Predicting HIV Status among Men Who Have Sex with Men in Bulawayo & Harare, Zimbabwe Using Bio-Behavioural Data, Recurrent Neural Networks, and Machine Learning Techniques
Abstract
:1. Introduction
- Apply RNNs and machine learning models to predict HIV status among MSM.
- Compare the performance of RNNs and machine learning models in predicting HIV status among MSM.
- Propose recommendations for future research directions on applying deep learning and machine learning models in predicting HIV status among MSM.
2. Methodology
2.1. Data Sources and Ethical Considerations
2.2. Data Preprocessing
2.3. HIV Status Prediction Models
2.3.1. Gaussian Naïve Bayes
2.3.2. Support Vector Machines
2.3.3. Bagging Classifier
2.3.4. Gradient Boosting Classifier
2.3.5. Recurrent Neural Network
2.4. Performance Evaluation Standards
3. Results
3.1. Policy Recommendations on the Application of Deep Learning and Machine Learning in Predicting HIV among MSM
3.2. Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNAIDS. FACT SHEET. 2019. Available online: https://www.unaids.org/sites/default/files/media_asset/2019-UNAIDS-data_en.pdf (accessed on 19 May 2022).
- WHO. Key Facts on Global HIV Epidemic and Progress in 2010; WHO: Geneva, Switzerland, 2011. Available online: https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/hiv/strategic-information/hiv-data-and-statistics. (accessed on 19 May 2022).
- Nguyen, L.H.; Tran, B.X.; Rocha, L.E.; Nguyen HL, T.; Yang, C.; Latkin, C.A.; Thorson, A.; Strömdahl, S. A Systematic Review of eHealth Interventions Addressing HIV/STI Prevention among Men Who Have Sex with Men. AIDS Behav. 2019, 23, 2253–2272. Available online: https://link.springer.com/article/10.1007/s10461-019-02626-1 (accessed on 10 November 2021). [CrossRef] [PubMed]
- Musuka, G.; Dzinamarira, T. Targeting those left behind in Zimbabwe’s HIV response: A call for decriminalisation of key populations to achieve 95-95-95 targets rapidly. S. Afr. Med. J. 2021, 111, 385. Available online: http://www.samj.org.za/index.php/samj/article/view/13287 (accessed on 21 November 2021). [CrossRef] [PubMed]
- ICAP at Columbia University. HIV and STI Biobehavioral Survey among Men Who Have Sex with Men, Transgender Women, and Genderqueer Individuals in Zimbabwe—Final Report; ICAP at Columbia University: New York, NY, USA, 2020; Available online: https://icap.columbia.edu/wp-content/uploads/Zimbabwe-IBBS-Report_Final_17Aug20.pdf (accessed on 19 May 2022).
- Hess, K.L.; Crepaz, N.; Rose, C.; Purcell, D.; Paz-Bailey, G. Trends in Sexual Behavior among Men Who have Sex with Men (MSM) in High-Income Countries, 1990–2013: A Systematic Review. AIDS Behav. 2017, 21, 2811–2834. Available online: https://link.springer.com/article/10.1007/s10461-017-1799-1 (accessed on 10 November 2021). [CrossRef] [PubMed]
- Dzinamarira, T.; Mulindabigwi, A.; Mashamba-Thompson, T.P. Co-creation of a health education program for improving the uptake of HIV self-testing among men in Rwanda: Nominal group technique. Heliyon 2020, 6, e05378. [Google Scholar] [CrossRef] [PubMed]
- Dzinamarira, T.; Muvunyi, C.M.; Kamanzi, C.; Mashamba-Thompson, T.P. HIV self-testing in Rwanda: Awareness and acceptability among male clinic attendees in Kigali, Rwanda: A cross-sectional survey. Heliyon 2020, 6, e03515. [Google Scholar] [CrossRef] [PubMed]
- Schnall, R.; Travers, J.; Rojas, M.; Carballo-Diéguez, A. eHealth Interventions for HIV Prevention in High-Risk Men Who Have Sex with Men: A Systematic Review. J. Med. Internet Res. 2014, 16, e3393. Available online: https//www.jmir.org/2014/5/e134 (accessed on 10 November 2021). [CrossRef]
- Hirshfield, S.; Downing, M.J., Jr.; Parsons, J.T.; Grov, C.; Gordon, R.J.; Houang, S.T.; Scheinmann, R.; Sullivan, P.S.; Yoon, I.S.; Anderson, I.; et al. Developing a Video-Based eHealth Intervention for HIV-Positive Gay, Bisexual, and Other Men Who Have Sex with Men: Study Protocol for a Randomized Controlled Trial. JMIR Res. Protoc. 2016, 5, e5554. Available online: https//www.researchprotocols.org/2016/2/e125 (accessed on 10 November 2021). [CrossRef]
- Olatosi, B.; Sun, X.; Chen, S.; Zhang, J.; Liang, C.; Weissman, S.; Li, X. Application of machine-learning techniques in classification of HIV medical care status for people living with HIV in South Carolina. AIDS 2021, 35, S19–S28. Available online: https://journals.lww.com/aidsonline/Fulltext/2021/05011/Application_of_machine_learning_techniques_in.3.aspx (accessed on 10 November 2021). [CrossRef]
- Ahlström, M.G.; Ronit, A.; Omland, L.H.; Vedel, S.; Obel, N. Algorithmic prediction of HIV status using nation-wide electronic registry data. EClinicalMedicine 2019, 17, 100203. [Google Scholar] [CrossRef]
- Mutai, C.K.; McSharry, P.E.; Ngaruye, I.; Musabanganji, E. Use of machine learning techniques to identify HIV predictors for screening in sub-Saharan Africa. BMC Med. Res. Methodol. 2021, 21, 1–11. Available online: https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-021-01346-2 (accessed on 10 November 2021). [CrossRef]
- Menza, T.W.; Hughes, J.P.; Celum, C.L.; Golden, M.R. Prediction of HIV Acquisition among Men Who Have Sex with Men. Sex. Transm. Dis. 2009, 36, 547. Available online: https://pubmed.ncbi.nlm.nih.gov/19707108/ (accessed on 1 December 2021). [CrossRef] [PubMed]
- Morin, S.E.; Steward, W.T.; Charlebois, E.D.; Remien, R.H.; Pinkerton, S.D.; Johnson, M.O.; Rotheram-Borus, M.J.; Lightfoot, M.; Goldstein, R.B.; Kittel, L.; et al. Predicting HIV transmission risk among HIV-infected men who have sex with men: Findings from the healthy living project. J. Acquir. Immune. Defic. Syndr. 2005, 40, 226–235. Available online: https://journals.lww.com/jaids/Fulltext/2005/10010/Predicting_HIV_Transmission_Risk_Among.16.aspx (accessed on 13 November 2021). [CrossRef] [PubMed]
- White, E.; Dunn, D.T.; Desai, M.; Gafos, M.; Kirwan, P.; Sullivan, A.K.; McCormack, S. Predictive factors for HIV infection among men who have sex with men and who are seeking PrEP: A secondary analysis of the PROUD trial. Sex. Transm. Infect. 2019, 95, 449–454. Available online: https://sti.bmj.com/content/95/6/449 (accessed on 13 November 2021). [CrossRef]
- Bao, Y.; Medland, N.A.; Fairley, C.K.; Wu, J.; Shang, X.; Chow, E.P.F.; Xu, X.; Ge, Z.; Zhuang, X.; Zhang, L. Predicting the diagnosis of HIV and sexually transmitted infections among men who have sex with men using machine learning approaches. J. Infect. 2021, 82, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Sharaff, A.; Gupta, H. Extra-Tree Classifier with Metaheuristics Approach for Email Classification. Adv. Intell. Syst. Comput. 2019, 924, 189–197. Available online: https://link.springer.com/chapter/10.1007/978-981-13-6861-5_17 (accessed on 17 November 2021).
- Ampomah, E.K.; Qin, Z.; Nyame, G. Evaluation of tree-based ensemble machine learning models in predicting stock price direction of movement. Information 2020, 11, 332. [Google Scholar] [CrossRef]
- Balzer, L.B.; Havlir, D.V.; Kamya, M.R.; Chamie, G.; Charlebois, E.D.; Clark, T.D.; Koss, C.A.; Kwarisiima, D.; Ayieko, J.; Sang, N.; et al. Machine Learning to Identify Persons at High-Risk of Human Immunodeficiency Virus Acquisition in Rural Kenya and Uganda. Clin. Infect. Dis. 2020, 71, 2326–2333. Available online: https://academic.oup.com/cid/article/71/9/2326/5614347 (accessed on 13 November 2021). [CrossRef] [PubMed]
- Xie, W.; Ji, M.; Huang, R.; Hao, T.; Chow, C.Y. Predicting Risks of Machine Translations of Public Health Resources by Developing Interpretable Machine Learning Classifiers. Int. J. Environ. Res. Public Health 2021, 18, 8789. Available online: https://www.mdpi.com/1660-4601/18/16/8789/htm (accessed on 13 November 2021). [CrossRef]
- Mbunge, E.; Simelane, S.; Fashoto, S.G.; Akinnuwesi, B.; Metfula, A.S. Application of deep learning and machine learning models to detect COVID-19 face masks—A review. Sustain. Oper. Comput. 2021, 2, 235–245. [Google Scholar] [CrossRef]
- Akinnuwesi, B.A.; Fashoto, S.G.; Mbunge, E.; Odumabo, A.; Metfula, A.S.; Mashwama, P.; Uzoka, F.-M.; Owolabi, O.; Okpeku, M.; Amusa, O.O. Application of intelligence-based computational techniques for classification and early differential diagnosis of COVID-19 disease. Data Sci. Manag. 2021, 4, 10–18. [Google Scholar] [CrossRef]
- Zareapoor, M.; Shamsolmoali, P. Application of Credit Card Fraud Detection: Based on Bagging Ensemble Classifier. Procedia Comput. Sci. 2015, 48, 679–685. [Google Scholar] [CrossRef] [Green Version]
- Sreng, S.; Maneerat, N.; Hamamoto, K.; Panjaphongse, R. Automated Diabetic Retinopathy Screening System Using Hybrid Simulated Annealing and Ensemble Bagging Classifier. Appl. Sci. 2018, 8, 1198. Available online: https://www.mdpi.com/2076-3417/8/7/1198/htm (accessed on 13 November 2021). [CrossRef]
- Son, J.; Jung, I.; Park, K.; Han, B. Tracking-by-Segmentation with Online Gradient Boosting Decision Tree. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3056–3064. [Google Scholar]
- Chakrabarty, N.; Kundu, T.; Dandapat, S.; Sarkar, A.; Kole, D.K. Flight Arrival Delay Prediction Using Gradient Boosting Classifier. Adv. Intell. Syst. Comput. 2019, 813, 651–659. Available online: https://link.springer.com/chapter/10.1007/978-981-13-1498-8_57 (accessed on 13 November 2021).
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.A.; Malebary, S.J. An Intelligent Approach to Credit Card Fraud Detection Using an Optimized Light Gradient Boosting Machine. IEEE Access 2020, 8, 25579–25587. [Google Scholar] [CrossRef]
- Michelucci, U. Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks; Mirashi, A., Moodie, M., John, C.S., Eds.; Apress: Dübendorf, Switzerland, 2018; 425p. [Google Scholar]
- Clark, K.; Luong, M.-T.; Manning, C.D.; Le, Q.V. Semi-Supervised Sequence Modeling with Cross-View Training. arXiv 2018, arXiv:1809.08370. [Google Scholar]
- Yuan, J.; Wang, H.; Lin, C.; Liu, D.; Yu, D. A Novel GRU-RNN Network Model for Dynamic Path Planning of Mobile Robot. IEEE Access 2019, 7, 15140–15151. [Google Scholar] [CrossRef]
- Wang, G.; Wei, W.; Jiang, J.; Ning, C.; Chen, H.; Huang, J.; Liang, B.; Zang, N.; Liao, Y.; Chen, R.; et al. Application of a long short-term memory neural network: A burgeoning method of deep learning in forecasting HIV incidence in Guangxi, China. Epidemiol. Infect. 2019, 147, e194. Available online: https://www.cambridge.org/core/journals/epidemiology-and-infection/article/application-of-a-long-shortterm-memory-neural-network-a-burgeoning-method-of-deep-learning-in-forecasting-hiv-incidence-in-guangxi-china/B1A6C408C6106A6B133E208FB2CD2EF8 (accessed on 12 November 2021). [CrossRef]
- Xiang, Y.; Du, J.; Fujimoto, K.; Li, F.; Schneider, J.; Tao, C. Application of artificial intelligence and machine learning for HIV prevention interventions. Lancet HIV 2021, 9, e54–e62. Available online: http://www.thelancet.com/article/S2352301821002472/fulltext (accessed on 12 November 2021). [CrossRef]
- Fashoto, S.G.; Mbunge, E.; Ogunleye, G.; den Burg, J.V. Implementation of machine learning for predicting maize crop yields using multiple linear regression and backward elimination. Malays. J. Comput. 2021, 6, 679–697. Available online: https://mjoc.uitm.edu.my (accessed on 5 October 2021). [CrossRef]
- Yadav, S.S.; Kadam, V.J.; Jadhav, S.M.; Jagtap, S.; Pathak, P.R. Machine learning based malaria prediction using clinical findings. In Proceedings of the 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 5–7 March 2021; pp. 216–222. [Google Scholar]
- Uddin, S.; Khan, A.; Hossain, M.E.; Moni, M.A. Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inform. Decis. Mak. 2019, 19, 1–16. Available online: https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-019-1004-8 (accessed on 12 November 2021). [CrossRef] [PubMed]
- Elujide, I.; Fashoto, S.G.; Fashoto, B.; Mbunge, E.; Folorunso, S.O.; Olamijuwon, J.O. Application of deep and machine learning techniques for multi-label classification performance on psychotic disorder diseases. Inform. Med. Unlocked 2021, 23, 100545. [Google Scholar] [CrossRef]
- Jeni, L.A.; Cohn, J.F.; De La Torre, F. Facing imbalanced data—Recommendations for the use of performance metrics. In Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction (ACII), Geneva, Switzerland, 2–5 September 2013; pp. 245–251. [Google Scholar]
- Mbunge, E.; Fashoto, S.G.; Bimha, H. Prediction of box-office success: A review of trends and machine learning computational models. Int. J. Bus. Intell. Data Min. 2022, 20, 192. Available online: http://www.inderscience.com/link.php?id=120825 (accessed on 19 February 2022). [CrossRef]
- Vulli, A.; Srinivasu, P.N.; Sashank, M.S.K.; Shafi, J.; Choi, J.; Ijaz, M.F. Fine-Tuned DenseNet-169 for Breast Cancer Metastasis Prediction Using FastAI and 1-Cycle Policy. Sensors 2022, 22, 2988. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Khan, P.; Riaz, K.; Kwak, D.; Abuhmed, T.; Park, D.; Kwak, K.S. A fuzzy ontology and SVM–based Web content classification system. IEEE Access 2017, 5, 25781–25797. [Google Scholar] [CrossRef]
Feature Name | Feature Description |
---|---|
PPRKNOW | Knowledge of Pre-exposure prophylaxis as (PrEP) |
PPEKNOW | Knowledge of Post-exposure prophylaxis as (PEP) |
HKHVPRSK | Self-perceived chances of becoming HIV infected in the next 12 months |
DEAGENUM | Age in completed years |
HIVNOTES | HIV Services where one was ever referred to |
DEMARSTA | Marital status |
INLRNWHT_9 | Desire to learn more HIV treatment |
SYPHTRE | Syphilis test result |
INLRNWHT | HIV-related topics to learn more about |
PPRTAKE | Ever taken PrEP |
STCIRCM | Circumcision status |
DEOUTWHO_2 | Disclosed sexual identity to family members |
DEOUTWHO_6 | Disclosed sexual identity to a Health care provider |
LUFREE | Ever been given “packets” of lubricant for free? For example, through an outreach service, drop-in centre, or health clinic, in the last six months |
INLRNWHT_2 | Desire to learn more about how to prevent HIV |
LUTYPE_c | Use of water-based lubricant (Durex, etc.) during anal sex in the last 6 months |
RCFEMNA | Type of sex (anal, oral, both), during last sex with main female partner |
INLRNWHT_1 | Desire to learn more about HIV prevention |
DEATTRA | Sex/gender most sexually attracted to |
LUNEVUSE | The main reason for not using a lubricant during anal sex in the past six months |
DELIVESX | Currently living with a sexual partner or not |
DEINCOME | Last monthly income |
COANO_a | Condom use during anal sex when drunk |
RCMAMNFQ | Frequency of condom use with the male partner one has sex with the most, in the last 6 months |
DEREADWR | Ability to read and write |
COLIKELY | Whether one is likely to use the condom when a man inserts his penis into his anus (butt) or when he is the one inserting a penis into someone’s anus or equally likely for both cases |
LU12LUTG | Frequency of use of lubricants during anal sex with a man or transgender woman, in the last six months |
Prediction Model | Precision | Recall | F1-Score | Accuracy | AUC | |||
---|---|---|---|---|---|---|---|---|
Negative | Positive | Negative | Positive | Negative | Positive | |||
RNN | 0.98 | 0.98 | 1.00 | 0.94 | 0.99 | 0.96 | 0.98 | 0.94 |
Gaussian Naïve Bayes | 0.89 | 0.65 | 0.88 | 0.68 | 0.88 | 0.66 | 0.83 | 0.87 |
Bagging Classifier | 0.89 | 0.90 | 0.96 | 0.62 | 0.92 | 0.73 | 0.90 | 0.85 |
SVM | 0.89 | 0.96 | 0.93 | 0.62 | 0.91 | 0.75 | 0.91 | 0.81 |
Gradient Boosting Classifier | 0.91 | 0.89 | 0.97 | 0.65 | 0.94 | 0.75 | 0.91 | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chingombe, I.; Dzinamarira, T.; Cuadros, D.; Mapingure, M.P.; Mbunge, E.; Chaputsira, S.; Madziva, R.; Chiurunge, P.; Samba, C.; Herrera, H.; et al. Predicting HIV Status among Men Who Have Sex with Men in Bulawayo & Harare, Zimbabwe Using Bio-Behavioural Data, Recurrent Neural Networks, and Machine Learning Techniques. Trop. Med. Infect. Dis. 2022, 7, 231. https://doi.org/10.3390/tropicalmed7090231
Chingombe I, Dzinamarira T, Cuadros D, Mapingure MP, Mbunge E, Chaputsira S, Madziva R, Chiurunge P, Samba C, Herrera H, et al. Predicting HIV Status among Men Who Have Sex with Men in Bulawayo & Harare, Zimbabwe Using Bio-Behavioural Data, Recurrent Neural Networks, and Machine Learning Techniques. Tropical Medicine and Infectious Disease. 2022; 7(9):231. https://doi.org/10.3390/tropicalmed7090231
Chicago/Turabian StyleChingombe, Innocent, Tafadzwa Dzinamarira, Diego Cuadros, Munyaradzi Paul Mapingure, Elliot Mbunge, Simbarashe Chaputsira, Roda Madziva, Panashe Chiurunge, Chesterfield Samba, Helena Herrera, and et al. 2022. "Predicting HIV Status among Men Who Have Sex with Men in Bulawayo & Harare, Zimbabwe Using Bio-Behavioural Data, Recurrent Neural Networks, and Machine Learning Techniques" Tropical Medicine and Infectious Disease 7, no. 9: 231. https://doi.org/10.3390/tropicalmed7090231
APA StyleChingombe, I., Dzinamarira, T., Cuadros, D., Mapingure, M. P., Mbunge, E., Chaputsira, S., Madziva, R., Chiurunge, P., Samba, C., Herrera, H., Murewanhema, G., Mugurungi, O., & Musuka, G. (2022). Predicting HIV Status among Men Who Have Sex with Men in Bulawayo & Harare, Zimbabwe Using Bio-Behavioural Data, Recurrent Neural Networks, and Machine Learning Techniques. Tropical Medicine and Infectious Disease, 7(9), 231. https://doi.org/10.3390/tropicalmed7090231