Dengue in Pregnancy: A Southeast Asian Perspective
Abstract
:1. Introduction
2. Materials and Methods
3. Incidence of Dengue in Southeast Asia
4. Pathophysiology of Uninfected versus Infected Pregnant Women
4.1. Cardiovascular Physiology
4.2. Endocrinological Physiology
4.3. Hematological Physiology
4.4. Respiratory Physiology
4.5. Hepatobiliary Physiology
4.6. Thermoregulatory Physiology
4.7. Others
5. Impact on Fetus
5.1. Vertical Transmission
5.2. Fetal Malformation
5.3. Neurodevelopmental Disorder
5.4. Fetal Growth Restriction
5.5. Stillbirth
5.6. Fetal Distress, Delivery, and Maternal Mortality
5.7. Miscarriage and Preterm Delivery
5.8. Placental Abruption and Hemorrhage
6. Management
6.1. Investigations
6.2. Treatment
Ongoing Use of Aspirin
7. Preconception Vaccination
8. Areas for Improvement
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABG | Arterial Blood Gas |
ADE | Antibody Dependent Enhancement |
ALP | Alkaline Phosphatase |
ALT | Alanine Transaminase |
APO | Acute Pulmonary Edema |
ASIR | Age-Standardized Incidence Rate |
AST | Aspartate Aminotransferase |
BMI | Body Mass Index |
BP | Blood Pressure |
Bpm | Beats per minute |
CYD-TDV | Dengvaxia |
DALY | Disability-Adjusted Life Years |
DHF | Dengue Hemorrhagic Fever |
DIC | to Disseminated Intravascular Coagulopathy |
DSS | Dengue Shock Syndrome |
DWS | Dengue with Warning Signs |
ELISA | Enzyme-Linked Immunosorbent Assay |
FBC | Full Blood Count |
GDM | Gestational Diabetes Mellitus |
GGT | Gamma-glutamyl Transferase |
GT | Gestational Thrombocytopenia |
hCG | Human Chorionic Gonadotropin |
HCT | Hematocrit |
HELLP | Hemolysis, Elevated Liver enzymes, Low Platelets |
HLA-G | Human Leukocyte Antigen G |
hPL | Human Placental Lactogen |
IUGR | Intrauterine Growth Restriction |
IV | Intravenous |
N/A | Not Applicable |
NDD | Neurodevelopmental Disorder |
NS1 | Non-Structural Protein 1 |
OR | Odds Ratio |
PCR | Polymerase Chain Reaction |
PRBC | Packed Red Blood Cells |
RCT | Rapid Combo Test |
SD | Severe Dengue |
SEA | Southeast Asia |
WBC | White Blood Cell count |
WHO | World Health Organisation |
References
- World Health Organization. Dengue and Severe Dengue. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 22 November 2021).
- University, NI. Southeast Asian Countries College of LIberal Arts and Science. Available online: https://www.niu.edu/clas/cseas/resources/countries.shtml#:~:text=Southeast%20Asia%20is%20composed%20of,%2C%20Singapore%2C%20Thailand%20and%20Vietnam (accessed on 6 June 2022).
- Yang, X.; Quam, M.B.M.; Zhang, T.; Sang, S. Global burden for dengue and the evolving pattern in the past 30 years. J. Travel Med. 2021, 28, 183. [Google Scholar] [CrossRef]
- Tian, N.; Zheng, J.X.; Guo, Z.Y.; Li, L.H.; Xia, S.; Lv, S.; Zhou, X.N. Dengue Incidence Trends and Its Burden in Major Endemic Regions from 1990 to 2019. Trop. Med. Infect. Dis. 2022, 7, 180. [Google Scholar] [CrossRef]
- Sinnadurai, J.T.S. Management of Dengue Infections In Adults, 3rd ed.; Malaysia Ministry of Health, Ed.; Malaysia Health Technology Assessment Section (MaHTAS): Putrajaya, Malaysia, 2015; p. 36. [Google Scholar]
- World Health Organization. Dengue Haemorrhagic Fever: Diagnosis, Treatment, Presevent and Control; World Health Organization: Geneva, Switzerland, 1997.
- Wijesundere, A.; Wijewickrama, A.; Kaluarachchi, A.; Senanayake, H.; Fernando, L.; Dissanayake, U.; Pallemulla, R.; Jayawardena, P.; Ratnasiri, U.D.; Wijesundere, A.; et al. Guidelines for Clinical Management of Dengue Infection in Pregnancy. Epidemiology Unit, Ministry of Health: Colombo, Sri Lanka, 2019. [Google Scholar]
- Gunawardane, N.; Wijewickrama, A.; Dissanayake, U.; Wanigasuriya, K.; Karunanayaka, P.; Gooneratne, L.; Jayawardana, P.; Ragunathan, M.K.; Pinto, V.; Kaluarachchi, A.; et al. Guidelines on Management of Dengue Fever & Dengue Haemorrhagic Fever In Adults; Epidemiology Unit, Ministry of Health: Colombo, Sri Lanka, 2012. [Google Scholar]
- World Health Organization. Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition; World Health Organization: Geneva, Switzerland, 2009.
- Srikiatkhachorn, A.; Rothman, A.L.; Gibbons, R.V.; Sittisombut, N.; Malasit, P.; Ennis, F.A.; Nimmannitya, S.; Kalayanarooj, S. Dengue—How Best to Classify It. Clin. Infect. Dis. 2011, 53, 563–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, J.R.; Castro, J. The health and economic impact of dengue in Latin America. Cad. Saude Publica 2007, 23 (Suppl. 1), S23–S31. [Google Scholar] [CrossRef] [Green Version]
- Wiyono, L.; Rocha, I.C.N.; Cedeño, T.D.D.; Miranda, A.V.; Lucero-Prisno Iii, D.E. Dengue and COVID-19 infections in the ASEAN region: A concurrent outbreak of viral diseases. Epidemiol. Health 2021, 43, e2021070. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Dengue Worldwide Overview. Available online: https://www.ecdc.europa.eu/en/dengue-monthly (accessed on 3 October 2022).
- Vecteezy. Free State Map of Southeast Asia. Available online: https://static.vecteezy.com/system/resources/previews/000/105/867/original/vector-free-state-map-of-southeast-asia.jpg (accessed on 5 June 2022).
- UCSF Health. Pregnancy the Three Trimesters. Available online: https://www.ucsfhealth.org/conditions/pregnancy/trimesters#:~:text=Pregnancy%20The%20Three%20Trimesters%20%7C%20UCSF,Trimester%20(27%20to%2040%20Weeks (accessed on 2 December 2021).
- ACOG Committee Opinion No. 736: Optimizing Postpartum Care. Obstet. Gynecol. 2018, 131, e140–e150. [CrossRef]
- Machain-Williams, C.; Raga, E.; Baak-Baak, C.M.; Kiem, S.; Blitvich, B.J.; Ramos, C. Maternal, Fetal, and Neonatal Outcomes in Pregnant Dengue Patients in Mexico. BioMed Res. Int. 2018, 2018, 9643083. [Google Scholar] [CrossRef]
- HMP Global Learning Network. Beyond The Basics: Trauma During Pregnancy. Available online: https://www.hmpgloballearningnetwork.com/site/emsworld/article/10320626/beyond-basics-trauma-during-pregnancy (accessed on 3 December 2021).
- Bauer, M.E.; Bauer, S.T.; Rajala, B.; MacEachern, M.P.; Polley, L.S.; Childers, D.; Aronoff, D.M. Maternal physiologic parameters in relationship to systemic inflammatory response syndrome criteria: A systematic review and meta-analysis. Obstet. Gynecol. 2014, 124, 535–541. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhao, L.; Shang, Y.; He, D.; Chen, J. Distribution of complete blood count constituents in gestational diabetes mellitus. Medicine 2021, 100, e26301. [Google Scholar] [CrossRef] [PubMed]
- Chesley, L.C. Plasma and red cell volumes during pregnancy. Am. J. Obstet. Gynecol. 1972, 112, 440–450. [Google Scholar] [CrossRef]
- Ayala, D.E.; Hermida, R.C.; Mojón, A.; Fernández, J.R.; Silva, I.; Ucieda, R.; Iglesias, M. Blood pressure variability during gestation in healthy and complicated pregnancies. Hypertension 1997, 30, 611–618. [Google Scholar] [CrossRef]
- Robson, S.C.; Hunter, S.; Moore, M.; Dunlop, W. Haemodynamic changes during the puerperium: A Doppler and M-mode echocardiographic study. Br. J. Obstet. Gynaecol. 1987, 94, 1028–1039. [Google Scholar] [CrossRef]
- Green, L.J.; Pullon, R.; Mackillop, L.H.; Gerry, S.; Birks, J.; Salvi, D.; Davidson, S.; Loerup, L.; Tarassenko, L.; Mossop, J.; et al. Postpartum-Specific Vital Sign Reference Ranges. Obstet. Gynecol. 2021, 137, 295. [Google Scholar]
- Barclay, M.L. Physiology of Pregnancy; The Global Library of Women’s Medicine: London, UK, 2004; Volume 1. [Google Scholar]
- Tagore, S.; Yim, C.F.; Kwek, K. Dengue haemorrhagic fever complicated by eclampsia in pregnancy. Singap. Med. J. 2007, 48, e281–e283. [Google Scholar] [PubMed]
- Sanghavi, M.; Rutherford, J.D. Cardiovascular Physiology of Pregnancy. Circulation 2014, 130, 1003–1008. [Google Scholar] [CrossRef]
- Malavige, G.N.; Ogg, G.S. Pathogenesis of vascular leak in dengue virus infection. Immunology 2017, 151, 261–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csapo, A.I.; Pulkkinen, M.O.; Wiest, W.G. Effects of luteectomy and progesterone replacement therapy in early pregnant patients. Am. J. Obstet. Gynecol. 1973, 115, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Reshef Tal, H.S.T. Endocrinology of Pregnancy; Endotext: South Dartmouth, MA, USA, 2021. [Google Scholar]
- Kumar, P.; Magon, N. Hormones in pregnancy. Niger. Med. J. 2012, 53, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Mustafa Al-Chalabi, A.N.B.; Alsalman, I. Physiology, Prolactin; Statpearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Samaan, N.; Yen, S.C.C.; Friesen, H.; Pearson, O.H. Serum Placental Lactogen Levels During Pregnancy and in Trophoblastic Disease. J. Clin. Endocrinol. Metab. 1966, 26, 1303–1308. [Google Scholar] [CrossRef]
- Handwerger, S.; Freemark, M. The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development. J. Pediatr. Endocrinol. Metab. 2000, 13, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Simpson, H.L.; Umpleby, A.M.; Russell-Jones, D.L. Insulin-like growth factor-I and diabetes. A review. Growth Horm. IGF Res. 1998, 8, 83–95. [Google Scholar] [CrossRef]
- Yang, M.-J.; Tseng, J.-Y.; Chen, C.-Y.; Yeh, C.-C. Changes in maternal serum insulin-like growth factor-I during pregnancy and its relationship to maternal anthropometry. J. Chin. Med. Assoc. 2013, 76, 635–639. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, N.; Thuesen, B.; Jørgensen, T.; Juul, A.; Spielhagen, C.; Wallaschofksi, H.; Linneberg, A. The Association Between IGF-I and Insulin Resistance. Diabetes Care 2012, 35, 768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darmochwal-Kolarz, D.; Kolarz, B.; Rolinski, J.; Leszczynska-Gorzelak, B.; Oleszczuk, J. The concentrations of soluble HLA-G protein are elevated during mid-gestation and decreased in pre-eclampsia. Folia Histochem. Et Cytobiol. 2012, 50, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Carosella, E.D.; Moreau, P.; Lemaoult, J.; Rouas-Freiss, N. HLA-G: From biology to clinical benefits. Trends Immunol. 2008, 29, 125–132. [Google Scholar] [CrossRef]
- O’Brien, M.; Dausset, J.; Carosella, E.D.; Moreau, P. Analysis of the role of HLA-G in preeclampsia. Hum. Immunol. 2000, 61, 1126–1131. [Google Scholar] [CrossRef]
- Hackmon, R.; Hallak, M.; Krup, M.; Weitzman, D.; Sheiner, E.; Kaplan, B.; Weinstein, Y. HLA-G Antigen and Parturition: Maternal Serum, Fetal Serum and Amniotic Fluid Levels during Pregnancy. Fetal Diagn. Ther. 2004, 19, 404–409. [Google Scholar] [CrossRef]
- Pritchard, J.A. Changes in the blood volume during pregnancy and delivery. Anesthesiology 1965, 26, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Gupta, O.; Rao, T.; Rao, S. Acute pancreatitis complicating severe dengue. J. Glob. Infect. Dis. 2014, 6, 76–78. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Cao, J.; Chen, Y.; Dong, Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2018, 16, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrick, V.; Altshuler, L.L.; Suri, R. Hormonal Changes in the Postpartum and Implications for Postpartum Depression. Psychosomatics 1998, 39, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Ching, S.M.; Ramachandran, V.; Yee, A.; Hoo, F.K.; Chia, Y.C.; Wan Sulaiman, W.A.; Suppiah, S.; Mohamed, M.H.; Veettil, S.K. Prevalence and risk factors of gestational diabetes mellitus in Asia: A systematic review and meta-analysis. BMC Pregnancy Childbirth 2018, 18, 494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waduge, R.; Malavige, G.N.; Pradeepan, M.; Wijeyaratne, C.N.; Fernando, S.; Seneviratne, S.L. Dengue infections during pregnancy: A case series from Sri Lanka and review of the literature. J. Clin. Virol. 2006, 37, 27–33. [Google Scholar] [CrossRef]
- Lee, I.K.; Hsieh, C.J.; Lee, C.T.; Liu, J.W. Diabetic patients suffering dengue are at risk for development of dengue shock syndrome/severe dengue: Emphasizing the impacts of co-existing comorbidity(ies) and glycemic control on dengue severity. J. Microbiol. Immunol. Infect. 2020, 53, 69–78. [Google Scholar] [CrossRef]
- Machado, C.R.; Machado, E.S.; Rohloff, R.D.; Azevedo, M.; Campos, D.P.; de Oliveira, R.B.; Brasil, P. Is pregnancy associated with severe dengue? A review of data from the Rio de Janeiro surveillance information system. PLoS Negl. Trop. Dis. 2013, 7, e2217. [Google Scholar] [CrossRef] [Green Version]
- Bueno Colman, E.D.; Pozzo, Y.A.; Umpierrez, G.E.; Medina, U.B.; Benitez, A.; Marin, S.N. The Impact of Diabetes and Hyperglycemia in Patients Hospitalized for Dengue. Diabetes 2018, 67, 1645-P. [Google Scholar] [CrossRef]
- Póvoa, T.F.; Alves, A.M.B.; Oliveira, C.A.B.; Nuovo, G.J.; Chagas, V.L.A.; Paes, M.V. The pathology of severe dengue in multiple organs of human fatal cases: Histopathology, ultrastructure and virus replication. PLoS ONE 2014, 9, e83386. [Google Scholar] [CrossRef] [Green Version]
- Sudulagunta, S.R.; Sodalagunta, M.B.; Sepehrar, M.; Bangalore Raja, S.K.; Nataraju, A.S.; Kumbhat, M.; Sathyanarayana, D.; Gummadi, S.; Burra, H.K. Dengue shock syndrome. Oxf. Med. Case Rep. 2016, 2016, omw074. [Google Scholar] [CrossRef] [Green Version]
- Sangkaew, S.; Ming, D.; Boonyasiri, A.; Honeyford, K.; Kalayanarooj, S.; Yacoub, S.; Dorigatti, I.; Holmes, A. Risk predictors of progression to severe disease during the febrile phase of dengue: A systematic review and meta-analysis. Lancet Infect. Dis. 2021, 21, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Tripathi, A.K.; Mishra, S.; Amzarul, M.; Vaish, A.K. Physiological changes in hematological parameters during pregnancy. Indian J. Hematol. Blood Transfus. 2012, 28, 144–146. [Google Scholar] [CrossRef] [Green Version]
- Hariyanto, H.; Yahya, C.Q.; Wibowo, P.; Tampubolon, O.E. Management of severe dengue hemorrhagic fever and bleeding complications in a primigravida patient: A case report. J. Med. Case Rep. 2016, 10, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremme, K.A. Haemostatic changes in pregnancy. Best Pract. Res. Clin. Haematol. 2003, 16, 153–168. [Google Scholar] [CrossRef]
- Antovic, A.; Blombäck, M.; Bremme, K.; He, S. The assay of overall haemostasis potential used to monitor the low molecular mass (weight) heparin, dalteparin, treatment in pregnant women with previous thromboembolism. Blood Coagul. Fibrinolysis 2002, 13, 181–186. [Google Scholar] [CrossRef]
- Tchaikovski, S.N.; Rosing, J. Mechanisms of Estrogen-Induced Venous Thromboembolism. Thromb. Res. 2010, 126, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Cines, D.B.; Levine, L.D. Thrombocytopenia in pregnancy. Blood 2017, 130, 2271–2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ankit Mangla, H.H. Thrombocytopenia in Pregnancy; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Ciobanu, A.M.; Colibaba, S.; Cimpoca, B.; Peltecu, G.; Panaitescu, A.M. Thrombocytopenia in Pregnancy. Maedica 2016, 11, 55–60. [Google Scholar]
- Zhang, X.; Zhao, Y.; Li, X.; Han, P.; Jing, F.; Kong, Z.; Zhou, H.; Qiu, J.; Li, L.; Peng, J.; et al. Thrombopoietin: A potential diagnostic indicator of immune thrombocytopenia in pregnancy. Oncotarget 2016, 7, 7489–7496. [Google Scholar] [CrossRef] [Green Version]
- Azeredo, E.L.d.; Monteiro, R.Q.; de-Oliveira Pinto, L.M. Thrombocytopenia in Dengue: Interrelationship between Virus and the Imbalance between Coagulation and Fibrinolysis and Inflammatory Mediators. Mediat. Inflamm. 2015, 2015, 313842. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yuan, E.; Lee, L. Gestational age-specific reference intervals for routine haemostatic assays during normal pregnancy. Clin. Chim. Acta 2012, 413, 258–261. [Google Scholar] [CrossRef]
- Brenner, B. Haemostatic changes in pregnancy. Thromb. Res. 2004, 114, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Maybury, H.J.; Waugh, J.J.S.; Gornall, A.; Pavord, S. There is a return to non-pregnant coagulation parameters after four not six weeks postpartum following spontaneous vaginal delivery. Obstet. Med. 2008, 1, 92–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LoMauro, A.; Aliverti, A. Respiratory physiology of pregnancy: Physiology masterclass. Breathe 2015, 11, 297–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, L.J.; Mackillop, L.H.; Salvi, D.; Pullon, R.; Loerup, L.; Tarassenko, L.; Mossop, J.; Edwards, C.; Gerry, S.; Birks, J.; et al. Gestation-Specific Vital Sign Reference Ranges in Pregnancy. Obstet. Gynecol. 2020, 135, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Kodali, B.S.; Segal, S. Obstetric Anesthesia Handbook; Spring Science+Business Media: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Chauhan, G.; Tadi, P. Physiology, Postpartum Changes; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Bacq, Y. The Liver in Normal Pregnancy. In Madame Curie Bioscience Database; Landes Bioscience: Austin, TX, USA, 2013. [Google Scholar]
- David, A.L.; Kotecha, M.; Girling, J.C. Factors influencing postnatal liver function tests. BJOG Int. J. Obstet. Gynaecol. 2005, 107, 1421–1426. [Google Scholar] [CrossRef] [Green Version]
- Samanta, J.; Sharma, V. Dengue and its effects on liver. World J. Clin. Cases 2015, 3, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Hartgill, T.W.; Bergersen, T.K.; Pirhonen, J. Core body temperature and the thermoneutral zone: A longitudinal study of normal human pregnancy. Acta Physiol. 2011, 201, 467–474. [Google Scholar] [CrossRef]
- Rajagopala, L.; Satharasinghe, R.L.; Karunarathna, M. A rare case of dengue encephalopathy complicating a term pregnancy. BMC Res. Notes 2017, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-de-Lima, V.H.; Lima-Camara, T.N. Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: A systematic review. Parasites Vectors 2018, 11, 77. [Google Scholar] [CrossRef] [Green Version]
- Sinhabahu, V.P.; Sathananthan, R.; Malavige, G.N. Perinatal transmission of dengue: A case report. BMC Res. Notes 2014, 7, 795. [Google Scholar] [CrossRef] [Green Version]
- Sondo, K.A.; Ouattara, A.; Diendéré, E.A.; Diallo, I.; Zoungrana, J.; Zémané, G.; Da, L.; Gnamou, A.; Meda, B.; Poda, A. Dengue infection during pregnancy in Burkina Faso: A cross-sectional study. BMC Infect. Dis. 2019, 19, 997. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, C.F.; Lopes, V.G.; Brasil, P.; Coelho, J.; Muniz, A.G.; Nogueira, R.M. Perinatal transmission of dengue: A report of 7 cases. J. Pediatr. 2013, 163, 1514–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barthel, A.; Gourinat, A.C.; Cazorla, C.; Joubert, C.; Dupont-Rouzeyrol, M.; Descloux, E. Breast milk as a possible route of vertical transmission of dengue virus? Clin. Infect. Dis. 2013, 57, 415–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, P.C.; Rajasingam, G.; Devi, S.; Omar, S.Z. Dengue infection in pregnancy: Prevalence, vertical transmission, and pregnancy outcome. Obstet Gynecol. 2008, 111, 1111–1117. [Google Scholar] [CrossRef] [Green Version]
- Basurko, C.; Matheus, S.; Hildéral, H.; Everhard, S.; Restrepo, M.; Cuadro-Alvarez, E.; Lambert, V.; Boukhari, R.; Duvernois, J.-P.; Favre, A.; et al. Estimating the Risk of Vertical Transmission of Dengue: A Prospective Study. Am. J. Trop. Med. Hyg. 2018, 98, 1826–1832. [Google Scholar] [CrossRef] [Green Version]
- Phongsamart, W.; Yoksan, S.; Vanaprapa, N.; Chokephaibulkit, K. Dengue Virus Infection in Late Pregnancy and Transmission to the Infants. Pediatr. Infect. Dis. J. 2008, 27, 500–504. [Google Scholar] [CrossRef]
- Chong, K.Y.; Lin, K.C. A preliminary report of the fetal effects of dengue infection in pregnancy. Gaoxiong Yi Xue Ke Xue Za Zhi 1989, 5, 31–34. [Google Scholar]
- Dreier, J.W.; Andersen, A.M.; Berg-Beckhoff, G. Systematic review and meta-analyses: Fever in pregnancy and health impacts in the offspring. Pediatrics 2014, 133, e674–e688. [Google Scholar] [CrossRef] [Green Version]
- Antoun, S.; Ellul, P.; Peyre, H.; Rosenzwajg, M.; Gressens, P.; Klatzmann, D.; Delorme, R. Fever during pregnancy as a risk factor for neurodevelopmental disorders: Results from a systematic review and meta-analysis. Mol. Autism 2021, 12, 60. [Google Scholar] [CrossRef]
- Ribeiro, C.F.; Lopes, V.G.S.; Brasil, P.; Pires, A.R.C.; Rohloff, R.; Nogueira, R.M.R. Dengue infection in pregnancy and its impact on the placenta. Int. J. Infect. Dis. 2017, 55, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Friedman, E.E.; Dallah, F.; Harville, E.W.; Myers, L.; Buekens, P.; Breart, G.; Carles, G. Symptomatic Dengue infection during pregnancy and infant outcomes: A retrospective cohort study. PLoS Negl. Trop. Dis. 2014, 8, e3226. [Google Scholar] [CrossRef] [Green Version]
- Goldenberg, R.L.; McClure, E.M. Dengue and stillbirth. Lancet Infect. Dis. 2017, 17, 886–888. [Google Scholar] [CrossRef] [PubMed]
- Mulyana, R.S.; Pangkahila, E.S.; Pemayun, T.G.A. Maternal and Neonatal Outcomes during Dengue Infection Outbreak at a Tertiary National Hospital in Endemic Area of Indonesia. Korean J. Fam. Med. 2020, 41, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Royal College Physician of Thailand. Practical Guideline For Management of Dengue in Adults; SEAMEO Regional Tropical Medicine and Public Health Network: Bangkok, Thailand, 2014; Volume 46. [Google Scholar]
- Singkibutr, T.; Wuttikonsammakit, P.; Chamnan, P. Effects of Dengue Infection on Maternal and Neonatal Outcomes in Thai Pregnant Women: A Retrospective Cohort Study. J. Med. Assoc. Thai. 2020, 103, 155–162. [Google Scholar]
- Chansamouth, V.; Thammasack, S.; Phetsouvanh, R.; Keoluangkot, V.; Moore, C.E.; Blacksell, S.D.; Castonguay-Vanier, J.; Dubot-Pérès, A.; Tangkhabuanbutra, J.; Tongyoo, N.; et al. The Aetiologies and Impact of Fever in Pregnant Inpatients in Vientiane, Laos. PLoS Negl. Trop. Dis. 2016, 10, e0004577. [Google Scholar] [CrossRef] [Green Version]
- Paixão, E.S.; Campbell, O.M.; Teixeira, M.G.; Costa, M.C.; Harron, K.; Barreto, M.L.; Leal, M.B.; Almeida, M.F.; Rodrigues, L.C. Dengue during pregnancy and live birth outcomes: A cohort of linked data from Brazil. BMJ Open 2019, 9, e023529. [Google Scholar] [CrossRef]
- Informed Health.Org. Pregnancy and Birth: Before Preterm Birth: What do Steroids do? Institute for Quality and Efficacy in Health Care: Cologne, Germany, 2006. [Google Scholar]
- Zhang, F.; Kramer, C.V. Corticosteroids for dengue infection. Cochrane Database Syst. Rev. 2014, 2014, CD003488. [Google Scholar] [CrossRef]
- MarchOfDimes. Placental Abruption. Available online: https://www.marchofdimes.org/complications/placental-abruption.aspx (accessed on 23 January 2022).
- Kusuma, N.; Kusuma, A. Dengue hemorrhagic fever in pregnancy complicated with placenta abruption and vertical transmission: A case report. Bali Med. J. 2017, 6, 100. [Google Scholar] [CrossRef]
- National Centre for Infectious Diseases. Dengue. Singapore. Available online: https://www.ncid.sg/Health-Professionals/Diseases-and-Conditions/Pages/Dengue.aspx (accessed on 23 January 2022).
- Revised Dengue Clinical Case Management Guidelines, 15th ed.; Republic of the Philippines, Department of Health: Manila, Philippines, 2011; p. 18.
- National Guideline for Clinical Management of Dengue, 1st ed.; Department of Public Health, Ministry of Health and Sports: Naypyidaw, Myanmar, 2021; p. 46.
- Gupte, S.; Singh, S.; Sheriar, N.; Kurian, R.; Thanawala, U.; Wagh, G.; Tank, P.; Chauhan, A.; Kinjawdekar, S.; Vij, A.; et al. Dengue In Pregnancy: Management Protocols. Federation of Obstetric and Gynecological Societies of India: Mumbai, India, 2014. [Google Scholar]
- Choi, Y.J.; Shin, S. Aspirin Prophylaxis During Pregnancy: A Systematic Review and Meta-Analysis. Am. J. Prev. Med. 2021, 61, e31–e45. [Google Scholar] [CrossRef]
- Cadavid, A.P. Aspirin: The Mechanism of Action Revisited in the Context of Pregnancy Complications. Frontiers in Immunology 2017, 8, 261. [Google Scholar] [CrossRef] [Green Version]
- Australian Medical Handbook. Aspirin (Antiplatelet); Commonwealth Department of Health and Human Services: Adelaide, Australia, 2021.
- Mohamed Ismail, N.A.; Wan Abd Rahim, W.E.R.; Salleh, S.A.; Neoh, H.-M.; Jamal, R.; Jamil, M.A. Seropositivity of Dengue Antibodies during Pregnancy. Sci. World J. 2014, 2014, 436975. [Google Scholar] [CrossRef] [Green Version]
- Lam, J.H.; Chua, Y.L.; Lee, P.X.; Martínez Gómez, J.M.; Ooi, E.E.; Alonso, S. Dengue vaccine-induced CD8+ T cell immunity confers protection in the context of enhancing, interfering maternal antibodies. JCI Insight 2017, 2, e94500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, C.P.; Chau, T.N.B.; Thuy, T.T.; Tuan, N.M.; Hoang, D.M.; Thien, N.T.; Lien, L.B.; Quy, N.T.; Hieu, N.T.; Hien, T.T.; et al. Maternal antibody and viral factors in the pathogenesis of dengue virus in infants. J. Infect. Dis. 2007, 196, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Dengue vaccine: WHO position paper, September 2018—Recommendations. Vaccine 2019, 37, 4848–4849. [CrossRef] [PubMed]
- Skipetrova, A.; Wartel, T.A.; Gailhardou, S. Dengue vaccination during pregnancy—An overview of clinical trials data. Vaccine 2018, 36, 3345–3350. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.; Ramasamy, V.; Shanmugam, R.K.; Ahuja, R.; Khanna, N. Antibody-Dependent Enhancement: A Challenge for Developing a Safe Dengue Vaccine. Front. Cell. Infect. Microbiol. 2020, 10, 572681. [Google Scholar] [CrossRef]
Gestational Stage | Uninfected | Infected |
---|---|---|
Trimester 1 | Widened pulse pressure [7]. | Higher risk of pre-eclampsia and eclampsia in severe dengue. Unclear if related to first or second-trimester infection [5,17]. Narrowing of pulse pressure to 25 mm Hg or less with shock [7]. Sepsis or DHF increases capillary permeability, putting infected mothers at an even higher risk of Acute Pulmonary Edema (APO) [7]. Decrease in plasma volume can happen secondary to bleeding in dengue [18]. |
Trimester 2 | Development of pre-eclampsia in susceptible women. Diastolic BP drops more than systolic BP, causing widened pulse pressure [7] Mean heart rate = 75 beats per minute (bpm) [19]. Blood pressure (BP) generally reduces [20]. Progressive increase in plasma volume [21]. | Effects on pre-eclampsia and pulse pressures are as above. Refer to above for general altered physiology for dengue in pregnant women. |
Trimester 3 | The mean heart rate peaks late in the third trimester. However, it should not be >95 bpm [7]. Plasma volume increases until the 30th–34th week and then plateaus or decreases slightly through the term [21]. BP generally increases [22] | No specific altered physiology for dengue in pregnant women in the third trimester can be found. Refer to above for general altered physiology for dengue in pregnant women. |
Post-partum | Two weeks post-delivery, the mother returns to a hemodynamically same state as pre-pregnancy [23]. Maternal heart rate is fastest on the day of delivery, with a median of 83 bpm. This decreases until Day 14 post-labor [24]. Maternal BP increases until day 5 or 6 post-delivery, reaching a median of 121/79 mm Hg. It then decreases to normal by day 14 post-partum, reaching a median of 116/75 mm Hg [24]. Plasma volume decreases [25]. | No specific altered physiology for dengue in post-partum women can be found. |
Gestational Stage | Uninfected | Infected |
---|---|---|
Trimester 1 | Progesterone level increases [29]. Human chorionic gonadotropin (hCG) peaks from the 8th to the 10th week before plateauing [30]. Relaxin increases [30]. Parathyroid hormone levels rise [31]. Prolactin levels rise [32]. | There is insufficient research on pathological hormonal changes in infected pregnant mothers. |
Trimester 2 | GDM can develop in susceptible women. Increase in human Placental Lactogen (hPL) levels [33] stimulates liver production of insulin-like growth factor (IGF-1) [34] for glucose control [35].
| Lack of evidence to suggest dengue increases the risk of developing GDM [43]. No evidence was found on how dengue can affect the hormones discussed. |
Trimester 3 | hPL levels do not change much from the 2nd trimester [33]. Serum HLA-G levels decrease in concentration (63.31 Units/mL), but remain higher than in non-pregnant women [38]. Estrogen continues to increase [44]. | No specific altered physiology for dengue in pregnant women in the third trimester can be found. Refer to above for general altered physiology for dengue in pregnant women. |
Post-partum | hPL levels decrease post-birth, becoming undetectable by 18–24 h post-birth [33]. Estrogen levels decrease after placenta removal and return to pre-pregnancy levels by day 5 post-partum [45]. | No specific altered physiology for dengue in post-partum women can be found. |
Gestational Stage | Uninfected | Infected |
---|---|---|
Trimester 1 | Lymphocyte count decreases, although leukocytosis is present [54]. Blood volume expansion at 6–12 weeks [54].
| Leukopenia may not be seen in infected mothers [7]. Due to physiological hemodilution during pregnancy, hemoconcentration with plasma leakage in dengue may be masked [55]. Therefore, a rising HCT can mean maternal shock [7]. |
Trimester 2 | Increased hypercoagulability, particularly in the second trimester [20].
Gestational thrombocytopenia (GT) may develop in 4.4% to 11.6% of pregnant women [59].
Decreased erythrocyte count [20]. | Thrombocytopenia can occur in dengue [63], and a fall in platelet counts below <80 × 109/L may suggest plasma leakage [7]. |
Trimester 3 | Mean WBC count approximates 9 × 109/L [19]. Leukocyte count remains like the second trimester [20]. Platelet count decreases [20]. Erythrocyte count increases from the 28th week to the end of pregnancy [20]. Remains in a hypercoagulable state [64,65]. | No specific altered physiology for dengue in pregnant women in the third trimester can be found. Refer to above for general altered physiology for dengue in pregnant women. |
Post-partum | Leukocyte count peaks a week post-partum and subsequently decreases drastically at week 7 post-partum [20]. Platelet count increases after birth and peaks a week post-partum [20]. Erythrocyte count decreases a week post-partum before increasing again [20]. Hypercoagulable state takes approximately 4 weeks to resolve [66]. | No specific altered physiology for dengue in post-partum women can be found. |
Gestational Stage | Uninfected | Infected |
---|---|---|
Trimester 1 | Minute ventilation increases by up to 48% with higher tidal volume and unchanged respiratory rate [67]. | No specific altered physiology for dengue in pregnant women in the first trimester can be found. Refer below for general altered physiology for dengue in pregnant women. |
Trimester 2 | Pregnancy leads to compensated respiratory alkalosis. Increased oxygen consumption causes hypoxia susceptibility [7]. Mean respiratory rate is around 15 breaths per minute [19]. Mean partial pressure of carbon dioxide is around 32 mm Hg [19]. | No trimester-specific evidence on the altered respiratory physiology in pregnant women with dengue was found. The fall in oncotic pressure and pulmonary resistance causes vulnerability to developing APO [7]. Additionally, the respiratory rate might increase [7]. |
Trimester 3 | Continued compensated respiratory alkalosis and oxygen consumption [7]. Respiratory rate ranges between 8–24 breathes per minute [68]. | No specific altered physiology for dengue in pregnant women in the third trimester can be found. Refer to above for general altered physiology for dengue in pregnant women. |
Post-partum | Respiratory parameters return to normal 6–12 weeks after labor [69]. Respiratory rate returns to pre-pregnancy levels by 2–3 days post-birth [70]. | No specific altered physiology for dengue in post-partum women can be found. |
Gestational Stage | Uninfected | Infected |
---|---|---|
Trimester 1 | Albumin level decreases [71]. Serum total and free bilirubin concentrations are lower in all trimesters [71]. Serum alkaline phosphatase (ALP) activity increases [71]. Serum gamma-glutamyl transferase (GGT) activity levels decrease slightly [71]. | Maternal liver enzyme derangement [17]. |
Trimester 2 | ||
Trimester 3 | ||
Post-partum | Bilirubin concentration increases post-partum, returning to pre-pregnancy levels by day 5 post-partum [72]. GGT levels should return to normal by day 13 post-partum [72]. GGT levels initially decrease, then increase, peaking at either day 5 or 10 post-partum [72]. |
Gestational Stage | Uninfected | Infected |
---|---|---|
Trimester 1 | Core body temperature increases a few tenths of a degree [74]. | Dengue causes an increase in body temperature [1]. No trimester-specific data was found. |
Trimester 2 | Mean body temperature decreases from the first trimester [74] to around 36.9 degrees Celsius [19]. | |
Trimester 3 | Body temperature decreases from the second trimester [74] and ranges between 35.37 to 37.35 degrees Celsius [68]. | |
Post-partum | Core body temperature remains below pre-pregnancy levels until 3 months post-partum [74]. |
Country | Initial Assessment | Diagnostics | Follow-Up |
---|---|---|---|
Myanmar | Baseline Full Blood Count (FBC), including HCT
| Dengue NS1 test Dengue IgM test
| FBC
|
Philippines | History Physical examination
| Viral culture isolation Dengue PCR Diagnostic tests are not necessary for acute management. | Not Applicable (N/A) |
Malaysia | Baseline FBC (including HCT) for all patients suspected of having dengue. (As per point 1 of Myanmar guideline) Other tests to consider performing include liver function test, renal profile, coagulation profile, lactate, blood gases, troponin, and creatine kinase. | Rapid Combo Test (RCT)
| Serial FBC to monitor disease progression |
Thailand | N/A | Dengue PCR Dengue NS1 Dengue IgM/IgG test | N/A |
Singapore | FBC (including HCT). (As per point 1 of Myanmar guideline) Liver Function Tests Monitor for elevated transaminases (AST is normally more elevated than ALT) | Dengue IgM
| N/A |
Malaysia [5] | Thailand [91] | Myanmar [101] | Singapore [99] | Philippines [100] | |
---|---|---|---|---|---|
Pathophysiology | N/A | N/A | |||
Investigations | |||||
Management | |||||
Complications | N/A | N/A | |||
Links | https://www.moh.gov.my/moh/resources/penerbitan/GUIDELINE/GUIDELINE%20Dengue%20Infection%20PDF%20Final.pdf | https://www.tm.mahidol.ac.th/seameo/2015-46-1-suppl/c7Annexp169-181.pdf | https://www.mmacentral.org/wp-content/uploads/2022/06/National-Guideline-for-Clinical-Management-of-Dengue-2021.pdf | https://www.ncid.sg/Health-Professionals/Diseases-and-Conditions/Pages/Dengue.aspx | https://pcp.org.ph/images/PSBIM/PSBIM_Local_Guidelines_2019/RevisedDengueClinicalCaseManagementGuidelines2011-DOH.pdf |
Access Date | 2 December 2021 | 9 December 2022 | 9 December 2022 | 9 December 2022 | 9 December 2022 |
Country | Initial Assessment | Febrile Phase | DHF | DSS | Complications | Peripartum |
---|---|---|---|---|---|---|
Myanmar | Admit if Day 2 of fever, with multidisciplinary team involvement. Hemodynamic stability should consider
FBC interpretation should consider
| N/A | DHF with warning signs:
In DHF without warning signs:
| Transfer to high dependency or intensive care. Immediate crystalloid fluid resuscitation. | If profound thrombocytopenia
Severe hemorrhage
| Avoidance of cesarean sections, induction of labor, and obstetric procedures (due to hemorrhagic risk). If necessary, interventional delivery
Post-partum fever
|
Philippines | N/A | N/A | As per the Myanmar guidelines. Contains detailed guidelines on fluid management in DHF without warning signs. | Hypotensive shock
| As per the Myanmar guidelines. | N/A |
Malaysia | Close monitoring of vital signs for shock. Appropriate fluid or blood product administration. Early referral to intensivist and obstetrician. | Measure hemodynamic, respiratory, neurological status, and urine output every 4 h. FBC daily. Organ function tests, Arterial Blood Gas (ABG), lactate, and coagulation profile, only if indicated. | Measure hemodynamic, respiratory, neurological status, and urine output every 2 h. FBC 4–12 hourly. Renal and liver function tests, creatine kinase daily at least. Cardiac function tests, ABG, lactate, and coagulation profile, only if indicated. | Measure hemodynamic, respiratory, and neurological status every 15 min until stable, then hourly. Measure hourly urine output. FBC between fluid resuscitation. ABG, lactate close monitoring. Organ function tests, and coagulation profile, only as indicated. | As per the Myanmar guidelines. Contains detailed management of hepatic, cardiac, neurological, and immunological complications of dengue, and intensive care management. | Avoidance of caesarean section, operative vaginal delivery, intramuscular injections.
Preterm labor
Third stage of labor
Breastfeeding recommended only after the viremic phase. |
Thailand | N/A | Monitoring similar to the Malaysian guidelines but does not distinguish between different phases of dengue. | N/A | As per the Myanmar guidelines on intrapartum platelet transfusion. | ||
Antipyretics, hydration, and supportive care (no clear indication of specific phase involved). | N/A | Persistent shock despite fluids
| ||||
Singapore | N/A | As per the Thailand guidelines on supportive care Daily platelet and HCT for platelets less than 100,000/mm3 Complete bed rest for platelets less than 50,000/mm3 | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chong, V.; Tan, J.Z.L.; Arasoo, V.J.T. Dengue in Pregnancy: A Southeast Asian Perspective. Trop. Med. Infect. Dis. 2023, 8, 86. https://doi.org/10.3390/tropicalmed8020086
Chong V, Tan JZL, Arasoo VJT. Dengue in Pregnancy: A Southeast Asian Perspective. Tropical Medicine and Infectious Disease. 2023; 8(2):86. https://doi.org/10.3390/tropicalmed8020086
Chicago/Turabian StyleChong, Vanessa, Jennifer Zi Ling Tan, and Valliammai Jayanthi Thirunavuk Arasoo. 2023. "Dengue in Pregnancy: A Southeast Asian Perspective" Tropical Medicine and Infectious Disease 8, no. 2: 86. https://doi.org/10.3390/tropicalmed8020086
APA StyleChong, V., Tan, J. Z. L., & Arasoo, V. J. T. (2023). Dengue in Pregnancy: A Southeast Asian Perspective. Tropical Medicine and Infectious Disease, 8(2), 86. https://doi.org/10.3390/tropicalmed8020086