Distinguishing SARS-CoV-2 Infection and Non-SARS-CoV-2 Viral Infections in Adult Patients through Clinical Score Tools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Analysis
2.2. Sample Size
3. Results
3.1. Characteristics of the Study Population
3.2. Comparison of COVID-19 and Influenza/RSV or Dengue
3.3. Model and Score Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Reports. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 10 April 2020).
- Bureau of Information, Ministry of Public Health, Thailand. COVID-19 News. Available online: https://ddc.moph.go.th (accessed on 6 October 2022).
- Brodin, P. Immune determinants of COVID-19 disease presentation and severity. Nat. Med. 2021, 27, 28–33. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Available online: https://www.covid19treatmentguidelines.nih.gov (accessed on 31 January 2022).
- Bruminhent, J.; Ruangsubvilai, N.; Nabhindhakara, J.; Ingsathit, A.; Kiertiburanakul, S. Clinical characteristics and risk factors for coronavirus disease 2019 (COVID-19) among patients under investigation in Thailand. PLoS ONE 2020, 15, e0239250. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.; Ferreira, E.C.; Santos, C. COVID-19, Chikungunya, Dengue and Zika Diseases: An Analytical Platform Based on MALDI-TOF MS, IR Spectroscopy and RT-qPCR for Accurate Diagnosis and Accelerate Epidemics Control. Microorganisms 2021, 9, 708. [Google Scholar] [CrossRef] [PubMed]
- Sirijatuphat, R.; Suputtamongkol, Y.; Angkasekwinai, N.; Horthongkham, N.; Chayakulkeeree, M.; Rattanaumpawan, P.; Koomanachai, P.; Assanasen, S.; Rongrungruang, Y.; Chierakul, N.; et al. Epidemiology, clinical characteristics, and treatment outcomes of patients with COVID-19 at Thailand’s university-based referral hospital. BMC Infect. Dis. 2021, 21, 382. [Google Scholar] [CrossRef]
- Chittaganpitch, M.; Waicharoen, S.; Yingyong, T.; Praphasiri, P.; Sangkitporn, S.; Olsen, S.J.; Lindblade, K.A. Viral etiologies of influenza-like illness and severe acute respiratory infections in Thailand. Influenza Other Respir. Viruses 2018, 12, 482–489. [Google Scholar] [CrossRef]
- Campbell, K.M.; Lin, C.D.; Iamsirithaworn, S.; Scott, T.W. The complex relationship between weather and dengue virus transmission in Thailand. Am. J. Trop. Med. Hyg. 2013, 89, 1066–1080. [Google Scholar] [CrossRef] [Green Version]
- Department of Disease Control, Ministry of Public Health Thailand. Situation of Vector Borne Diseases in Thailand. Available online: https://ddc.moph.go.th/dvb/ (accessed on 27 December 2022).
- Khongwichit, S.; Chansaenroj, J.; Chirathaworn, C.; Poovorawan, Y. Chikungunya virus infection: Molecular biology, clinicalcharacteristics, and epidemiology in Asian countries. J. Biomed. Sci. 2021, 28, 84. [Google Scholar] [CrossRef]
- Yan, G.; Lee, C.K.; Lam, L.T.M.; Yan, B.; Chua, Y.X.; Lim, A.Y.N.; Phang, K.F.; Kew, G.S.; Teng, H.; Ngai, C.H.; et al. Covert COVID-19 and false-positive dengue serology in Singapore. Lancet Infect. Dis. 2020, 20, 536. [Google Scholar] [CrossRef] [Green Version]
- Garg, I.; Gangu, K.; Shuja, H.; Agahi, A.; Sharma, H.; Bobba, A.; Nasrullah, A.; Chourasia, P.; Pal, S.; Sheikh, A.B.; et al. COVID-19 and Influenza Coinfection Outcomes among Hospitalized Patients in the United States: A Propensity Matched Analysis of National Inpatient Sample. Vaccines 2022, 10, 2159. [Google Scholar] [CrossRef]
- Han, H.; Saed, Y.A.; Song, W.; Wang, M.; Li, Y. Prevalence of Non-SARS-CoV-2 Respiratory Pathogens and Co-Infection with SARS-CoV-2 in the Early Stage of COVID-19 Epidemic. Pathogens 2022, 11, 1292. [Google Scholar] [CrossRef]
- Alhumaid, S.; Alabdulqader, M.; Al Dossary, N.; Al Alawi, Z.; Alnaim, A.A.; Al Mutared, K.M.; Al Noaim, K.; Al Ghamdi, M.A.; Albahrani, S.J.; Alahmari, A.A.; et al. Global Coinfections with Bacteria, Fungi, and Respiratory Viruses in Children with SARS-CoV-2: A Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2022, 7, 380. [Google Scholar] [CrossRef] [PubMed]
- Zepeda-Carrillo, E.A.; Soria Saavedra, F.M.; Mercado Villegas, M.B.; López Alvarado, A.; Regla-Nava, J.A.; Torres-Valadez, R. SARS-CoV-2 and Dengue Virus Coinfection in a Mexican Pediatric Patient: A Case Report from Early Molecular Diagnosis. Pathogens 2022, 11, 1360. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.B.; Simasathien, S.; Watanaveeradej, V.; Weg, A.L.; Ellison, D.W.; Suwanpakdee, D.; Klungthong, C.; Phonpakobsin, T.; Kerdpanich, P.; Phiboonbanakit, D.; et al. Clinical and laboratory predictors of influenza infection among individuals with influenza-like illness presenting to an urban Thai hospital over a five-year period. PLoS ONE 2018, 13, e0193050. [Google Scholar] [CrossRef] [PubMed]
- Muller, D.A.; Depelsenaire, A.C.; Young, P.R. Clinical and Laboratory Diagnosis of Dengue Virus Infection. J. Infect. Dis. 2017, 215, S89–S95. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Been Sayed, S.J.; Moniruzzaman, M.; Kabir, A.; Mallik, M.U.; Hasan, M.R.; Siddique, A.B.; Hossain, M.A.; Uddin, N.; Hassan, M.M.; et al. Clinical and Laboratory Characteristics of an Acute Chikungunya Outbreak in Bangladesh in 2017. Am. J. Trop. Med. Hyg. 2019, 100, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Noorbakhsh, F.; Abdolmohammadi, K.; Fatahi, Y.; Dalili, H.; Rasoolinejad, M.; Rezaei, F.; Salehi-Vaziri, M.; Shafiei-Jandaghi, N.Z.; Gooshki, E.S.; Zaim, M.; et al. Zika Virus Infection, Basic and Clinical Aspects: A Review Article. Iran. J. Public Health 2019, 48, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Azeredo, E.L.; Dos Santos, F.B.; Barbosa, L.S.; Souza, T.M.A.; Badolato-Corrêa, J.; Sánchez-Arcila, J.C.; Nunes, P.C.G.; de-Oliveira-Pinto, L.M.; de Filippis, A.M.; Dal Fabbro, M.; et al. Clinical and Laboratory Profile of Zika and Dengue Infected Patients: Lessons Learned From the Co-circulation of Dengue, Zika and Chikungunya in Brazil. PLoS Curr. 2018, 10. [Google Scholar] [CrossRef]
- Chuaychoo, B.; Ngamwongwan, S.; Kaewnaphan, B.; Athipanyasilp, N.; Horthongkham, N.; Kantakamalakul, W.; Muangman, N. Clinical manifestations and outcomes of respiratory syncytial virus infection in adult hospitalized patients. J. Clin. Virol. 2019, 117, 103–108. [Google Scholar] [CrossRef]
- Bujang, M.A.; Sa’at, N.; Sidik, T.; Joo, L.C. Sample Size Guidelines for Logistic Regression from Observational Studies with Large Population: Emphasis on the Accuracy Between Statistics and Parameters Based on Real Life Clinical Data. Malays. J. Med. Sci. 2018, 25, 122–130. [Google Scholar] [CrossRef]
- Waggoner, J.J.; Gresh, L.; Vargas, M.J.; Ballesteros, G.; Tellez, Y.; Soda, K.J.; Sahoo, M.K.; Nuñez, A.; Balmaseda, A.; Harris, E.; et al. Viremia and Clinical Presentation in Nicaraguan Patients Infected with Zika Virus, Chikungunya Virus, and Dengue Virus. Clin. Infect. Dis. 2016, 63, 1584–1590. [Google Scholar] [CrossRef]
- Cao, B.; Li, X.W.; Mao, Y.; Wang, J.; Lu, H.Z.; Chen, Y.S.; Liang, Z.A.; Liang, L.; Zhang, S.J.; Zhang, B.; et al. Clinical features of the initial cases of 2009 pandemic influenza A (H1N1) virus infection in China. N. Engl. J. Med. 2009, 361, 2507–2517. [Google Scholar] [CrossRef] [Green Version]
- Choreño-Parra, J.A.; Jiménez-Álvarez, L.A.; Cruz-Lagunas, A.; Rodríguez-Reyna, T.S.; Ramírez-Martínez, G.; Sandoval-Vega, M.; Hernández-García, D.L.; Choreño-Parra, E.M.; Balderas-Martínez, Y.I.; Martinez-Sánchez, M.E.; et al. Clinical and Immunological Factors That Distinguish COVID-19 From Pandemic Influenza A(H1N1). Front. Immunol. 2021, 12, 593595. [Google Scholar] [CrossRef]
- Hedberg, P.; Karlsson Valik, J.; van der Werff, S.; Tanushi, H.; Requena Mendez, A.; Granath, F.; Bell, M.; Mårtensson, J.; Dyrdak, R.; Hertting, O.; et al. Clinical phenotypes and outcomes of SARS-CoV-2, influenza, RSV and seven other respiratory viruses: A retrospective study using complete hospital data. Thorax 2022, 77, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Lu, J.; Liu, Q.; Ma, X.; He, W. To alert coinfection of COVID-19 and dengue virus in developing countries in the dengue-endemic area. Infect. Control. Hosp. Epidemiol. 2020, 41, 1482. [Google Scholar] [CrossRef]
- Nath, H.; Mallick, A.; Roy, S.; Sukla, S.; Basu, K.; De, A.; Biswas, S. Archived dengue serum samples produced false-positive results in SARS-CoV-2 lateral flow-based rapid antibody tests. J. Med. Microbiol. 2021, 70, 001369. [Google Scholar] [CrossRef] [PubMed]
- Rosso, F.; Parra-Lara, L.G.; Agudelo-Rojas, O.L.; Martinez-Ruiz, D.M. Differentiating Dengue from COVID-19: Comparison of Cases in Colombia. Am. J. Trop. Med. Hyg. 2021, 105, 745–750. [Google Scholar] [CrossRef]
- Thein, T.L.; Ang, L.W.; Young, B.E.; Chen, M.I.; Leo, Y.S.; Lye, D.C.B. Differentiating coronavirus disease 2019 (COVID-19) from influenza and dengue. Sci. Rep. 2021, 11, 19713. [Google Scholar] [CrossRef]
- Luvira, V.; Leaungwutiwong, P.; Thippornchai, N.; Thawornkuno, C.; Chatchen, S.; Chancharoenthana, W.; Tandhavanant, S.; Muangnoicharoen, S.; Piyaphanee, W.; Chantratita, N. False Positivity of Anti-SARS-CoV-2 Antibodies in Patients with Acute Tropical Diseases in Thailand. Trop. Med. Infect. Dis. 2022, 7, 132. [Google Scholar] [CrossRef]
Type of Viral Infection | ||||||
---|---|---|---|---|---|---|
COVID-19 | Influenza | RSV | Dengue | Chikungunya | Zika | |
(n = 100) | (n = 10) | (n = 100) | (n = 100) | (n = 100) | (n = 49) | |
Female, n (%) | 39 (39) | 68 (68) | 59 (59) | 65 (65) | 72 (72) | 39 (79.6) |
Age (years) @ | 40.2 ± 15.1 | 56.7 ± 21.3 | 63.1 ± 21.3 | 33.5 ± 13.6 | 45.1 ± 12.1 | 42.1 ± 13.7 |
Body mass index (kg/m2) @ | 24.4 ± 5.2 | 23.5 ± 7.3 | 22.8 ± 3.3 | 23.5 ± 7.0 | 25.0 ± 4.9 | 26.06 ± 4.96 |
Comorbidities, n (%) | 26 (26) | 71 (71) | 76 (76) | 29 (29) | 36 (36) | 16 (32.6) |
Diabetes mellitus | 10 (10) | 31 (31) | 20 (20) | 9 (9) | 13 (13) | 4 (8.2) |
Hypertension | 9 (9) | 55 (55) | 51 (51) | 13 (13) | 20 (20) | 8 (16.3) |
Dyslipidemia | 6 (6) | 38 (38) | 20 (20) | 6 (6) | 17 (17) | 7 (14.3) |
Heart disease | 2 (2) | 33 (33) | 26 (26) | 5 (5) | 2 (2) | 1 (2.0) |
Lung disease | 2 (2) | 9 (9) | 22 (22) | 5 (5) | 4 (4) | 1 (2.0) |
Neurologic disease | 3 (3) | 19 (19) | 20 (20) | 5 (5) | 4 (4) | 0 |
Liver disease | 3 (3) | 7 (7) | 4 (4) | 3 (3) | 1 (1) | 1 (2.0) |
Kidney disease | 1 (1) | 26 (26) | 25 (25) | 3 (3) | 2 (2) | 0 |
Cancer | 3 (3) | 14 (14) | 23 (23) | 1 (1) | 4 (4) | 3 (6.1) |
Setting, n (%) | ||||||
Outpatient | 0 | 34 (34) | 15 (15) | 41 (41) | 87 (87) | 48 (98) |
Inpatient | 100 (100) | 66 (66) | 85 (85) | 59 (59) | 13 (13) | 1 (2) |
Type of Viral Infection | ||||||
---|---|---|---|---|---|---|
COVID-19 | Influenza (n = 100) | RSV | Dengue | Chikungunya (n = 100) | Zika | |
(n = 100) | (n = 100) | (n = 100) | (n = 49) | |||
Signs and symptoms, n (%) | ||||||
Fever (≥37.5 °C) | 77 (77) | 83 (83) | 72 (72) | 91 (91) | 63 (63) | 9 (18.4) |
Rhinorrhea | 23 (23) | 52 (52) | 46 (46) | 7 (7) | 3 (3) | 5 (10.2) |
Sore throat | 36 (36) | 29 (29) | 14 (14) | 11 (11) | 4 (4) | 8 (16.3) |
Cough | 62 (62) | 96 (96) | 89 (89) | 9 (9) | 8 (8) | 3 (6.1) |
Productive sputum | 11 (11) | 72 (72) | 77 (77) | 0 | 2 (2) | 0 |
Shortness of breath | 20 (20) | 53 (53) | 65 (65) | 2 (2) | 0 | 0 |
Diarrhea | 9 (9) | 2 (2) | 24 (24) | 13 (13) | 2 (2) | 0 |
Myalgia | 27 (27) | 30 (30) | 13 (13) | 86 (86) | 71 (71) | 18 (36.7) |
Arthralgia | 0 | 0 | 0 | 11 (11) | 78 (78) | 1 (2.0) |
Headache | 16 (16) | 14 (14) | 17 (17) | 53 (53) | 12 (12) | 4 (8.2) |
Rash | 1 (1) | 1 (1) | 3 (3) | 15 (15) | 65 (65) | 49 (100) |
Laboratory investigation | ||||||
Hb (g/dL) @ | 13.9 ± 1.6 | 11.5 ± 2.3 | 10.7 ± 2.2 | 13.4 ± 1.9 | 12.8 ± 1.6 | 13.5 ± 1.3 |
WBC (cells/mm3) # | 5120 (3915, 6440) | 6640 (4758, 8638) | 8180 (4868, 11,868) | 3355 (2340, 4863) | 4825 (3523, 6215) | 4715 (3673, 5473) |
Lymphocyte count (cells/mm3) # | 1602 (1232, 2173) | 862 (622, 1256) | 986 (499, 1445) | 630 (421, 916) | 800 (562, 1159) | 1301 (911, 1670) |
Platelet count (/mm3) # | 216,500 (173,000, 247,500) | 185,500 (147,250, 231,750) | 186,500 (131,000, 271,500) | 112,500 (66,750, 156,750) | 221,000 (170,500, 257,750) | 228,500 (201,750, 288, 750) |
AST (U/L) # | 22 (18, 31) | 36 (23, 67) | 30 (22, 54) | 82 (48, 199) | 30 (22, 49) | 21 (18, 29) |
ALT (U/L) # | 24 (16, 37) | 25 (15, 38) | 24 (14, 42) | 56 (30, 134) | 27 (17, 42) | 16 (11, 25) |
Number (%) | p-Value | |||||
---|---|---|---|---|---|---|
COVID-19 (A) (n = 100) | Influenza and RSV (B) (n = 200) | Dengue (C) (n = 100) | A vs. B vs. C | A vs. B | A vs. C | |
Female, n (%) | 39 (39) | 127 (63.5) | 65 (65) | <0.001 | * | * |
Age (years) @ | 40.2 ± 15.1 | 59.9 ± 21.5 | 33.5 ± 13.6 | <0.001 | * | * |
BMI (kg/m2) @ | 24.4 ± 5.2 | 23.1 ± 5.6 | 23.5 ± 7.0 | 0.128 | - | - |
Comorbidities, n (%) | 26 (26) | 147 (73.5) | 29 (29) | <0.001 | * | NS |
Diabetes mellitus | 10 (10) | 51 (25.5) | 9 (9) | <0.001 | * | NS |
Hypertension | 9 (9) | 106 (53.0) | 13 (13) | <0.001 | * | NS |
Dyslipidemia | 6 (6) | 58 (29.0) | 6 (6) | <0.001 | * | NS |
Heart disease | 2 (2) | 59 (29.5) | 5 (5) | <0.001 | * | NS |
Lung disease | 2 (2) | 31 (15.5) | 5 (5) | <0.001 | * | NS |
Neurologic disease | 3 (3) | 39 (19.5) | 5 (5) | <0.001 | * | NS |
Liver disease | 3 (3) | 11 (5.5) | 3 (3) | 0.523 | - | - |
Kidney disease | 1 (1) | 51 (25.5) | 3 (3) | <0.001 | * | NS |
Cancer | 3 (3) | 37 (18.5) | 1 (1) | <0.001 | * | NS |
Signs and symptoms, n (%) | ||||||
Fever (≥37.5 °C) | 77 (77) | 155 (77.5) | 91 (91) | 0.011 | NS | * |
Baseline temperature @ | 37.3 ± 0.8 | 38.1 ± 0.9 | 38.4 ± 1.0 | <0.001 | * | * |
O2 sat @ | 98.0 ± 2.2 | 94.7 ± 3.7 | 97.6 ± 1.5 | <0.001 | * | NS |
Rhinorrhea | 23 (23) | 98 (49.0) | 7 (7) | <0.001 | * | * |
Sore throat | 36 (36) | 43 (21.5) | 11 (11) | <0.001 | * | * |
Cough | 62 (62) | 185 (92.5) | 9 (9) | <0.001 | * | * |
Productive sputum | 11 (11) | 149 (74.5) | 0 | <0.001 | * | * |
Shortness of breath | 20 (20) | 118 (59) | 2 (2) | <0.001 | * | * |
Diarrhea | 9 (9) | 26 (13) | 13 (13) | 0.567 | - | - |
Myalgia | 27 (27) | 43 (21.5) | 86 (86) | <0.001 | NS | * |
Arthralgia | 0 | 0 | 11 (11) | <0.001 | - | * |
Headache | 16 (16) | 31 (15.5) | 53 (53) | <0.001 | NS | * |
Rash | 1 (1) | 4 (2) | 15 (15) | <0.001 | NS | * |
Number (%) or Median (IQR) | p-Value | |||||
---|---|---|---|---|---|---|
Laboratory Investigation | COVID-19 (A) (n = 100) | Influenza and RSV (B) (n = 200) | Dengue (C) (n = 100) | A vs. B vs. C | A vs. B | A vs. C |
Hb (g/dL) @ | 13.9 ± 1.6 | 11.1 ± 2.3 | 13.4 ± 1.9 | <0.001 | * | NS |
WBC (cells/mm3) # | 5120 (3915, 6440) | 7410 (4833, 10,048) | 3355 (2340, 4863) | <0.001 | * | * |
≥4000, n (%) | 72 (72) | 160/184 (87) | 36 (36) | <0.01 | * | * |
Lymphocyte count (cells/mm3) # | 1602 (1232, 2173) | 904 (562, 1350) | 630 (421, 916) | <0.001 | * | * |
≥1000, n (%) | 89 (89) | 83/184 (45.1) | 20 (20) | <0.01 | * | * |
Platelet count (/mm3) # | 216,500 (−173,000, 247,500) | 185,500 (−139,250, 245,000) | 112,500 (−66,750, 156,750) | <0.001 | * | * |
≥150,000, n (%) | 92 (92) | 129/184 (70.1) | 28 (28) | <0.01 | * | * |
AST (U/L) # | 22 (18, 31) | 32 (22, 58) | 82 (48, 199) | <0.001 | * | * |
≥40, n (%) | 18/99 (18.2) | 34/92 (37.0) | 68/83 (81.9) | <0.01 | * | * |
ALT (U/L) # | 24 (16, 37) | 24 (15, 39) | 56 (30, 134) | <0.001 | NS | * |
Risk Factors | b | Adjusted Odds Ratio | 95% CI | p-Value | |
---|---|---|---|---|---|
COVID-19 vs. | Age > 50 years old | 1.168 | 3.21 | 1.25–8.29 | 0.016 |
Influenza/RSV (1) | Underlying disease | 1.425 | 4.16 | 1.62–10.69 | 0.003 |
Rhinorrhea | 2.403 | 11.06 | 4.08–29.95 | <0.001 | |
Productive sputum | 3.155 | 23.47 | 9.38–58.70 | <0.001 | |
Lymphocyte count <1000 cells/mm3 | 1.836 | 6.25 | 2.50–15.72 | <0.001 | |
COVID-19 vs. | Headache | 1.658 | 5.25 | 1.32–20.87 | 0.019 |
Dengue (2) | Myalgia | 2.165 | 8.71 | 2.34–32.47 | 0.001 |
No Cough | 2.478 | 11.92 | 2.61–54.35 | 0.001 | |
Platelet count <150,000/mm3 | 3.262 | 26.10 | 6.43–105.91 | <0.001 | |
Lymphocyte count < 1000 cells/mm3 | 3.504 | 33.24 | 8.42–131.24 | <0.001 |
Risk Factors | b | b/|Smallest b| | Score | |
---|---|---|---|---|
COVID-19 vs. | Age > 50 years old | 1.168 | 1 | 1 |
Influenza/RSV | Underlying disease | 1.425 | 1.22 | 1 |
Rhinorrhea | 2.403 | 2.06 | 2 | |
Productive sputum | 3.155 | 2.70 | 3 | |
Lymphocyte count < 1000 cells/mm3 | 1.836 | 1.57 | 2 | |
COVID-19 | Headache | 1.658 | 1 | 1 |
vs. Dengue | Myalgia | 2.165 | 1.31 | 1 |
No cough | 2.478 | 1.49 | 1 | |
Platelet count < 150,000/mm3 | 3.262 | 1.97 | 2 | |
Lymphocyte count < 1000 cells/mm3 | 3.504 | 2.11 | 2 |
Number (%) | Number (%) | ||||
---|---|---|---|---|---|
Score for Influenza | COVID-19 (n = 100) | Influenza (n = 184) | Score for Dengue | COVID-19 (n = 100) | Dengue (n = 100) |
0 | 37 (37) | 1 (0.5) | 0 | 36 (36) | 0 (0) |
1 | 13 (13) | 2 (1.1) | 1 | 28 (28) | 1 (1) |
2 | 25 (25) | 13 (7.1) | 2 | 25 (25) | 1 (1) |
3 | 13 (13) | 5 (2.7) | 3 | 5 (5) | 7 (7) |
4 | 8 (8) | 18 (9.8) | 4 | 4 (4) | 17 (17) |
5 | 3 (3) | 43 (23.4) | 5 | 2 (2) | 24 (24) |
6 | 0 | 14 (7.6) | 6 | 0 (0) | 28 (28) |
7 | 1 (1) | 54 (29.3) | 7 | 0 (0) | 22 (22) |
8 | 0 | 8 (4.3) | |||
9 | 0 | 26 (14.1) |
Score for Influenza/RSV: Cutoff Point | Sensitivity (95% CI) | Specificity (95% CI) |
---|---|---|
≥3 | 91.3 (86.3, 95.0) | 75.0 (65.3, 83.1) |
≥4 | 88.6 (83.1, 92.8) | 88.0 (80.0, 93.6) |
≥5 | 78.8 (72.2, 84.5) | 96.0 (90.1, 98.9) |
Score for Dengue: Cutoff Point | Sensitivity (95% CI) | Specificity (95% CI) |
≥3 | 98.0 (93.0, 99.8) | 89.0 (81.2, 94.4) |
≥4 | 91.0 (83.6, 95.8) | 94.0 (87.4, 97.8) |
≥5 | 74.0 (64.3, 82.3) | 98.0 (93.0, 99.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirijatuphat, R.; Sirianan, K.; Horthongkham, N.; Komoltri, C.; Angkasekwinai, N. Distinguishing SARS-CoV-2 Infection and Non-SARS-CoV-2 Viral Infections in Adult Patients through Clinical Score Tools. Trop. Med. Infect. Dis. 2023, 8, 61. https://doi.org/10.3390/tropicalmed8010061
Sirijatuphat R, Sirianan K, Horthongkham N, Komoltri C, Angkasekwinai N. Distinguishing SARS-CoV-2 Infection and Non-SARS-CoV-2 Viral Infections in Adult Patients through Clinical Score Tools. Tropical Medicine and Infectious Disease. 2023; 8(1):61. https://doi.org/10.3390/tropicalmed8010061
Chicago/Turabian StyleSirijatuphat, Rujipas, Kulprasut Sirianan, Navin Horthongkham, Chulaluk Komoltri, and Nasikarn Angkasekwinai. 2023. "Distinguishing SARS-CoV-2 Infection and Non-SARS-CoV-2 Viral Infections in Adult Patients through Clinical Score Tools" Tropical Medicine and Infectious Disease 8, no. 1: 61. https://doi.org/10.3390/tropicalmed8010061
APA StyleSirijatuphat, R., Sirianan, K., Horthongkham, N., Komoltri, C., & Angkasekwinai, N. (2023). Distinguishing SARS-CoV-2 Infection and Non-SARS-CoV-2 Viral Infections in Adult Patients through Clinical Score Tools. Tropical Medicine and Infectious Disease, 8(1), 61. https://doi.org/10.3390/tropicalmed8010061