities with the incidence of dengue. Int. J. Env. Res. Public Health 2011, 8, 2798–2815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban, R.C.; Nakada, L.Y.K. GIS-based spatial modelling of COVID-19 death incidence in São Paulo, Brazil. Environ. Urban 2020, 33, 229–238. [Google Scholar] [CrossRef]
- Pfeiffer, D.U.; Robinson, T.D.; Stevenson, M.; Stevens, K.B.; Rogers, D.J.; Clements, A.C.A. Spatial Analysis in Epidemiology; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Frank, L.D. GIS and Public Health. Am. J. Prev. Med. 2012, 42, e97. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Hay, S.I.; Pigott, D.M.; Smith, D.L.; Wint, G.R.W.; Golding, N. Progress and challenges in infectious disease cartography. Trends Parasitol. 2016, 32, 19–29. [Google Scholar] [CrossRef]
- Besag, J.; Newell, J. The detection of clusters in rare diseases. J. R. Stat. Soc. Ser. A Stat. Soc. 1991, 154, 143–155. [Google Scholar] [CrossRef]
- Clark, P.J.; Evans, F.C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 1954, 35, 445–453. [Google Scholar] [CrossRef]
- Cuzick, J.; Edwards, R. Spatial clustering for inhomogeneous populations. J. R. Stat. Soc. Ser. B Stat. Methodol. 1990, 52, 73–104. [Google Scholar] [CrossRef]
- Philip, M.D. Encyclopedia of Environmetrics, 2nd ed.; El-Shaarawi, A.H., Piegorsch, W.W., Eds.; John Wiley & Sons: Chichester, UK, 2002; Volume 3. [Google Scholar]
- Mitchell, A. The ESRI Guide to GIS Analysis, Volume 2: Spatial Measurements and Statistics, 1st ed.; ESRI Press: Redlands, CA, USA, 2005. [Google Scholar]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Geary, R.C. The contiguity ratio and statistical mapping. Inc. Stat. 1954, 5, 115–146. [Google Scholar] [CrossRef]
- Moran, P.A.P. The interpretation of statistical maps. J. R. Stat. Soc. Ser. B Stat. Methodol. 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Getis, A. A history of the concept of spatial autocorrelation: A geographer’s perspective. Geogr. Anal. 2008, 40, 297–309. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local spatial autocorrelation statistics—Distributional issues and an application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Kulldorff, M. A spatial scan statistic. Commun. Stat. Theory Methods 1997, 26, 1481–1496. [Google Scholar] [CrossRef]
- Anselin, L. Thirty years of spatial econometrics. Pap. Reg. Sci. 2010, 89, 3–25. [Google Scholar] [CrossRef]
- Anselin, L.; Griffith, D.A. Do spatial effects really matter in regression analysis? Pap. Reg. Sci. 1988, 65, 11–34. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Quantitative Geography: Perspectives on Spatial Data Analysis; Sage: London, UK, 2000. [Google Scholar]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- World Health Organization. Immunization, Vaccines and Biologicals. Available online: https://www.who.int/immunization/monitoring_surveillance/burden/vpd/en/ (accessed on 6 November 2020).
- CDC. Salmonella in the Caribbean-Attributes of a Surveillance System. Available online: https://www.cdc.gov/training/SIC_CaseStudy/Attrib_Surv_Sys_ptversion.pdf (accessed on 6 November 2020).
- Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H.J. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet 2020, 395, 1973–1987. [Google Scholar] [CrossRef]
- Santarpia, J.L.; Rivera, D.N.; Herrera, V.L.; Morwitzer, M.J.; Creager, H.M.; Santarpia, G.W.; Crown, K.K.; Brett-Major, D.M.; Schnaubelt, E.R.; Broadhurst, M.J.; et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci. Rep. 2020, 10, 12732. [Google Scholar] [CrossRef] [PubMed]
- Doung-ngern, P.; Suphanchaimat, R.; Panjangampatthana, A.; Janekrongtham, C.; Ruampoom, D.; Daochaeng, N.; Eungkanit, N.; Pisitpayat, N.; Srisong, N.; Yasopa, O.; et al. Associations between mask-wearing, handwashing, and social distancing practices and risk of COVID-19 infection in public: A case-control study in Thailand. medRxiv 2020. [Google Scholar] [CrossRef]
- Li, Y.; Qian, H.; Hang, J.; Chen, X.; Hong, L.; Liang, P.; Li, J.; Xiao, S.; Wei, J.; Liu, L.; et al. Evidence for probable aerosol transmission of SARS-CoV-2 in a poorly ventilated restaurant. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Jones, N.R.; Qureshi, Z.U.; Temple, R.J.; Larwood, J.P.J.; Greenhalgh, T.; Bourouiba, L. Two metres or one: What is the evidence for physical distancing in covid-19? BMJ 2020, 370, m3223. [Google Scholar] [CrossRef] [PubMed]
- de Jong, B.C.; Gaye, B.M.; Luyten, J.; van Buitenen, B.; André, E.; Meehan, C.J.; O’Siochain, C.; Tomsu, K.; Urbain, J.; Grietens, K.P.; et al. Ethical Considerations for Movement Mapping to Identify Disease Transmission Hotspots. Emerg. Infect. Dis. 2019, 25, e181421. [Google Scholar] [CrossRef] [PubMed]
- Korpilo, S.; Virtanen, T.; Lehvävirta, S. Smartphone GPS tracking—Inexpensive and efficient data collection on recreational movement. Landsc. Urban Plan. 2017, 157, 608–617. [Google Scholar] [CrossRef] [Green Version]
- Wesolowski, A.; Buckee, C.O.; Engø-Monsen, K.; Metcalf, C.J.E. Connecting Mobility to Infectious Diseases: The Promise and Limits of Mobile Phone Data. J. Infect. Dis. 2016, 214, S414–S420. [Google Scholar] [CrossRef] [PubMed]
- Menard, T.; Miller, J.; Nowak, M.; Norris, D. Comparing the GPS capabilities of the Samsung Galaxy S, Motorola Droid X, and the Apple iPhone for vehicle tracking using FreeSim_Mobile. In Proceedings of the 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011; pp. 985–990. [Google Scholar]
- Zandbergen, P.A. Accuracy of iPhone Locations: A Comparison of Assisted GPS, WiFi and Cellular Positioning. Trans. GIS 2009, 13, 5–25. [Google Scholar] [CrossRef]
- Hess, B.; Farahani, A.Z.; Tschirschnitz, F.; Reischach, F.v. Evaluation of fine-granular GPS tracking on smartphones. In Proceedings of the First ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems, Redondo Beach, CA, USA, 7–9 November 2012; pp. 33–40. [Google Scholar]
Spatial Theme | Category | Data Type | Examples |
---|---|---|---|
Disease Mapping | Location mapping | Point | [4,5,6,7,8] |
Surface mapping | Aggregate | [8,9,10,11,12,13,14,15,16,17,18,19,20] | |
Overall patterns | Clustering | Point | [21,22,23,24,25] |
Aggregate | [24,26,27,28,29,30,31] | ||
Localized hot spot | Cluster | Point | [21,24,25,32,33] |
Aggregate | [22,25,29,30,31,34,35,36,37] | ||
Identifying risk factors | Neighbourhood effect | Aggregate | [38,39,40] |
Heterogeneity | Aggregate | [28,39,41,42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, C.-H.; Wen, T.-H. How Spatial Epidemiology Helps Understand Infectious Human Disease Transmission. Trop. Med. Infect. Dis. 2022, 7, 164. https://doi.org/10.3390/tropicalmed7080164
Lin C-H, Wen T-H. How Spatial Epidemiology Helps Understand Infectious Human Disease Transmission. Tropical Medicine and Infectious Disease. 2022; 7(8):164. https://doi.org/10.3390/tropicalmed7080164
Chicago/Turabian StyleLin, Chia-Hsien, and Tzai-Hung Wen. 2022. "How Spatial Epidemiology Helps Understand Infectious Human Disease Transmission" Tropical Medicine and Infectious Disease 7, no. 8: 164. https://doi.org/10.3390/tropicalmed7080164
APA StyleLin, C. -H., & Wen, T. -H. (2022). How Spatial Epidemiology Helps Understand Infectious Human Disease Transmission. Tropical Medicine and Infectious Disease, 7(8), 164. https://doi.org/10.3390/tropicalmed7080164