Effect of Demographics and Time to Sample Processing on the qPCR Detection of Pathogenic Leptospira spp. from Human Samples in the National Reference Laboratory for Leptospirosis, Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting
2.2. Samples Acquisition and Conditioning
2.3. DNA Extraction
2.4. Duplex Quantitative Real-Time PCR
2.5. Leptospira spp. Culture
2.6. Data Analysis and Statistics
3. Results
3.1. Sample Demographics and Time Intervals from Sample Collection up to qPCR Reaction
3.2. lipL32 and RNASEP1 qPCR Detection among Tested Samples
3.3. Effects of Demographics in lipL32 Detection from Human Samples
3.4. Effects of Samples Processing Time in lipL32 Detection from Human Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajapakse, S. Leptospirosis: Clinical aspects. Clin. Med. 2022, 22, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Khaki, P. Clinical Laboratory Diagnosis of Human Leptospirosis. Int. J. Enteric Pathog. 2016, 4, 31859. [Google Scholar] [CrossRef] [Green Version]
- Sykes, J.E.; Reagan, K.L.; Nally, J.E.; Galloway, R.L.; Haake, D.A. Role of Diagnostics in Epidemiology, Management, Surveillance, and Control of Leptospirosis. Pathogens 2022, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Alia, S.N.; Joseph, N.; Philip, N.; Azhari, N.N.; Garba, B.; Masri, S.N.; Sekawi, Z.; Neela, V.K. Diagnostic accuracy of rapid diagnostic tests for the early detection of leptospirosis. J. Infect. Public Heal. 2019, 12, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Cumberland, P.; Everard, C.; Levett, P. Assessment of the efficacy of an IgM-elisa and microscopic agglutination test (MAT) in the diagnosis of acute leptospirosis. Am. J. Trop. Med. Hyg. 1999, 61, 731–734. [Google Scholar] [CrossRef] [Green Version]
- Shivakumar, S. Guidelines for the Diagnosis of Human Leptospirosis. Ind. J. Vet. Anim. Sci. Res. 2018, 47, 1253–1266. [Google Scholar]
- Riediger, I.N.; Stoddard, R.A.; Ribeiro, G.; Nakatani, S.M.; Moreira, S.D.R.; Skraba, I.; Biondo, A.W.; Reis, M.G.; Hoffmaster, A.R.; Vinetz, J.M.; et al. Rapid, actionable diagnosis of urban epidemic leptospirosis using a pathogenic Leptospira lipL32-based real-time PCR assay. PLoS Negl. Trop. Dis. 2017, 11, e0005940. [Google Scholar] [CrossRef]
- Riediger, I.N.; Hoffmaster, A.R.; Casanovas-Massana, A.; Biondo, A.W.; Ko, A.I.; Stoddard, R.A. An Optimized Method for Quantification of Pathogenic Leptospira in Environmental Water Samples. PLoS ONE 2016, 11, e0160523. [Google Scholar] [CrossRef] [Green Version]
- Goris, M.G.; Hartskeerl, R.A. Leptospirosis serodiagnosis by the microscopic agglutination test. Curr. Protoc. Microbiol. 2014, 32, Unit 12E.5. [Google Scholar] [CrossRef]
- Podgoršek, D.; Ružić-Sabljić, E.; Logar, M.; Pavlović, A.; Remec, T.; Baklan, Z.; Pal, E.; Cerar, T. Evaluation of real-time PCR targeting the lipL32 gene for diagnosis of Leptospira infection. BMC Microbiol. 2020, 20, 59. [Google Scholar] [CrossRef]
- Vijayachari, P.; Sugunan, A.P.; Sehgal, S.C. Evaluation of microscopic agglutination test as a diagnostic tool during acute stage of leptospirosis in high & low endemic areas. Indian J. Med. Res. 2001, 114, 99–106. [Google Scholar]
- Philip, N.; Affendy, N.B.; Masri, S.N.; Yuhana, M.Y.; Than, L.T.L.; Sekawi, Z.; Neela, V.K. Combined PCR and MAT improves the early diagnosis of the biphasic illness leptospirosis. PLoS ONE 2020, 15, e0239069. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Mini, M.; Sriram, V.K.; Ambily, R.; Aravindakshan, T.; Ajithkumar, S. Evaluation of real-time PCR, MAT, and recombinant LipL32-based ELISA for the diagnosis of canine leptospirosis in a disease-endemic South Indian state, Kerala. Turk. J. Vet. Anim. Sci. 2018, 42, 191–197. [Google Scholar]
- Ooteman, M.C.; Vago, A.; Koury, M. Evaluation of MAT, IgM ELISA and PCR methods for the diagnosis of human leptospirosis. J. Microbiol. Methods 2006, 65, 247–257. [Google Scholar] [CrossRef]
- Mullan, S.; Panwala, T.H. Polymerase Chain Reaction: An Important Tool for Early Diagnosis of Leptospirosis Cases. J. Clin. Diagn. Res. 2016, 10, DC08–DC11. [Google Scholar] [CrossRef]
- Picardeau, M. Diagnosis and epidemiology of leptospirosis. Méd. Mal. Infect. 2013, 43, 1–9. [Google Scholar] [CrossRef] [PubMed]
- González, S.; Geymonat, J.P.; Hernández, E.; Marqués, J.M.; Schelotto, F.; Varela, G. Usefulness of real-time PCR assay targeting lipL32 gene for diagnosis of human leptospirosis in Uruguay. J. Infect. Dev. Ctries 2013, 7, 941–945. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Engelberts, M.F.M.; Boer, K.R.; Ahmed, N.; Hartskeerl, R.A. Development and validation of a real-time PCR for detection of pathogenic Leptospira species in clinical materials. PLoS ONE 2009, 4, e7093. [Google Scholar] [CrossRef]
- Costa, F.; Hagan, J.E.; Calcagno, J.; Kane, M.; Torgerson, P.; Martinez-Silveira, M.S.; Stein, C.; Abela-Ridder, B.; Ko, A.I. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLoS Negl. Trop. Dis. 2015, 9, e0003898. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.; Ribeiro, G.S.; Felzemburgh, R.D.M.; Santos, N.; Reis, R.B.; Santos, A.C.; Fraga, D.B.M.; Araujo, W.N.; Santana, C.; Childs, J.E.; et al. Influence of household rat infestation on leptospira transmission in the urban slum environment. PLoS Negl. Trop. Dis. 2014, 8, e3338. [Google Scholar] [CrossRef] [Green Version]
- Marteli, A.N.; Guasselli, L.A.; Diament, D.; Wink, G.O.; Vasconcelos, V.V. Spatio-temporal analysis of leptospirosis in Brazil and its relationship with flooding. Geospatial Health 2022, 17. [Google Scholar] [CrossRef]
- Karande, S.; Bhatt, M.; Kelkar, A.; Kulkarni, M.; De, A.; Varaiya, A. An observational study to detect leptospirosis in Mumbai, India, 2000. Arch. Dis. Child. 2003, 88, 1070–1075. [Google Scholar] [CrossRef] [Green Version]
- Naing, C.; Reid, S.; Aye, S.N.; Htet, N.H.; Ambu, S. Risk factors for human leptospirosis following flooding: A meta-analysis of observational studies. PLoS ONE 2019, 14, e0217643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, C.; Zhu, Y.; Mehmood, K.; Liu, J.; McDonough, S.P.; Tang, Z.; Chang, Y. Leptospirosis trends in China, 2007-2018: A retrospective observational study. Transbound Emerg. Dis. 2020, 67, 1119–1128. [Google Scholar] [CrossRef]
- Jansen, A.; Stark, K.; Schneider, T.; Schöneberg, I. Sex differences in clinical leptospirosis in Germany: 1997–2005. Clin. Infect. Dis. 2007, 44, e69–e72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, H.; Yan, J. Leptospirosis prevalence in Chinese populations in the last two decades. Microbes Infect. 2012, 14, 317–323. [Google Scholar] [CrossRef] [PubMed]
- de Freitas Saldanha, R.; Bastos, R.R.; Barcellos, C. Microdatasus: A package for downloading and preprocessing microdata from Brazilian Health Informatics Department (DATASUS). Cad. De Saude Publica 2019, 35, e00032419. [Google Scholar]
- da Silva, P.H.B.; Vaz, G.P.; Júnior, P.M.R.; Bitencourt, E.L. Perfil Epidemiológico da Leptospirose no Brasil de 2010 a 2019. Rev. De Patol. Do Tocantins 2020, 7, 34–37. [Google Scholar] [CrossRef]
- da Silva, E.H.O.; Teixeira, F.F.N.; Nascimento, L.M.; da Silva, R.S.; Nascimento, E.M.; Marinho, N.P.R. Perfil epidemiológico da leptospirose no estado do Rio de Janeiro: Análise descritiva dos últimos cinco anos Epidemiological profile of leptospirosis in the state of Rio de Janeiro: Descriptive analysis of the last five years. Braz. J. Health Rev. 2021, 4, 24696–24707. [Google Scholar] [CrossRef]
- Galan, D.I.; Roess, A.A.; Pereira, S.V.C.; Schneider, M.C. Epidemiology of human leptospirosis in urban and rural areas of Brazil, 2000-2015. PLoS ONE 2021, 16, e0247763. [Google Scholar] [CrossRef]
- Kobayashi, Y. Clinical observation and treatment of leptospirosis. J. Infect. Chemother. 2001, 7, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Matange, K.; Tuck, J.M.; Keung, A.J. DNA stability: A central design consideration for DNA data storage systems. Nat. Commun. 2021, 12, 1358. [Google Scholar] [CrossRef] [PubMed]
Primer/Probe | Sequence | Final Concentration |
---|---|---|
lipL32 Forward | 5′-AAG CAT TAC CGC TTG TGG TG-3′ | 200 nM |
lipL32 Reverse | 5′-GAA CTC TTT CAG CGA TT-3′ | 200 nM |
lipL32 Probe | 5′-/56-FAM/AAA GCC AGG ACA AGC GCC G/3BHQ_1/-3′ | 100 nM |
RNASEP1 Forward | 5′-CCA AGT GTG AGG GCT GAA AAG-3′ | 200 nM |
RNASEP1 Reverse | 5′-TGT TGT GGC TGA ACT ATA AAA GG-3′ | 200 nM |
RNASEP1 Probe | 5′-/Cy5/CCC CAG TCT CTG TCA GCA CTC CCT TC/3BHQ_2/-3′ | 100 nM |
Reaction | lipL32 Ct | RNASEP1 Ct |
---|---|---|
lipL32 Control | <35 | >40 or not detectable |
RNASEP1 Control | >35 or not detectable | <40 |
Positive Sample | <35 | <40 |
Negative Sample | >40 or not detectable | <40 |
Inconclusive Sample | >40 or not detectable |
Sample Demographics | N (%) | Median (1st–3rd IQR) |
---|---|---|
Sample size | 391 (100) | |
Sex * | ||
Male | 250 (63.94) | |
Female | 140 (35.81) | |
Not declared | 1 (0.26) | |
Age, Years | 385 (98.5) | 36 (24–49) |
Race * | ||
Black | 33 (8.44) | |
Brown | 68 (17.39) | |
White | 128 (32.74) | |
Yellow | 40 (10.23) | |
Not declared | 122 (31.20) |
Time Intervals | N (%) | Median, Days (1st–3rd IQR) |
From onset of symptoms to sample collection, days | 356 (91.04) | 4 (1–6) |
From sample collection to DNA extraction | 389 (99.49) | 9 (7–14) |
From DNA extraction to qPCR reaction | 387 (98.98) | 3 (1–5) |
Result for lipL32 Detection | N (%) | Median (1st–3rd IQR) |
---|---|---|
Positive | 189 (52.94) | 3 (1–6) |
Negative | 157 (47.06) | 4 (1–7) |
Sample Demographics | N (%) | Positivity (%) |
---|---|---|
Race * | ||
Black | 33 (8.44) | 12 (36.36) |
Brown | 68 (17.39) | 45 (66.18) |
White | 128 (32.74) | 37 (28.91) |
Yellow | 40 (10.23) | 8 (20.00) |
Not declared | 122 (31.20) | 72 (59.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neris, R.L.S.; da Silva, M.C.; da Silva Batista, M.; de Almeida Silva, K.d.C.F.; Balassiano, I.T.; Avelar, K.E.S. Effect of Demographics and Time to Sample Processing on the qPCR Detection of Pathogenic Leptospira spp. from Human Samples in the National Reference Laboratory for Leptospirosis, Brazil. Trop. Med. Infect. Dis. 2023, 8, 151. https://doi.org/10.3390/tropicalmed8030151
Neris RLS, da Silva MC, da Silva Batista M, de Almeida Silva KdCF, Balassiano IT, Avelar KES. Effect of Demographics and Time to Sample Processing on the qPCR Detection of Pathogenic Leptospira spp. from Human Samples in the National Reference Laboratory for Leptospirosis, Brazil. Tropical Medicine and Infectious Disease. 2023; 8(3):151. https://doi.org/10.3390/tropicalmed8030151
Chicago/Turabian StyleNeris, Romulo Leão Silva, Mariana Cristina da Silva, Mariana da Silva Batista, Keila de Cássia Ferreira de Almeida Silva, Ilana Teruszkin Balassiano, and Kátia Eliane Santos Avelar. 2023. "Effect of Demographics and Time to Sample Processing on the qPCR Detection of Pathogenic Leptospira spp. from Human Samples in the National Reference Laboratory for Leptospirosis, Brazil" Tropical Medicine and Infectious Disease 8, no. 3: 151. https://doi.org/10.3390/tropicalmed8030151
APA StyleNeris, R. L. S., da Silva, M. C., da Silva Batista, M., de Almeida Silva, K. d. C. F., Balassiano, I. T., & Avelar, K. E. S. (2023). Effect of Demographics and Time to Sample Processing on the qPCR Detection of Pathogenic Leptospira spp. from Human Samples in the National Reference Laboratory for Leptospirosis, Brazil. Tropical Medicine and Infectious Disease, 8(3), 151. https://doi.org/10.3390/tropicalmed8030151