Characterization of Regulatory T Cells in Patients Infected by Leishmania Infantum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Study Groups
2.3. Hematological Variables Analysis
2.4. Soluble Antigen of L. Infantum (SLA)
2.5. Leukocyte Isolation
2.6. Flow Cytometry Assay
2.7. Measurement of IL-10 Levels in Leukocyte Culture Supernatant
2.8. Flow Cytometry Data Analysis
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: Drug or vaccine therapy? Drug. Des. Devel. Ther. 2018, 12, 25–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilhelm, T.J. Viszerale Leishmaniose. Der. Chirurg. 2019, 90, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.; Brombacher, F. T helper1/T helper2 cells and resistance/susceptibility to Leishmania infection: Is this paradigm still relevant? Front. Immunol. 2012, 3, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gollob, K.J.; Viana, A.G.; Dutra, W.O. Immunoregulation in human American leishmaniasis: Balancing pathology and protection. Parasite Immunol. 2014, 36, 367–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, M.H.F.; Sacramento, L.A.; Quirino, G.F.S.; Ferreira, M.D.; Benevides, L.; Santana, A.K.M.; Cunha, F.Q.; Almeida, R.P.; Silva, J.S.; Carregaro, V. Leishmania infantum parasites subvert the host inflammatory response through the adenosine A2A receptor to promote the establishment of infection. Front. Immunol. 2017, 8, 815. [Google Scholar] [CrossRef] [PubMed]
- Nylén, S.; Maurya, R.; Eidsmo, L.; Manandhar, K.D.; Sundar, S.; Sacks, D. Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+(Foxp3) regulatory T cells in human visceral leishmaniasis. J. Exp. Med. 2007, 204, 805–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, K.M.; Carvalho, B.T.C. Células T regulatórias: Mecanismos de ação e função nas doenças humanas. Rev. Bras. Alerg. Imunopatol. 2009, 32, 184–188. [Google Scholar]
- Mandapathil, M.; Szczepanski, M.J.; Szajnik, M.; Ren, J.; Jackson, E.K.; Johnson, J.T.; Gorelik, E.; Lang, S.; Whiteside, T.L. Adenosine and prostaglandin e2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells. J. Biol. Chem. 2010, 285, 27571–27580. [Google Scholar] [CrossRef] [Green Version]
- Carregaro, V.; Napimoga, M.H.; Peres, R.S.; Benevides, L.; Sacramento, L.A.; Pinto, L.G.; Grespan, R.; Cunha, T.M.; Silva, J.S.; Cunha, F.Q. Therapeutic treatment of arthritic mice with 15-deoxy Δ12,14-prostaglandin J2(15d-PGJ2) ameliorates disease through the suppression of Th17 cells and the induction of CD4+CD25−FOXP3+ cells. Mediat. Inflamm. 2016, 2016, 9626427. [Google Scholar] [CrossRef] [Green Version]
- Antonioli, L.; Pacher, P.; Vizi, E.S.; Haskó, G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 2013, 19, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Chaves, M.M.; Canetti, C.; Coutinho-Silva, R. Crosstalk between purinergic receptors and lipid mediators in leishmaniasis. Parasites Vectors 2016, 9, 489. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Ni, X.; Pan, X.; Lu, H.; Lu, Y.; Zhao, J.; Zheng, S.G.; Hippen, K.L.; Wang, X.; Lu, L. Human CD39hi regulatory T cells present stronger stability and function under inflammatory conditions. Cell. Mol. Immunol. 2017, 14, 521–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulte, D.; Furman, R.R.; Broekman, M.J.; Drosopoulos, J.H.F.; Ballard, H.S.; Olson, K.E.; Kizer, J.R.; Marcus, A.J. CD39 expression on T lymphocytes correlates with severity of disease in patients with chronic lymphocytic leukemia. Clin. Lymphoma Myeloma Leuk. 2011, 11, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Eberhardt, N.; Sanmarco, L.M.; Bergero, G.; Favaloro, R.R.; Vigliano, C.; Aoki, M.P. HIF-1α and CD73 expression in cardiac leukocytes correlates with the severity of myocarditis in end-stage Chagas disease patients. J. Leukoc. Biol. 2021, 109, 233–244. [Google Scholar] [CrossRef]
- Simsek, A.; Kizmaz, M.A.; Cagan, E.; Dombaz, F.; Tezcan, G.; Asan, A.; Demir, H.I.; Bal, S.H.; Ermis, D.Y.; Dilektaslı, A.G.; et al. Assessment of CD39 expression in regulatory T-cell subsets by disease severity in adult and juvenile COVID-19 cases. J. Med. Virol. 2022, 94, 2089–2101. [Google Scholar] [CrossRef] [PubMed]
- Pietrobon, A.J.; Andrejew, R.; Custódio, R.W.A.; Oliveira, L.M.; Scholl, J.N.; Teixeira, F.M.E.; Brito, C.A.; Glaser, T.; Kazmierski, J.; Goffinet, C.; et al. Dysfunctional purinergic signaling correlates with disease severity in COVID-19 patients. Front. Immunol. 2022, 13, 1012027. [Google Scholar] [CrossRef] [PubMed]
- Rocamora-Reverte, L.; Tuzlak, S.; von Raffay, L.; Tisch, M.; Fiegl, H.; Drach, M.; Reichardt, H.M.; Villunger, A.; Tischner, D.; Wiegers, G.J. Glucocorticoid receptor-deficient Foxp3+ regulatory T cells fail to control experimental inflammatory bowel disease. Front. Immunol. 2019, 10, 472. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.S.; Cavanaugh, C.; Pereira, M.; Babu, U.; Williams, K. Susceptibility of aging mice to listeriosis: Role of anti-inflammatory responses with enhanced Treg-cell expression of CD39/CD73 and Th-17 cells. Int. J. Med. Microbiol. 2020, 310, 151397. [Google Scholar] [CrossRef]
- Gois, B.M.; Peixoto, R.F.; Maciel, B.L.L.; Gomes, J.A.S.; de Azevedo, F.L.A.A.; Veras, R.C.; de Medeiros, I.A.; Lima Grisi, T.C.S.; Araújo, D.A.M.; do Amaral, I.P.G.; et al. Dual immune effect of iNKT cells considering human cutaneous and visceral leishmaniasis: An example of cell plasticity according to different disease scenarios. Scand. J. Immunol. 2018, 87, e12668. [Google Scholar] [CrossRef]
- World Health Organization. Control of the Leishmaniases: Report of a Meeting of the WHO Expert Commitee on the Control of Leishmaniases, Geneva, 22–26 March 2010. Available online: https://apps.who.int/iris/handle/10665/44412 (accessed on 28 July 2020).
- Horrillo, L.; Castro, A.; Matía, B.; Molina, L.; García-Martínez, J.; Jaqueti, J.; García-Arata, I.; Carrillo, E.; Moreno, J.; Ruiz-Giardin, J.M.; et al. Clinical aspects of visceral leishmaniasis caused by L. infantum in adults. Ten years of experience of the largest outbreak in Europe: What have we learned? Parasites Vectors 2019, 12, 359. [Google Scholar] [CrossRef] [Green Version]
- El Jeri, H.K.; Harzallah, A.; Barbouch, S.; Bacha, M.M.; Kheder, R.; Turki, S.; Trabelsi, S.; Abdallah, E.A. Visceral Leishmaniasis in Adults with Nephropathy. Saudi J. Kidney Dis. Transpl. 2017, 28, 95–101. [Google Scholar] [PubMed]
- Silva, A.E.P.; Gurgel, H.C. Leishmaniose tegumentar americana e suas relações sócio ambientais no município de Ubatuba-SP. Confins. Rev. Fr.-Bras. De Geogr. 2011, 13, 7348. [Google Scholar]
- Medenica, S.; Jovanović, S.; Dožić, I.; Miličić, B.; Lakićević, N.; Rakočević, B. Epidemiological surveillance of leishmaniasis in Montenegro, 1992–2013. Srp. Arh. Za Celok. Lek. 2015, 143, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Reis, L.L.; Balieiro, A.A.S.; Fonseca, F.R.; Gonçalves, M.J.F. Changes in the epidemiology of visceral leishmaniasis in Brazil from 2001 to 2014. Rev. Soc. Bras. Med. Trop. 2017, 50, 638–645. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues-Neto, J.F.; Monteiro, G.R.; Keesen, T.S.L.; Lacerda, H.G.; Carvalho, E.M.; Jeronimo, S.M.B. CD45RO+ T cells and T cell activation in the long-lasting immunity after Leishmania infantum infection. Am. J. Trop. Med. Hyg. 2018, 98, 875–882. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Manual on Case Management and Surveillance of the Leishmaniases in the WHO European Region. Available online: https://www.who.int/publications/i/item/9789289052511 (accessed on 28 July 2020).
- Elmahallawy, E.K.; Martinez, A.S.; Rodriguez-Granger, J.; Hoyos-Mallecot, Y.; Agil, A.; Mari, J.M.N.; Fernandez, J.G. Diagnosis of leishmaniasis. J. Infect. Dev. Ctries. 2014, 8, 961–972. [Google Scholar] [CrossRef] [Green Version]
- Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef] [Green Version]
- Bodman-Smith, K.B.; Mbuchi, M.; Culley, F.J.; Bates, P.A.; Raynes, J.G. C-reactive protein-mediated phagocytosis of Leishmania donovani promastigotes does not alter parasite survival or macrophage responses. Parasite Immunol. 2002, 24, 447–454. [Google Scholar] [CrossRef]
- Medina-Colorado, A.A.; Osorio, E.Y.; Saldarriaga, O.A.; Travi, B.L.; Kong, F.; Spratt, H.; Soong, L.; Melby, P.C. Splenic CD4+ T cells in progressive visceral leishmaniasis show a mixed effector-regulatory phenotype and impair macrophage effector function through inhibitory receptor expression. PLoS ONE 2017, 12, e0169496. [Google Scholar] [CrossRef] [Green Version]
- Peruhype-Magalhães, V.; Martins-Filho, O.A.; Prata, A.; Silva, L.A.; Rabello, A.; Teixeira-Carvalho, A.; Figueiredo, R.M.; Guimarães-Carvalho, S.F.; Ferrari, T.C.A.; Correa-Oliveira, R. Immune response in human visceral leishmaniasis: Analysis of the correlation between innate immunity cytokine profile and disease outcome. Scand. J. Immunol. 2005, 62, 487–495. [Google Scholar] [CrossRef]
- Jawed, J.J.; Dutta, S.; Majumdar, S. Functional aspects of T cell diversity in visceral leishmaniasis. Biomed. Pharmacother. 2019, 117, 109098. [Google Scholar] [CrossRef] [PubMed]
- Maurya, R.; Kumar, R.; Prajapati, V.K.; Manandhar, K.D.; Sacks, D.; Sundar, S.; Nylén, S. Human visceral leishmaniasis is not associated with expansion or accumulation of Foxp3+ CD4 cells in blood or spleen. Parasite Immunol. 2010, 32, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhao, J.; Fett, C.; Trandem, K.; Fleming, E.; Perlman, S. IFN-γ–and IL-10–expressing virus epitope-specific Foxp3+ T reg cells in the central nervous system during encephalomyelitis. J. Exp. Med. 2011, 208, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Adem, E.; Tajebe, F.; Getahun, M.; Kiflie, A.; Diro, E.; Hailu, A.; Shkedy, Z.; Mengesha, B.; Mulaw, T.; Atnafu, S.; et al. Successful treatment of human visceral leishmaniasis restores antigen-specific IFN-γ, but not IL-10 production. PLoS Negl. Trop. Dis. 2016, 10, e0004468. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, M.D.; Way, S.S.; Abbas, A.K. Regulatory T cell memory. Nat. Rev. Immunol. 2016, 16, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.L.; Oliveira, F.A.; Santos, M.L.B.; Cunha, L.C.S.; Lino, M.T.B.; Oliveira, M.F.S.; Bomfim, M.O.M.; Silva, A.M.; Moura, T.R.; Jesus, A.R.; et al. The severity of visceral leishmaniasis correlates with elevated levels of serum IL-6, IL-27 and sCD14. PLoS Negl. Trop. Dis. 2016, 10, e0004375. [Google Scholar] [CrossRef] [PubMed]
- Deaglio, S.; Dwyer, K.M.; Gao, W.; Friedman, D.; Usheva, A.; Erat, A.; Chen, J.F.; Enjyoji, K.; Linden, J.; Oukka, M.; et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 2007, 204, 1257–1265. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.K.; Thakur, C.P.; Seth, T.; Mitra, D.K. Early activated Th-1 type and dominantly diverse natural killer T (CD3+CD161 +Vα24−) cells in bone marrow among visceral leishmaniasis patients. Int. J. Parasitol. 2011, 41, 1069–1077. [Google Scholar] [CrossRef]
- Vijayamahantesh; Amit, A.; Kumar, S.; Dikhit, M.R.; Jha, P.K.; Singh, A.K.; Sinha, K.K.; Pandey, K.; Das, V.N.R.; Das, P.; et al. Up regulation of A2B adenosine receptor on monocytes are crucially required for immune pathogenicity in Indian patients exposed to Leishmania donovani. Cytokine 2016, 79, 38–44. [Google Scholar] [CrossRef]
#Code | Gender | Age |
---|---|---|
CTL 1 | Female | 50 |
CTL 2 | Female | 51 |
CTL 3 | Female | 22 |
CLT 4 | Female | 53 |
CLT 5 | Male | 28 |
CLT 6 | Female | 25 |
CLT 7 | Female | 27 |
CLT 8 | Male | 18 |
CLT 9 | Male | 20 |
MEAN | 6F:3M | 32.6 (±2.7) |
#Code | Gender | Age | Symptoms |
---|---|---|---|
LV01 | Female | 22 | Hepatosplenomegaly, Adnomia, Severe Anemia and Fever |
LV02 | Male | 55 | Fever, Asthenia, Anorexia, Weight loss, Sweating, Epistaxis, Jaundice, Cough with expectoration and Hemoptysis |
LV03 | Male | 44 | Fever (39 °C), Abdominal pain, Abdominal swelling, Weakness and Dry cough |
LV04 | Female | 29 | Tiredness, Dizziness, Fever (38 °C), Abdominal swelling, Abdominal pain, Weight loss and Chills |
LV05 | Male | 35 | Abdominal Pain, Headache, Dizziness and Vomiting |
LV06 | Male | 38 | Weakness, Dizziness, Hepatosplenomegaly, Fever, Headache, Diarrhea, Anemia and Abdominal pain |
LV07 | Female | 57 | Thrombocytopenia, Hepatosplenomegaly, Fever and Anemia |
LV08 | Male | 42 | Anorexia, Fever and Asthenia |
LV09 | Male | 37 | Fever, Asthenia, Fatigue, Chills, Headache, Nasal Obstruction, Vomiting, Hematuria and Weakness |
LV10 | Male | 53 | Fever, Loss of Appetite, Weight Loss and Headache. |
LV11 | Male | 54 | Weakness, Headache, Loss of Appetite, Fever, Weight loss, Anorexia, Constipation and Expectoration. |
MEAN | 3F:8M | 43.2 ± 12.8 |
#Group Code | Anti-Leishmania Antibodies (SLA—L. infantum) | C-Reactive Protein (CRP) (mg/L) | Red Cells (millions/mm3) | Leukocytes (mm3) | Platelets (mm3) |
---|---|---|---|---|---|
NEC | 0/9 | <5 | 4.5 ± 0.5 | 6550 ± 1535 | 243,444 ± 73,428 |
VL Patients | 11/11 | 94.6 ± 70.2 | 3.4 ± 0.6 ** | 2425 ± 758.7 *** | 91,700 ± 43,412 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peixoto, R.F.; Gois, B.M.; Martins, M.; Palmeira, P.H.S.; Rocha, J.C.; Gomes, J.A.S.; Azevedo, F.L.A.A.; Veras, R.C.; de Medeiros, I.A.; Grisi, T.C.S.L.; et al. Characterization of Regulatory T Cells in Patients Infected by Leishmania Infantum. Trop. Med. Infect. Dis. 2023, 8, 18. https://doi.org/10.3390/tropicalmed8010018
Peixoto RF, Gois BM, Martins M, Palmeira PHS, Rocha JC, Gomes JAS, Azevedo FLAA, Veras RC, de Medeiros IA, Grisi TCSL, et al. Characterization of Regulatory T Cells in Patients Infected by Leishmania Infantum. Tropical Medicine and Infectious Disease. 2023; 8(1):18. https://doi.org/10.3390/tropicalmed8010018
Chicago/Turabian StylePeixoto, Rephany F., Bruna M. Gois, Marineuma Martins, Pedro Henrique S. Palmeira, Juliana C. Rocha, Juliana A. S. Gomes, Fátima L. A. A. Azevedo, Robson C. Veras, Isac A. de Medeiros, Teresa C. S. L. Grisi, and et al. 2023. "Characterization of Regulatory T Cells in Patients Infected by Leishmania Infantum" Tropical Medicine and Infectious Disease 8, no. 1: 18. https://doi.org/10.3390/tropicalmed8010018
APA StylePeixoto, R. F., Gois, B. M., Martins, M., Palmeira, P. H. S., Rocha, J. C., Gomes, J. A. S., Azevedo, F. L. A. A., Veras, R. C., de Medeiros, I. A., Grisi, T. C. S. L., de Araújo, D. A. M., Amaral, I. P. G., & Keesen, T. S. L. (2023). Characterization of Regulatory T Cells in Patients Infected by Leishmania Infantum. Tropical Medicine and Infectious Disease, 8(1), 18. https://doi.org/10.3390/tropicalmed8010018