Using Genomics to Understand the Epidemiology of Infectious Diseases in the Northern Territory of Australia
Abstract
:1. Introduction
2. Search Strategy and Selection Criteria
3. The Northern Territory of Australia
4. Genomic Sequencing Technology
5. Molecular Typing
Molecular Typing to Investigate Group A Streptococcal Disease
6. Cluster Identification
6.1. Defining Tuberculosis Transmission Clusters
6.2. Burkholderia pseudomallei Source Attribution
7. Phylogenomics
7.1. Phylogeography of Hepatitis B Virus
7.2. Genomic Epidemiology of Community-Onset Acinetobacter baumannii Infection
7.3. Global Burkholderia pseudomallei Phylogeography
8. Antimicrobial Resistance
8.1. Emergence and Spread of Community-Associated Methicillin-Resistant Staphylococcus aureus (CA-MRSA)
8.2. Antimicrobial Resistance Prediction to Inform Treatment Guidelines for Neisseria gonorrhoeae
9. Metagenomic Sequencing
9.1. Diagnosis of Japanese Encephalitis Virus
9.2. Tracking the Syphilis Epidemic
10. Public Health Implementation
Local Genomic Sequencing for SARS-CoV-2 Surveillance
11. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Coffey, P.M.; Ralph, A.P.; Krause, V.L. The role of social determinants of health in the risk and prevention of group A streptococcal infection, acute rheumatic fever and rheumatic heart disease: A systematic review. PLoS Negl. Trop. Dis. 2018, 12, e0006577. [Google Scholar] [CrossRef] [PubMed]
- Carlson, C.J.; Albery, G.F.; Merow, C.; Trisos, C.H.; Zipfel, C.M.; Eskew, E.A.; Olival, K.J.; Ross, N.; Bansal, S. Climate change increases cross-species viral transmission risk. Nature 2022, 607, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Fishman, J.A.; Rubin, R.H. Infection in organ-transplant recipients. N. Engl. J. Med. 1998, 338, 1741–1751. [Google Scholar] [CrossRef]
- Jackson, R.W.; Johnson, L.J.; Clarke, S.R.; Arnold, D.L. Bacterial pathogen evolution: Breaking news. Trends Genet. TIG 2011, 27, 32–40. [Google Scholar] [CrossRef]
- Armstrong, G.L.; MacCannell, D.R.; Taylor, J.; Carleton, H.A.; Neuhaus, E.B.; Bradbury, R.S.; Posey, J.E.; Gwinn, M. Pathogen genomics in public health. N. Engl. J. Med. 2019, 381, 2569–2580. [Google Scholar] [CrossRef]
- Currie, B. Medicine in tropical Australia. Med. J. Aust. 1993, 158, 609–615. [Google Scholar] [CrossRef]
- McMeniman, E.; Holden, L.; Kearns, T.; Clucas, D.B.; Carapetis, J.R.; Currie, B.J.; Connors, C.; Andrews, R.M. Skin disease in the first two years of life in Aboriginal children in East Arnhem Land. Australas. J. Dermatol. 2011, 52, 270–273. [Google Scholar] [CrossRef]
- Tong, S.Y.; Varrone, L.; Chatfield, M.D.; Beaman, M.; Giffard, P.M. Progressive increase in community-associated methicillin-resistant Staphylococcus aureus in Indigenous populations in northern Australia from 1993 to 2012. Epidemiol. Infect. 2015, 143, 1519–1523. [Google Scholar] [CrossRef]
- Cook, H.M.; Giele, C.M.; Jayasinghe, S.H.; Wakefield, A.; Krause, V.L.; Enhanced Invasive Pneumococcal Disease Surveillance Working Group. An outbreak of serotype-1 sequence type 306 invasive pneumococcal disease in an Australian Indigenous population. Commun. Dis. Intell. 2020, 44. [Google Scholar] [CrossRef]
- Weinman, A.L.; Sullivan, S.G.; Vijaykrishna, D.; Markey, P.; Levy, A.; Miller, A.; Tong, S.Y.C. Epidemiological trends in notified influenza cases in Australia’s Northern Territory, 2007–2016. Influenza Other Respir. Viruses 2020, 14, 541–550. [Google Scholar] [CrossRef]
- Ford, L.; Glass, K.; Veitch, M.; Wardell, R.; Polkinghorne, B.; Dobbins, T.; Lal, A.; Kirk, M.D. Increasing Incidence of Salmonella in Australia, 2000–2013. PLoS ONE 2016, 11, e0163989. [Google Scholar] [CrossRef]
- Silver, B.J.; Guy, R.J.; Wand, H.; Ward, J.; Rumbold, A.R.; Fairley, C.K.; Donovan, B.; Maher, L.; Dyda, A.; Garton, L.; et al. Incidence of curable sexually transmissible infections among adolescents and young adults in remote Australian Aboriginal communities: Analysis of longitudinal clinical service data. Sex. Transm. Infect. 2015, 91, 135–141. [Google Scholar] [CrossRef]
- Davies, J.; Li, S.Q.; Tong, S.Y.; Baird, R.W.; Beaman, M.; Higgins, G.; Cowie, B.C.; Condon, J.R.; Davis, J.S. Establishing contemporary trends in hepatitis B sero-epidemiology in an Indigenous population. PLoS ONE 2017, 12, e0184082. [Google Scholar] [CrossRef]
- Walton, S.F.; Choy, J.L.; Bonson, A.; Valle, A.; McBroom, J.; Taplin, D.; Arlian, L.; Mathews, J.D.; Currie, B.; Kemp, D.J. Genetically distinct dog-derived and human-derived Sarcoptes scabiei in scabies-endemic communities in northern Australia. Am. J. Trop. Med. Hyg. 1999, 61, 542–547. [Google Scholar] [CrossRef]
- McDonald, M.I.; Towers, R.J.; Andrews, R.; Benger, N.; Fagan, P.; Currie, B.J.; Carapetis, J.R. The dynamic nature of group A streptococcal epidemiology in tropical communities with high rates of rheumatic heart disease. Epidemiol. Infect. 2008, 136, 529–539. [Google Scholar] [CrossRef]
- Tong, S.Y.; Lilliebridge, R.A.; Bishop, E.J.; Cheng, A.C.; Holt, D.C.; McDonald, M.I.; Giffard, P.M.; Currie, B.J.; Boutlis, C.S. Clinical correlates of Panton-Valentine leukocidin (PVL), PVL isoforms, and clonal complex in the Staphylococcus aureus population of Northern Australia. J. Infect. Dis. 2010, 202, 760–769. [Google Scholar] [CrossRef]
- Gal, D.; Mayo, M.; Smith-Vaughan, H.; Dasari, P.; McKinnon, M.; Jacups, S.P.; Urquhart, A.I.; Hassell, M.; Currie, B.J. Contamination of hand wash detergent linked to occupationally acquired melioidosis. Am. J. Trop. Med. Hyg. 2004, 71, 360–362. [Google Scholar] [CrossRef]
- Bowen, A.C.; Harris, T.; Holt, D.C.; Giffard, P.M.; Carapetis, J.R.; Campbell, P.T.; Mc, V.J.; Tong, S.Y. Whole genome sequencing reveals extensive community-level transmission of group A Streptococcus in remote communities. Epidemiol. Infect. 2016, 144, 1991–1998. [Google Scholar] [CrossRef]
- Meumann, E.M.; Andersson, P.; Yeaman, F.; Oldfield, S.; Lilliebridge, R.; Bentley, S.D.; Krause, V.; Beaman, M.; Currie, B.J.; Holt, D.C.; et al. Whole genome sequencing to investigate a putative outbreak of the virulent community-associated methicillin-resistant Staphylococcus aureus ST93 clone in a remote Indigenous community. Microb. Genom. 2016, 2, e000098. [Google Scholar] [CrossRef]
- Sarovich, D.S.; Chapple, S.N.J.; Price, E.P.; Mayo, M.; Holden, M.T.G.; Peacock, S.J.; Currie, B.J. Whole-genome sequencing to investigate a non-clonal melioidosis cluster on a remote Australian island. Microb. Genom. 2017, 3, e000117. [Google Scholar] [CrossRef]
- Rachlin, A.; Mayo, M.; Webb, J.R.; Kleinecke, M.; Rigas, V.; Harrington, G.; Currie, B.J.; Kaestli, M. Whole-genome sequencing of Burkholderia pseudomallei from an urban melioidosis hot spot reveals a fine-scale population structure and localised spatial clustering in the environment. Sci. Rep. 2020, 10, 5443. [Google Scholar] [CrossRef] [PubMed]
- Meumann, E.M.; Horan, K.; Ralph, A.P.; Farmer, B.; Globan, M.; Stephenson, E.; Popple, T.; Boyd, R.; Kaestli, M.; Seemann, T.; et al. Tuberculosis in Australia’s tropical north: A population-based genomic epidemiological study. Lancet Reg. Health-West. Pac. 2021, 15, 100229. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.R.; Mayo, M.; Rachlin, A.; Woerle, C.; Meumann, E.; Rigas, V.; Harrington, G.; Kaestli, M.; Currie, B.J. Genomic epidemiology links Burkholderia pseudomallei from individual human cases to B. pseudomallei from targeted environmental aampling in northern Australia. J. Clin. Microbiol. 2022, 60, e0164821. [Google Scholar] [CrossRef] [PubMed]
- Littlejohn, M.; Davies, J.; Yuen, L.; Edwards, R.; Sozzi, T.; Jackson, K.; Cowie, B.; Tong, S.; Davis, J.; Locarnini, S. Molecular virology of hepatitis B virus, sub-genotype C4 in northern Australian Indigenous populations. J. Med. Virol. 2014, 86, 695–706. [Google Scholar] [CrossRef] [PubMed]
- The Northern Territory Government. Northern Territory Economy: Population. Available online: https://nteconomy.nt.gov.au/population (accessed on 10 June 2021).
- Quilty, S.; Wood, L.; Scrimgeour, S.; Shannon, G.; Sherman, E.; Lake, B.; Budd, R.; Lawton, P.; Moloney, M. Addressing profound disadvantages to improve Indigenous health and reduce hospitalisation: A collaborative community program in remote Northern Territory. Int. J. Environ. Res. Public Health 2019, 16, 4306. [Google Scholar] [CrossRef]
- Wyber, R.; Kelly, A.; Lee, A.M.; Mungatopi, V.; Kerrigan, V.; Babui, S.; Black, N.; Wade, V.; Fitzgerald, C.; Peiris, D.; et al. Formative evaluation of a community-based approach to reduce the incidence of Strep A infections and acute rheumatic fever. Aust. N. Z. J. Public Health 2021, 45, 449–454. [Google Scholar] [CrossRef]
- Tane, M.P.; Hefler, M.; Thomas, D.P. Do the Yolngu people of East Arnhem Land experience smoking related stigma associated with local and regional tobacco control strategies?: An Indigenous qualitative study from Australia. Glob. Public Health 2020, 15, 111–120. [Google Scholar] [CrossRef]
- Condon, J.R.; Zhang, X.; Dempsey, K.; Garling, L.; Guthridge, S. Trends in cancer incidence and survival for Indigenous and non-Indigenous people in the Northern Territory. Med. J. Aust. 2016, 205, 454–458. [Google Scholar] [CrossRef]
- O’Dea, K.; Cunningham, J.; Maple-Brown, L.; Weeramanthri, T.; Shaw, J.; Dunbar, T.; Zimmet, P. Diabetes and cardiovascular risk factors in urban Indigenous adults: Results from the DRUID study. Diabetes Res. Clin. Pract. 2008, 80, 483–489. [Google Scholar] [CrossRef]
- Lawton, P.D.; Cunningham, J.; Hadlow, N.; Zhao, Y.; Jose, M.D. Chronic kidney disease in the Top End of the Northern Territory of Australia, 2002-2011: A retrospective cohort study using existing laboratory data. BMC Nephrol. 2015, 16, 168. [Google Scholar] [CrossRef]
- Skov, S.J.; Chikritzhs, T.N.; Li, S.Q.; Pircher, S.; Whetton, S. How much is too much? Alcohol consumption and related harm in the Northern Territory. Med. J. Aust. 2010, 193, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Melbourne Health. NAPS-National Antimicrobial Prescribing Survey. Available online: https://www.naps.org.au/Default.aspx (accessed on 25 June 2021).
- Cuningham, W.; McVernon, J.; Lydeamore, M.J.; Andrews, R.M.; Carapetis, J.; Kearns, T.; Clucas, D.; Dhurrkay, R.G.; Tong, S.Y.C.; Campbell, P.T. High burden of infectious disease and antibiotic use in early life in Australian Aboriginal communities. Aust. N. Z. J. Public Health 2019, 43, 149–155. [Google Scholar] [CrossRef] [PubMed]
- National Environmental Science Program Earth Systems and Climate Change Hub. Climate Change in the Northern Territory: State of the Science and Climate Change Impacts. 2020. Available online: https://denr.nt.gov.au/__data/assets/pdf_file/0011/944831/state-of-the-science-and-climate-change-impacts-final-report.pdf (accessed on 21 July 2022).
- Hall, N.L.; Barnes, S.; Canuto, C.; Nona, F.; Redmond, A.M. Climate change and infectious diseases in Australia’s Torres Strait Islands. Aust. N. Z. J. Public Health 2021, 45, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Hall, N.L.; Crosby, L. Climate change impacts on health in remote Indigenous communities in Australia. Int. J. Environ. Health Res. 2020, 32, 1–16. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- Green, E.D. Strategies for the systematic sequencing of complex genomes. Nat. Rev. Genet. 2001, 2, 573–583. [Google Scholar] [CrossRef]
- Fleischmann, R.D.; Adams, M.D.; White, O.; Clayton, R.A.; Kirkness, E.F.; Kerlavage, A.R.; Bult, C.J.; Tomb, J.F.; Dougherty, B.A.; Merrick, J.M.; et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995, 269, 496–512. [Google Scholar] [CrossRef]
- Meumann, E.M.; Menouhos, D.; Christofis, S.; Kondambu-Saaka, K.M.; Harbidge, J.; Dakh, F.; Freeman, K.; Baird, R. Local genomic sequencing enhances COVID-19 surveillance in the Northern Territory of Australia. Pathology 2022, 54, 659–662. [Google Scholar] [CrossRef]
- Jain, M.; Olsen, H.E.; Paten, B.; Akeson, M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol. 2016, 17, 239. [Google Scholar] [CrossRef]
- Sereika, M.; Kirkegaard, R.H.; Karst, S.M.; Michaelsen, T.Y.; Sorensen, E.A.; Wollenberg, R.D.; Albertsen, M. Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nat. Methods 2022, 19, 823–826. [Google Scholar] [CrossRef]
- Quick, J.; Loman, N.J.; Duraffour, S.; Simpson, J.T.; Severi, E.; Cowley, L.; Bore, J.A.; Koundouno, R.; Dudas, G.; Mikhail, A.; et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 2016, 530, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Faria, N.R.; Sabino, E.C.; Nunes, M.R.; Alcantara, L.C.; Loman, N.J.; Pybus, O.G. Mobile real-time surveillance of Zika virus in Brazil. Genome Med. 2016, 8, 97. [Google Scholar] [CrossRef] [PubMed]
- Steinig, E.; Duchene, S.; Aglua, I.; Greenhill, A.; Ford, R.; Yoannes, M.; Jaworski, J.; Drekore, J.; Urakoko, B.; Poka, H.; et al. Phylodynamic inference of bacterial outbreak parameters using nanopore sequencing. Mol. Biol. Evol. 2022, 39, msac040. [Google Scholar] [CrossRef] [PubMed]
- Lancefield, R.C. A serological differentiation of human and other groups of hemolytic streptococci. J. Exp. Med. 1933, 57, 571–595. [Google Scholar] [CrossRef]
- Facklam, R.; Beall, B.; Efstratiou, A.; Fischetti, V.; Johnson, D.; Kaplan, E.; Kriz, P.; Lovgren, M.; Martin, D.; Schwartz, B.; et al. emm typing and validation of provisional M types for group A streptococci. Emerg. Infect. Dis. 1999, 5, 247–253. [Google Scholar] [CrossRef]
- Kapatai, G.; Sheppard, C.L.; Al-Shahib, A.; Litt, D.J.; Underwood, A.P.; Harrison, T.G.; Fry, N.K. Whole genome sequencing of Streptococcus pneumoniae: Development, evaluation and verification of targets for serogroup and serotype prediction using an automated pipeline. PeerJ 2016, 4, e2477. [Google Scholar] [CrossRef]
- Yoshida, C.E.; Kruczkiewicz, P.; Laing, C.R.; Lingohr, E.J.; Gannon, V.P.; Nash, J.H.; Taboada, E.N. The Salmonella In Silico Typing Resource (SISTR): An open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS ONE 2016, 11, e0147101. [Google Scholar] [CrossRef]
- Williams, S.; Patel, M.; Markey, P.; Muller, R.; Benedict, S.; Ross, I.; Heuzenroeder, M.; Davos, D.; Cameron, S.; Krause, V. Salmonella in the tropical household environment--Everyday, everywhere. J. Infect. 2015, 71, 642–648. [Google Scholar] [CrossRef]
- Maiden, M.C.; Bygraves, J.A.; Feil, E.; Morelli, G.; Russell, J.E.; Urwin, R.; Zhang, Q.; Zhou, J.; Zurth, K.; Caugant, D.A.; et al. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 1998, 95, 3140–3145. [Google Scholar] [CrossRef]
- Jolley, K.A.; Maiden, M.C. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010, 11, 595. [Google Scholar] [CrossRef]
- Currie, B.J.; Mayo, M.; Ward, L.M.; Kaestli, M.; Meumann, E.M.; Webb, J.R.; Woerle, C.; Baird, R.W.; Price, R.N.; Marshall, C.S.; et al. The Darwin Prospective Melioidosis Study: A 30-year prospective, observational investigation. Lancet Infect. Dis. 2021, 21, 1737–1746. [Google Scholar] [CrossRef]
- Chapple, S.N.; Price, E.P.; Sarovich, D.S.; McRobb, E.; Mayo, M.; Kaestli, M.; Spratt, B.G.; Currie, B.J. Burkholderia pseudomallei genotype distribution in the Northern Territory, Australia. Am. J. Trop. Med. Hyg. 2016, 94, 68–72. [Google Scholar] [CrossRef] [PubMed]
- McRobb, E.; Kaestli, M.; Price, E.P.; Sarovich, D.S.; Mayo, M.; Warner, J.; Spratt, B.G.; Currie, B.J. Distribution of Burkholderia pseudomallei in northern Australia, a land of diversity. Appl. Environ. Microbiol. 2014, 80, 3463–3468. [Google Scholar] [CrossRef] [PubMed]
- Price, E.P.; Sarovich, D.S.; Smith, E.J.; MacHunter, B.; Harrington, G.; Theobald, V.; Hall, C.M.; Hornstra, H.M.; McRobb, E.; Podin, Y.; et al. Unprecedented melioidosis cases in Northern Australia caused by an Asian Burkholderia pseudomallei strain identified by using large-scale comparative genomics. Appl. Environ. Microbiol. 2016, 82, 954–963. [Google Scholar] [CrossRef]
- Meumann, E.M.; Anstey, N.M.; Currie, B.J.; Piera, K.A.; Kenyon, J.J.; Hall, R.M.; Davis, J.S.; Sarovich, D.S. Genomic epidemiology of severe community-onset Acinetobacter baumannii infection. Microb. Genom. 2019, 5, e000258. [Google Scholar] [CrossRef] [PubMed]
- Katzenellenbogen, J.M.; Bond-Smith, D.; Seth, R.J.; Dempsey, K.; Cannon, J.; Stacey, I.; Wade, V.; de Klerk, N.; Greenland, M.; Sanfilippo, F.M.; et al. Contemporary incidence and prevalence of rheumatic fever and rheumatic heart disease in Australia using linked data: The case for policy change. J. Am. Heart Assoc. 2020, 9, e016851. [Google Scholar] [CrossRef]
- Francis, J.R.; Fairhurst, H.; Hardefeldt, H.; Brown, S.; Ryan, C.; Brown, K.; Smith, G.; Baartz, R.; Horton, A.; Whalley, G.; et al. Hyperendemic rheumatic heart disease in a remote Australian town identified by echocardiographic screening. Med. J. Aust. 2020, 213, 118–123. [Google Scholar] [CrossRef]
- Romani, L.; Steer, A.C.; Whitfeld, M.J.; Kaldor, J.M. Prevalence of scabies and impetigo worldwide: A systematic review. Lancet Infect. Dis. 2015, 15, 960–967. [Google Scholar] [CrossRef]
- Lynskey, N.N.; Jauneikaite, E.; Li, H.K.; Zhi, X.; Turner, C.E.; Mosavie, M.; Pearson, M.; Asai, M.; Lobkowicz, L.; Chow, J.Y.; et al. Emergence of dominant toxigenic M1T1 Streptococcus pyogenes clone during increased scarlet fever activity in England: A population-based molecular epidemiological study. Lancet Infect. Dis. 2019, 19, 1209–1218. [Google Scholar] [CrossRef]
- Towers, R.J.; Carapetis, J.R.; Currie, B.J.; Davies, M.R.; Walker, M.J.; Dougan, G.; Giffard, P.M. Extensive diversity of Streptococcus pyogenes in a remote human population reflects global-scale transmission rather than localised diversification. PLoS ONE 2013, 8, e73851. [Google Scholar] [CrossRef] [PubMed]
- Francis, J.R.; Gargan, C.; Remenyi, B.; Ralph, A.P.; Draper, A.; Holt, D.; Krause, V.; Hardie, K. A cluster of acute rheumatic fever cases among Aboriginal Australians in a remote community with high baseline incidence. Aust. N. Z. J. Public Health 2019, 43, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, N.; Ho, T.K.; McGregor, R.; Davies, M.R.; Williamson, D.A.; Gurney, J.K.; Smeesters, P.R.; Baker, M.G.; Moreland, N.J. Serological profiling of group A Streptococcus infections in acute rheumatic fever. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, 73, 2322–2325. [Google Scholar] [CrossRef]
- Marshall, C.S.; Cheng, A.C.; Markey, P.G.; Towers, R.J.; Richardson, L.J.; Fagan, P.K.; Scott, L.; Krause, V.L.; Currie, B.J. Acute post-streptococcal glomerulonephritis in the Northern Territory of Australia: A review of 16 years data and comparison with the literature. Am. J. Trop. Med. Hyg. 2011, 85, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Worthing, K.A.; Lacey, J.A.; Price, D.J.; McIntyre, L.; Steer, A.C.; Tong, S.Y.C.; Davies, M.R. Systematic review of group A streptococcal emm types associated with acute post-streptococcal glomerulonephritis. Am. J. Trop. Med. Hyg. 2019, 100, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Carapetis, J.R.; Jacoby, P.; Carville, K.; Ang, S.J.; Curtis, N.; Andrews, R. Effectiveness of clindamycin and intravenous immunoglobulin, and risk of disease in contacts, in invasive group A streptococcal infections. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2014, 59, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Worthing, K.A.; Werno, A.; Pink, R.; McIntyre, L.; Carter, G.P.; Williamson, D.A.; Davies, M.R. Biphasic outbreak of invasive group A Streptococcus disease in eldercare facility, New Zealand. Emerg. Infect. Dis. 2020, 26, 841–848. [Google Scholar] [CrossRef]
- Boyd, R.; Patel, M.; Currie, B.J.; Holt, D.C.; Harris, T.; Krause, V. High burden of invasive group A streptococcal disease in the Northern Territory of Australia. Epidemiol. Infect. 2016, 144, 1018–1027. [Google Scholar] [CrossRef]
- Middleton, B.; Morris, P.; Carapetis, J. Invasive group A streptococcal infection in the Northern Territory, Australia: Case report and review of the literature. J. Paediatr. Child Health 2014, 50, 869–873. [Google Scholar] [CrossRef]
- Walker, T.M.; Lalor, M.K.; Broda, A.; Saldana Ortega, L.; Morgan, M.; Parker, L.; Churchill, S.; Bennett, K.; Golubchik, T.; Giess, A.P.; et al. Assessment of Mycobacterium tuberculosis transmission in Oxfordshire, UK, 2007–2012, with whole pathogen genome sequences: An observational study. Lancet Respir. Med. 2014, 2, 285–292. [Google Scholar] [CrossRef]
- Gorrie, C.L.; Gonçalves Da Silva, A.; Ingle, D.J.; Higgs, C.; Seemann, T.; Stinear, T.P.; Williamson, D.A.; Kwong, J.C.; Grayson, M.L.; Sherry, N.L.; et al. Key parameters for genomics-based real-time detection and tracking of multidrug-resistant bacteria: A systematic analysis. Lancet Microbe 2021, 2, e575–e583. [Google Scholar] [CrossRef]
- Meehan, C.J.; Goig, G.A.; Kohl, T.A.; Verboven, L.; Dippenaar, A.; Ezewudo, M.; Farhat, M.R.; Guthrie, J.L.; Laukens, K.; Miotto, P.; et al. Whole genome sequencing of Mycobacterium tuberculosis: Current standards and open issues. Nat. Rev. Microbiol. 2019, 17, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Meredith, L.W.; Hamilton, W.L.; Warne, B.; Houldcroft, C.J.; Hosmillo, M.; Jahun, A.S.; Curran, M.D.; Parmar, S.; Caller, L.G.; Caddy, S.L.; et al. Rapid implementation of SARS-CoV-2 sequencing to investigate cases of health-care associated COVID-19: A prospective genomic surveillance study. Lancet Infect. Dis. 2020, 20, 1263–1272. [Google Scholar] [CrossRef]
- Bush, S.J.; Foster, D.; Eyre, D.W.; Clark, E.L.; De Maio, N.; Shaw, L.P.; Stoesser, N.; Peto, T.E.A.; Crook, D.W.; Walker, A.S. Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism-calling pipelines. Gigascience 2020, 9, giaa007. [Google Scholar] [CrossRef] [PubMed]
- Meumann, E.M.; Kaestli, M.; Mayo, M.; Ward, L.; Rachlin, A.; Webb, J.R.; Kleinecke, M.; Price, E.P.; Currie, B.J. Emergence of Burkholderia pseudomallei sequence type 562, northern Australia. Emerg. Infect. Dis. 2021, 27, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Alikhan, N.F.; Mohamed, K.; Fan, Y.; Agama Study, G.; Achtman, M. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Stevens, E.L.; Carleton, H.A.; Beal, J.; Tillman, G.E.; Lindsey, R.L.; Lauer, A.C.; Pightling, A.; Jarvis, K.G.; Ottesen, A.; Ramachandran, P.; et al. The use of whole-genome sequencing by the Federal Interagency Collaboration for Genomics for Food and Feed Safety in the United States. J. Food Prot. 2022, 85, 755–772. [Google Scholar] [CrossRef] [PubMed]
- Timme, R.E.; Lafon, P.C.; Balkey, M.; Adams, J.K.; Wagner, D.; Carleton, H.; Strain, E.; Hoffmann, M.; Sabol, A.; Rand, H.; et al. Gen-FS coordinated proficiency test data for genomic foodborne pathogen surveillance, 2017 and 2018 exercises. Sci. Data 2020, 7, 402. [Google Scholar] [CrossRef]
- Lees, J.A.; Harris, S.R.; Tonkin-Hill, G.; Gladstone, R.A.; Lo, S.W.; Weiser, J.N.; Corander, J.; Bentley, S.D.; Croucher, N.J. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res. 2019, 29, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Higgs, C.; Sherry, N.L.; Seemann, T.; Horan, K.; Walpola, H.; Kinsella, P.; Bond, K.; Williamson, D.A.; Marshall, C.; Kwong, J.C.; et al. Optimising genomic approaches for identifying vancomycin-resistant Enterococcus faecium transmission in healthcare settings. Nat. Commun. 2022, 13, 509. [Google Scholar] [CrossRef]
- Kohl, T.A.; Harmsen, D.; Rothganger, J.; Walker, T.; Diel, R.; Niemann, S. Harmonized genome wide typing of tubercle bacilli using a web-based gene-by-gene nomenclature system. EBioMedicine 2018, 34, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Gardy, J.L.; Johnston, J.C.; Ho Sui, S.J.; Cook, V.J.; Shah, L.; Brodkin, E.; Rempel, S.; Moore, R.; Zhao, Y.; Holt, R.; et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N. Engl. J. Med. 2011, 364, 730–739. [Google Scholar] [CrossRef]
- Walker, T.M.; Ip, C.L.; Harrell, R.H.; Evans, J.T.; Kapatai, G.; Dedicoat, M.J.; Eyre, D.W.; Wilson, D.J.; Hawkey, P.M.; Crook, D.W.; et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: A retrospective observational study. Lancet Infect. Dis. 2013, 13, 137–146. [Google Scholar] [CrossRef]
- Gee, J.E.; Bower, W.A.; Kunkel, A.; Petras, J.; Gettings, J.; Bye, M.; Firestone, M.; Elrod, M.G.; Liu, L.; Blaney, D.D.; et al. Multistate outbreak of melioidosis associated with imported aromatherapy spray. N. Engl. J. Med. 2022, 386, 861–868. [Google Scholar] [CrossRef] [PubMed]
- McRobb, E.; Sarovich, D.S.; Price, E.P.; Kaestli, M.; Mayo, M.; Keim, P.; Currie, B.J. Tracing melioidosis back to the source: Using whole-genome sequencing to investigate an outbreak originating from a contaminated domestic water supply. J. Clin. Microbiol. 2015, 53, 1144–1148. [Google Scholar] [CrossRef]
- Rachlin, A.; Kleinecke, M.; Kaestli, M.; Mayo, M.; Webb, J.R.; Rigas, V.; Shilton, C.; Benedict, S.; Dyrting, K.; Currie, B.J. A cluster of melioidosis infections in hatchling saltwater crocodiles (Crocodylus porosus) resolved using genome-wide comparison of a common north Australian strain of Burkholderia pseudomallei. Microb. Genom. 2019, 5, e000288. [Google Scholar] [CrossRef] [PubMed]
- Rachlin, A.; Shilton, C.; Webb, J.R.; Mayo, M.; Kaestli, M.; Kleinecke, M.; Rigas, V.; Benedict, S.; Gurry, I.; Currie, B.J. Melioidosis fatalities in captive slender-tailed meerkats (Suricata suricatta): Combining epidemiology, pathology and whole-genome sequencing supports variable mechanisms of transmission with one health implications. BMC Vet. Res. 2019, 15, 458. [Google Scholar] [CrossRef]
- Rambaut, A. How to Read a Phylogenetic Tree. Available online: http://epidemic.bio.ed.ac.uk/how_to_read_a_phylogeny (accessed on 8 February 2017).
- Baines, S.L.; da Silva, A.G.; Carter, G.P.; Jennison, A.; Rathnayake, I.; Graham, R.M.; Sintchenko, V.; Wang, Q.; Rockett, R.J.; Timms, V.J.; et al. Complete microbial genomes for public health in Australia and the Southwest Pacific. Microb. Genom. 2020, 6, mgen000471. [Google Scholar] [CrossRef] [PubMed]
- Coll, F.; McNerney, R.; Guerra-Assuncao, J.A.; Glynn, J.R.; Perdigao, J.; Viveiros, M.; Portugal, I.; Pain, A.; Martin, N.; Clark, T.G. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat. Commun. 2014, 5, 4812. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Holmes, E.C.; O’Toole, A.; Hill, V.; McCrone, J.T.; Ruis, C.; du Plessis, L.; Pybus, O.G. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat. Microbiol. 2020, 5, 1403–1407. [Google Scholar] [CrossRef]
- Bradley, P.; den Bakker, H.C.; Rocha, E.P.C.; McVean, G.; Iqbal, Z. Ultrafast search of all deposited bacterial and viral genomic data. Nat. Biotechnol. 2019, 37, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Ondov, B.D.; Treangen, T.J.; Melsted, P.; Mallonee, A.B.; Bergman, N.H.; Koren, S.; Phillippy, A.M. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016, 17, 132. [Google Scholar] [CrossRef]
- Yang, Z.; Rannala, B. Molecular phylogenetics: Principles and practice. Nat. Rev. Genet. 2012, 13, 303–314. [Google Scholar] [CrossRef]
- Efron, B.; Halloran, E.; Holmes, S. Bootstrap confidence levels for phylogenetic trees. Proc. Natl. Acad. Sci. USA 1996, 93, 13429–13434. [Google Scholar] [CrossRef]
- Bouckaert, R.; Heled, J.; Kuhnert, D.; Vaughan, T.; Wu, C.H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef]
- Frost, S.D.; Volz, E.M. Viral phylodynamics and the search for an ‘effective number of infections’. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 1879–1890. [Google Scholar] [CrossRef]
- Stadler, T.; Kouyos, R.; von Wyl, V.; Yerly, S.; Boni, J.; Burgisser, P.; Klimkait, T.; Joos, B.; Rieder, P.; Xie, D.; et al. Estimating the basic reproductive number from viral sequence data. Mol. Biol. Evol. 2012, 29, 347–357. [Google Scholar] [CrossRef]
- Lemey, P.; Rambaut, A.; Drummond, A.J.; Suchard, M.A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 2009, 5, e1000520. [Google Scholar] [CrossRef]
- Lemey, P.; Rambaut, A.; Welch, J.J.; Suchard, M.A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 2010, 27, 1877–1885. [Google Scholar] [CrossRef]
- Ingle, D.J.; Howden, B.P.; Duchene, S. Development of Phylodynamic Methods for Bacterial Pathogens. Trends Microbiol. 2021, 29, 788–797. [Google Scholar] [CrossRef]
- Pecerska, J.; Kuhnert, D.; Meehan, C.J.; Coscolla, M.; de Jong, B.C.; Gagneux, S.; Stadler, T. Quantifying transmission fitness costs of multi-drug resistant tuberculosis. Epidemics 2021, 36, 100471. [Google Scholar] [CrossRef] [PubMed]
- Alter, H.J.; Blumberg, B.S. Further studies on a “new” human isoprecipitin system (Australia antigen). Blood 1966, 27, 297–309. [Google Scholar] [CrossRef]
- Blumberg, B.S.; Alter, H.J.; Visnich, S. A “New” antigen in leukemia sera. JAMA 1965, 191, 541–546. [Google Scholar] [CrossRef]
- Davies, J.; Littlejohn, M.; Locarnini, S.A.; Whiting, S.; Hajkowicz, K.; Cowie, B.C.; Bowden, D.S.; Tong, S.Y.; Davis, J.S. Molecular epidemiology of hepatitis B in the Indigenous people of northern Australia. J. Gastroenterol. Hepatol. 2013, 28, 1234–1241. [Google Scholar] [CrossRef]
- Yuen, L.K.W.; Littlejohn, M.; Duchene, S.; Edwards, R.; Bukulatjpi, S.; Binks, P.; Jackson, K.; Davies, J.; Davis, J.S.; Tong, S.Y.C.; et al. Tracing ancient human migrations into Sahul using hepatitis B virus genomes. Mol. Biol. Evol. 2019, 36, 942–954. [Google Scholar] [CrossRef]
- Dexter, C.; Murray, G.L.; Paulsen, I.T.; Peleg, A.Y. Community-acquired Acinetobacter baumannii: Clinical characteristics, epidemiology and pathogenesis. Expert Rev. Anti-Infect. Ther. 2015, 13, 567–573. [Google Scholar] [CrossRef]
- Eveillard, M.; Kempf, M.; Belmonte, O.; Pailhories, H.; Joly-Guillou, M.L. Reservoirs of Acinetobacter baumannii outside the hospital and potential involvement in emerging human community-acquired infections. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2013, 17, e802–e805. [Google Scholar] [CrossRef]
- Pailhories, H.; Belmonte, O.; Kempf, M.; Lemarie, C.; Cuziat, J.; Quinqueneau, C.; Ramont, C.; Joly-Guillou, M.L.; Eveillard, M. Diversity of Acinetobacter baumannii strains isolated in humans, companion animals, and the environment in Reunion Island: An exploratory study. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2015, 37, 64–69. [Google Scholar] [CrossRef]
- Rafei, R.; Hamze, M.; Pailhories, H.; Eveillard, M.; Marsollier, L.; Joly-Guillou, M.L.; Dabboussi, F.; Kempf, M. Extrahuman epidemiology of Acinetobacter baumannii in Lebanon. Appl. Environ. Microbiol. 2015, 81, 2359–2367. [Google Scholar] [CrossRef]
- Pearson, T.; Giffard, P.; Beckstrom-Sternberg, S.; Auerbach, R.; Hornstra, H.; Tuanyok, A.; Price, E.P.; Glass, M.B.; Leadem, B.; Beckstrom-Sternberg, J.S.; et al. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer. BMC Biol. 2009, 7, 78. [Google Scholar] [CrossRef]
- Chewapreecha, C.; Holden, M.T.; Vehkala, M.; Valimaki, N.; Yang, Z.; Harris, S.R.; Mather, A.E.; Tuanyok, A.; De Smet, B.; Le Hello, S.; et al. Global and regional dissemination and evolution of Burkholderia pseudomallei. Nat. Microbiol. 2017, 2, 16263. [Google Scholar] [CrossRef]
- Sarovich, D.S.; Garin, B.; De Smet, B.; Kaestli, M.; Mayo, M.; Vandamme, P.; Jacobs, J.; Lompo, P.; Tahita, M.C.; Tinto, H.; et al. Phylogenomic analysis reveals an Asian origin for African Burkholderia pseudomallei and further supports melioidosis endemicity in Africa. mSphere 2016, 1, e00089-15. [Google Scholar] [CrossRef]
- Cossaboom, C.M.; Marinova-Petkova, A.; Strysko, J.; Rodriguez, G.; Maness, T.; Ocampo, J.; Gee, J.E.; Elrod, M.G.; Gulvik, C.A.; Liu, L.; et al. Melioidosis in a resident of Texas with no recent travel history, United States. Emerg. Infect. Dis. 2020, 26, 1295–1299. [Google Scholar] [CrossRef]
- McDermott, P.F.; Tyson, G.H.; Kabera, C.; Chen, Y.; Li, C.; Folster, J.P.; Ayers, S.L.; Lam, C.; Tate, H.P.; Zhao, S. Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrob. Agents Chemother. 2016, 60, 5515–5520. [Google Scholar] [CrossRef]
- Ellington, M.J.; Ekelund, O.; Aarestrup, F.M.; Canton, R.; Doumith, M.; Giske, C.; Grundman, H.; Hasman, H.; Holden, M.T.G.; Hopkins, K.L.; et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: Report from the EUCAST Subcommittee. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2017, 23, 2–22. [Google Scholar] [CrossRef]
- Gordon, N.C.; Price, J.R.; Cole, K.; Everitt, R.; Morgan, M.; Finney, J.; Kearns, A.M.; Pichon, B.; Young, B.; Wilson, D.J.; et al. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J. Clin. Microbiol. 2014, 52, 1182–1191. [Google Scholar] [CrossRef]
- Eyre, D.W.; De Silva, D.; Cole, K.; Peters, J.; Cole, M.J.; Grad, Y.H.; Demczuk, W.; Martin, I.; Mulvey, M.R.; Crook, D.W.; et al. WGS to predict antibiotic MICs for Neisseria gonorrhoeae. J. Antimicrob. Chemother. 2017, 72, 1937–1947. [Google Scholar] [CrossRef]
- CRyPTIC Consortium and the 100,000 Genomes Project; Allix-Beguec, C.; Arandjelovic, I.; Bi, L.; Beckert, P.; Bonnet, M.; Bradley, P.; Cabibbe, A.M.; Cancino-Munoz, I.; Caulfield, M.J.; et al. Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N. Engl. J. Med. 2018, 379, 1403–1415. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Bortolaia, V.; Tate, H.; Tyson, G.H.; Aarestrup, F.M.; McDermott, P.F. Using genomics to track global antimicrobial resistance. Front. Public Health 2019, 7, 242. [Google Scholar] [CrossRef]
- World Health Organization. Catalogue of Mutations in Mycobacterium Tuberculosis Complex and Their Association with Drug Resistance. Available online: https://www.who.int/publications/i/item/9789240028173 (accessed on 9 June 2022).
- Kwong, J.C.; Lane, C.R.; Romanes, F.; Goncalves da Silva, A.; Easton, M.; Cronin, K.; Waters, M.J.; Tomita, T.; Stevens, K.; Schultz, M.B.; et al. Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: Evidence from a complex multi-institutional KPC outbreak. PeerJ 2018, 6, e4210. [Google Scholar] [CrossRef]
- Williamson, D.; Ingle, D.; Howden, B. Extensively drug-resistant shigellosis in Australia among men who have sex with men. N. Engl. J. Med. 2019, 381, 2477–2479. [Google Scholar] [CrossRef]
- Trembizki, E.; Jennison, A.V.; Buckley, C.; Bright, A.; Holds, J.; Ward, A.; Pitt, J.; Pendle, S.; Baird, R.; Freeman, K.; et al. Enhanced molecular surveillance in response to the detection of extensively resistant gonorrhoea in Australia. J. Antimicrob. Chemother. 2021, 76, 270–271. [Google Scholar] [CrossRef]
- Guglielmino, C.J.D.; Kakkanat, A.; Forde, B.M.; Rubenach, S.; Merone, L.; Stafford, R.; Graham, R.M.A.; Beatson, S.A.; Jennison, A.V. Outbreak of multi-drug-resistant (MDR) Shigella flexneri in northern Australia due to an endemic regional clone acquiring an IncFII plasmid. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2021, 40, 279–286. [Google Scholar] [CrossRef]
- Udo, E.E.; Pearman, J.W.; Grubb, W.B. Genetic analysis of community isolates of methicillin-resistant Staphylococcus aureus in Western Australia. J. Hosp. Infect. 1993, 25, 97–108. [Google Scholar] [CrossRef]
- Maguire, G.P.; Arthur, A.D.; Boustead, P.J.; Dwyer, B.; Currie, B.J. Emerging epidemic of community-acquired methicillin-resistant Staphylococcus aureus infection in the Northern Territory. Med. J. Aust. 1996, 164, 721–723. [Google Scholar] [CrossRef]
- Turnidge, J.; Coombs, G.; Daley, D.; Nimmo, G.R.; Antimicrobial, A.G.O.; Resistance (AGAR) Participants 2000–2014. MRSA: A Tale of Three Types. 15 Years of Survey Data from AGAR. Sydney: ACSQHC. Available online: https://www.safetyandquality.gov.au/sites/default/files/2020-09/mrsa_-_a_tale_of_three_types.pdf (accessed on 25 July 2021).
- Tong, S.Y.; Bishop, E.J.; Lilliebridge, R.A.; Cheng, A.C.; Spasova-Penkova, Z.; Holt, D.C.; Giffard, P.M.; McDonald, M.I.; Currie, B.J.; Boutlis, C.S. Community-associated strains of methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus in Indigenous northern Australia: Epidemiology and outcomes. J. Infect. Dis. 2009, 199, 1461–1470. [Google Scholar] [CrossRef]
- Stinear, T.P.; Holt, K.E.; Chua, K.; Stepnell, J.; Tuck, K.L.; Coombs, G.; Harrison, P.F.; Seemann, T.; Howden, B.P. Adaptive change inferred from genomic population analysis of the ST93 epidemic clone of community-associated methicillin-resistant Staphylococcus aureus. Genome Biol. Evol. 2014, 6, 366–378. [Google Scholar] [CrossRef]
- van Hal, S.J.; Steinig, E.J.; Andersson, P.; Holden, M.T.G.; Harris, S.R.; Nimmo, G.R.; Williamson, D.A.; Heffernan, H.; Ritchie, S.R.; Kearns, A.M.; et al. Global scale dissemination of ST93: A divergent Staphylococcus aureus epidemic lineage that has recently emerged from remote northern Australia. Front. Microbiol. 2018, 9, 1453. [Google Scholar] [CrossRef]
- Whiley, D.M.; Trembizki, E.; Buckley, C.; Freeman, K.; Baird, R.W.; Beaman, M.; Chen, M.; Donovan, B.; Kundu, R.L.; Fairley, C.K.; et al. Molecular Antimicrobial Resistance Surveillance for Neisseria gonorrhoeae, Northern Territory, Australia. Emerg. Infect. Dis. 2017, 23, 1478–1485. [Google Scholar] [CrossRef]
- Miller, R.R.; Montoya, V.; Gardy, J.L.; Patrick, D.M.; Tang, P. Metagenomics for pathogen detection in public health. Genome Med. 2013, 5, 81. [Google Scholar] [CrossRef]
- Chiu, C.Y.; Miller, S.A. Clinical metagenomics. Nat. Rev. Genet. 2019, 20, 341–355. [Google Scholar] [CrossRef]
- Graham, R.M.A.; Donohue, S.; McMahon, J.; Jennison, A.V. Detection of spotted fever group Rickettsia DNA by deep sequencing. Emerg. Infect. Dis. 2017, 23, 1911–1913. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A new coronavirus associated with human respiratory disease in China. Nature 2020, 579, 265–269. [Google Scholar] [CrossRef]
- Australian Government Department of Health. Japanese Encephalitis Virus (JEV). Available online: https://www.health.gov.au/health-alerts/japanese-encephalitis-virus-jev/about (accessed on 5 June 2022).
- Furuya-Kanamori, L.; Gyawali, N.; Mills, D.J.; Hugo, L.E.; Devine, G.J.; Lau, C.L. The emergence of Japanese encephalitis in Australia and the implications for a vaccination strategy. Trop. Med. Infect. Dis. 2022, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- Gibson, J. Health Authorities Issue Mosquito Warning after Person Dies on Tiwi Islands. Available online: https://www.abc.net.au/news/2021-03-20/nt-mosquito-borne-virus-warning-following-tiwi-islands-death/100019152 (accessed on 24 October 2021).
- Taouk, M.L.; Taiaroa, G.; Pasricha, S.; Herman, S.; Chow, E.P.F.; Azzatto, F.; Zhang, B.; Sia, C.M.; Duchene, S.; Lee, A.; et al. Characterisation of Treponema pallidum lineages within the contemporary syphilis outbreak in Australia: A genomic epidemiological analysis. Lancet Microbe 2022, 3, e417–e426. [Google Scholar] [CrossRef]
- Beale, M.A.; Marks, M.; Sahi, S.K.; Tantalo, L.C.; Nori, A.V.; French, P.; Lukehart, S.A.; Marra, C.M.; Thomson, N.R. Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages. Nat. Commun. 2019, 10, 3255. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Smajs, D.; Hu, Y.; Ke, W.; Pospisilova, P.; Hawley, K.L.; Caimano, M.J.; Radolf, J.D.; Sena, A.; Tucker, J.D.; et al. Analysis of Treponema pallidum strains from China using improved methods for whole-genome sequencing from primary syphilis chancres. J. Infect. Dis. 2021, 223, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Nogrady, B. Sixth child dies from congenital syphilis in northern Australia. BMJ 2018, 360, k1272. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Genomic Surveillance Strategy for Pathogens with Pandemic and Epidemic Potential. Available online: https://www.who.int/initiatives/genomic-surveillance-strategy (accessed on 24 April 2022).
- Gargis, A.S.; Kalman, L.; Lubin, I.M. Assuring the quality of next-generation sequencing in clinical microbiology and public health laboratories. J. Clin. Microbiol. 2016, 54, 2857–2865. [Google Scholar] [CrossRef] [PubMed]
- Luheshi, L.; Raza, S.; Moorthie, S.; Hall, A.; Blackburn, L.; Rands, C.; Sagoo, G.; Chowdhury, S.; Kroese, M.; Burton, H. Pathogen Genomics into Practice. Available online: http://www.phgfoundation.org/file/16848/ (accessed on 9 February 2017).
- Griffiths, E.J.; Timme, R.E.; Mendes, C.I.; Page, A.J.; Alikhan, N.F.; Fornika, D.; Maguire, F.; Campos, J.; Park, D.; Olawoye, I.B.; et al. Future-proofing and maximizing the utility of metadata: The PHA4GE SARS-CoV-2 contextual data specification package. Gigascience 2022, 11, giac003. [Google Scholar] [CrossRef]
- Allard, M.W.; Strain, E.; Melka, D.; Bunning, K.; Musser, S.M.; Brown, E.W.; Timme, R. Practical value of food pathogen traceability through building a whole-genome sequencing network and database. J. Clin. Microbiol. 2016, 54, 1975–1983. [Google Scholar] [CrossRef]
- Gargis, A.S.; Kalman, L.; Berry, M.W.; Bick, D.P.; Dimmock, D.P.; Hambuch, T.; Lu, F.; Lyon, E.; Voelkerding, K.V.; Zehnbauer, B.A.; et al. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat. Biotechnol. 2012, 30, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Gargis, A.S.; Kalman, L.; Bick, D.P.; da Silva, C.; Dimmock, D.P.; Funke, B.H.; Gowrisankar, S.; Hegde, M.R.; Kulkarni, S.; Mason, C.E.; et al. Good laboratory practice for clinical next-generation sequencing informatics pipelines. Nat. Biotechnol. 2015, 33, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.; da Silva, A.G.; Jennison, A.V.; Williamson, D.A.; Howden, B.P.; Seemann, T. AusTrakka: Fast-tracking nationalized genomics surveillance in response to the COVID-19 pandemic. Nat. Commun. 2022, 13, 865. [Google Scholar] [CrossRef] [PubMed]
- Ferdinand, A.S.; Kelaher, M.; Lane, C.R.; da Silva, A.G.; Sherry, N.L.; Ballard, S.A.; Andersson, P.; Hoang, T.; Denholm, J.T.; Easton, M.; et al. An implementation science approach to evaluating pathogen whole genome sequencing in public health. Genome Med. 2021, 13, 121. [Google Scholar] [CrossRef] [PubMed]
- Mook, P.; Gardiner, D.; Verlander, N.Q.; McCormick, J.; Usdin, M.; Crook, P.; Jenkins, C.; Dallman, T.J. Operational burden of implementing Salmonella Enteritidis and Typhimurium cluster detection using whole genome sequencing surveillance data in England: A retrospective assessment. Epidemiol. Infect. 2018, 146, 1452–1460. [Google Scholar] [CrossRef] [PubMed]
- Van Goethem, N.; Struelens, M.J.; De Keersmaecker, S.C.J.; Roosens, N.H.C.; Robert, A.; Quoilin, S.; Van Oyen, H.; Devleesschauwer, B. Perceived utility and feasibility of pathogen genomics for public health practice: A survey among public health professionals working in the field of infectious diseases, Belgium, 2019. BMC Public Health 2020, 20, 1318. [Google Scholar] [CrossRef]
- Van Goethem, N.; Descamps, T.; Devleesschauwer, B.; Roosens, N.H.C.; Boon, N.A.M.; Van Oyen, H.; Robert, A. Status and potential of bacterial genomics for public health practice: A scoping review. Implement Sci. 2019, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Crisan, A.; Gardy, J.L.; Munzner, T. A systematic method for surveying data visualizations and a resulting genomic epidemiology visualization typology: GEViT. Bioinformatics 2019, 35, 1668–1676. [Google Scholar] [CrossRef]
- Gordon, L.G.; Elliott, T.M.; Forde, B.; Mitchell, B.; Russo, P.L.; Paterson, D.L.; Harris, P.N.A. Budget impact analysis of routinely using whole-genomic sequencing of six multidrug-resistant bacterial pathogens in Queensland, Australia. BMJ Open 2021, 11, e041968. [Google Scholar] [CrossRef] [PubMed]
- Elliott, T.M.; Hare, N.; Hajkowicz, K.; Hurst, T.; Doidge, M.; Harris, P.N.; Gordon, L.G. Evaluating the economic effects of genomic sequencing of pathogens to prioritise hospital patients competing for isolation beds. Aust. Health Rev. 2021, 45, 59–65. [Google Scholar] [CrossRef]
- Degeling, C.; Carter, S.M.; van Oijen, A.M.; McAnulty, J.; Sintchenko, V.; Braunack-Mayer, A.; Yarwood, T.; Johnson, J.; Gilbert, G.L. Community perspectives on the benefits and risks of technologically enhanced communicable disease surveillance systems: A report on four community juries. BMC Med. Ethics 2020, 21, 31. [Google Scholar] [CrossRef]
- Coltart, C.E.M.; Hoppe, A.; Parker, M.; Dawson, L.; Amon, J.J.; Simwinga, M.; Geller, G.; Henderson, G.; Laeyendecker, O.; Tucker, J.D.; et al. Ethical considerations in global HIV phylogenetic research. Lancet HIV 2018, 5, e656–e666. [Google Scholar] [CrossRef]
- Jackson, C.; Gardy, J.L.; Shadiloo, H.C.; Silva, D.S. Trust and the ethical challenges in the use of whole genome sequencing for tuberculosis surveillance: A qualitative study of stakeholder perspectives. BMC Med. Ethics 2019, 20, 43. [Google Scholar] [CrossRef]
- Johnson, S.B.; Parker, M. The ethics of sequencing infectious disease pathogens for clinical and public health. Nat. Rev. Genet. 2019, 20, 313–315. [Google Scholar] [CrossRef]
- Global Indigenous Data Alliance. CARE Principles for Indigenous Data Governance. Available online: https://www.gida-global.org/care (accessed on 18 July 2022).
- Ferdinand, A.S.; Hocking, J.S.; Denholm, J.T.; Howden, B.P.; Williamson, D.A. Patient-focused pathogen genetic counselling-has the time come? Genome Med. 2021, 13, 178. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meumann, E.M.; Krause, V.L.; Baird, R.; Currie, B.J. Using Genomics to Understand the Epidemiology of Infectious Diseases in the Northern Territory of Australia. Trop. Med. Infect. Dis. 2022, 7, 181. https://doi.org/10.3390/tropicalmed7080181
Meumann EM, Krause VL, Baird R, Currie BJ. Using Genomics to Understand the Epidemiology of Infectious Diseases in the Northern Territory of Australia. Tropical Medicine and Infectious Disease. 2022; 7(8):181. https://doi.org/10.3390/tropicalmed7080181
Chicago/Turabian StyleMeumann, Ella M., Vicki L. Krause, Robert Baird, and Bart J. Currie. 2022. "Using Genomics to Understand the Epidemiology of Infectious Diseases in the Northern Territory of Australia" Tropical Medicine and Infectious Disease 7, no. 8: 181. https://doi.org/10.3390/tropicalmed7080181
APA StyleMeumann, E. M., Krause, V. L., Baird, R., & Currie, B. J. (2022). Using Genomics to Understand the Epidemiology of Infectious Diseases in the Northern Territory of Australia. Tropical Medicine and Infectious Disease, 7(8), 181. https://doi.org/10.3390/tropicalmed7080181