The Promise and Challenge of Genetic Biocontrol Approaches for Malaria Elimination
Abstract
:1. Introduction
2. Genetic Biocontrol
3. Genetic Biocontrol Approaches
4. Precedents for Biocontrol of Malaria Vectors
5. Genetic Biocontrol Options for Malaria Vectors
6. Development Pathway
7. Challenges for Implementation of Genetic Biocontrol
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Roll Back Malaria Partnership. The Global Malaria Action Plan for a Malaria-Free World. Available online: https://www.unhcr.org/4afac5629.pdf (accessed on 26 January 2023).
- Bhatt, S.; Weiss, D.J.; Cameron, E.; Bisanzio, D.; Mappin, B.; Dalrymple, U.; Battle, K.; Moyes, C.L.; Henry, A.; Eckhoff, P.A.; et al. The Effect of Malaria Control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 2015, 526, 207–211. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. World Malaria Report. 2015. Available online: https://apps.who.int/iris/bitstream/handle/10665/205224/WHO_HTM_GMP_2016.2_eng.pdf (accessed on 26 January 2023).
- World Health Organization. World Malaria Report. 2022. Available online: https://www.who.int/publications/i/item/9789240064898 (accessed on 26 January 2023).
- World Health Organization. Global Technical Strategy for Malaria 2016–2030. Available online: https://www.who.int/docs/default-source/documents/global-technical-strategy-for-malaria-2016-2030.pdf (accessed on 26 January 2023).
- World Health Organization. Malaria Eradication: Benefits, Future Scenarios and Feasibility. Executive Summary, WHO Strategic Advisory Group on Malaria Eradication. Available online: https://apps.who.int/iris/bitstream/handle/10665/326551/WHO-CDS-GMP-2019.10-eng.pdf (accessed on 26 January 2023).
- Rabinovich, R.N.; Drakeley, C.; Djimde, A.A.; Hall, B.F.; Hay, S.I.; Hemingway, J.; Kaslow, D.C.; Noor, A.; Okumu, F.; Steketee, R.; et al. malERA: An Updated Research Agenda for Malaria Elimination and Eradication. PLoS Med. 2017, 14, e1002456. [Google Scholar] [CrossRef]
- Feachem, R.G.A.; Chen, I.; Akbari, O.; Bertozzi-Villa, A.; Bhatt, S.; Binka, F.; Boni, M.F.; Buckee, C.; Dieleman, J.; Dondorp, A.; et al. Malaria Eradication Within a Generation: Ambitious, Achievable, and Necessary. Lancet 2019, 394, 1056–1112. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. New Frontiers in Vector Control. Available online: https://www.who.int/news-room/feature-stories/detail/new-frontiers-in-vector-control (accessed on 26 January 2023).
- World Health Organization. WHO Takes a Position on Genetically Modified Mosquitoes. Available online: https://www.who.int/news/item/14-10-2020-who-takes-a-position-on-genetically-modified-mosquitoes (accessed on 26 January 2023).
- Cock, L.J.W.; Day, R.; Hinz, H.L.; Pollard, K.; Thomas, S.; Williams, F.; Witt, A.; Shaw, R.H. The Impacts of Some Classical Biological Control Successes. CABI Reviews 2015. [CrossRef]
- World Health Organization. Guidance Framework for Testing of Genetically Modified Mosquitoes, Second Edition. Available online: https://www.who.int/publications/i/item/9789240025233 (accessed on 26 January 2023).
- Alphey, L.S.; Crisanti, A.; Randazzo, F.; Akbari, O.S. Standardizing the Definition of Gene Drive. Proc. Natl. Acad. Sci. USA 2020, 117, 30864–30867. [Google Scholar] [CrossRef] [PubMed]
- Dyck, V.A.; Hendrichs, J.; Robinson, A.S. Sterile Insect Technique, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Oliva, C.F.; Benedict, M.Q.; Collins, C.M.; Baldet, T.; Bellini, R.; Bossin, H.; Bouyer, J.; Corbel, V.; Fachinelli, L.; Fouque, F.; et al. Sterile Insect Technique (SIT) against Aedes Species Mosquitoes: A Roadmap and Good Practice Framework for Designing, Implementing and Evaluating Pilot Field Trials. Insects 2021, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidance Framework for Testing the Sterile Insect Technique as a Vector Control Tools against Aedes-Borne Diseases. Available online: https://www.who.int/publications/i/item/9789240002371 (accessed on 26 January 2023).
- Oxitec. Public Health. Available online: https://www.oxitec.com/en/public-health (accessed on 26 January 2023).
- Harris, A.F.; McKemey, A.R.; Nimmo, D.; Curtis, Z.; Black, I.; Morgan, S.A.; Oviedo, M.N.; Lacroix, R.; Naish, N.; Morrison, N.I.; et al. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat. Biotechnol. 2012, 30, 828–830. [Google Scholar] [CrossRef]
- Carvalho, D.O.; McKemey, A.R.; Garziera, L.; Lacroix, R.; Donnelly, C.A.; Alphey, L.; Malavasi, A.; Capurro, M.L. Suppression of a Field Population of Aedes aegypti in Brazil by Sustained Release of Transgenic Male Mosquitoes. PLoS Negl. Trop. Dis. 2015, 9, e0003864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spinner, S.A.M.; Barnes, Z.H.; Puinean, A.M.; Gray, P.; Dafa’alla, T.; Phillips, C.E.; Nascimento de Souza, C.; Frazon, T.F.; Ercit, K.; Collado, A.; et al. New self-sexing Aedes aegypti strain eliminates barriers to scalable and sustainable vector control for governments and communities in dengue-prone environments. Front. Bioeng. Biotechnol. 2022, 10, 975786. [Google Scholar] [CrossRef]
- Government of Brazil Official Diary of the Union. Extract from Technical Opinion No. 6,946/2020. Available online: https://www.in.gov.br/web/dou/-/extrato-de-parecer-tecnico-n-6.946/2020-258262552 (accessed on 26 January 2023).
- United States Environmental Protection Agency. Emerging Mosquito Control Technologies. Available online: https://www.epa.gov/regulation-biotechnology-under-tsca-and-fifra/emerging-mosquito-control-technologies#wolbacia (accessed on 26 January 2023).
- Shropshire, J.D.; Leigh, B.; Bordenstein, S.R. Symbiont-mediated Cytoplasmic Incompatibility: What Have We Learned in 50 Years? eLife 2020, 9, e61989. [Google Scholar] [CrossRef]
- Crawford, J.E.; Clarke, D.W.; Criswell, V.; Desnoyer, M.; Cornel, D.; Deegan, B.; Gong, K.; Hopkins, K.C.; Howell, P.; Hyde, J.S.; et al. Efficient Production of Male Wolbachia-infected Aedes aegypti Mosquitoes Enables Large-scale Suppression of Wild Populations. Nat. Biotechnol. 2020, 38, 482–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United States Environmental Protection Agency. Notice of Pesticide. Available online: https://www3.epa.gov/pesticides/chem_search/ppls/089668-00004-20171103.pdf (accessed on 26 January 2023).
- National Environmental Agency. Wolbachia-Aedes Mosquito Suppression Strategy. Available online: https://www.nea.gov.sg/corporate-functions/resources/research/wolbachia-aedes-mosquito-suppression-strategy (accessed on 26 January 2023).
- International Atomic Energy Agency. Mosquito Population Successfully Suppressed Through Pilot Study Using Nuclear Technique in China. Available online: https://www.iaea.org/newscenter/news/mosquito-population-successfully-suppressed-through-pilot-study-using-nuclear-technique-in-china (accessed on 26 January 2023).
- Zheng, X.; Zhang, D.; Li, Y.; Yang, C.; Wu, Y.; Liang, X.; Liang, Y.; Pan, X.; Hu, L.; Sun, Q.; et al. Incompatible and Sterile Insect Techniques Combined Eliminate Mosquitoes. Nature 2019, 572, 56–619. [Google Scholar] [CrossRef] [PubMed]
- Carrington, L.B.; Tran, B.C.N.; Le, N.T.H.; Luong, T.T.H.; Nguyen, T.T.; Nguyen, P.T.; Nguyen, C.V.V.; Nguyen, H.T.C.; Vu, T.T.; Vo, L.T.; et al. Field- and Clinically Derived Estimates of Wolbachia-mediated Blocking of Dengue Virus Transmission Potential in Aedes aegypti Mosquitoes. Proc. Natl. Acad. Sci. USA 2017, 115, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Aliota, M.T.; Walker, E.C.; Yepes, A.U.; Velez, I.D.; Christensen, B.M.; Osorio, J.E. The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti. PLoS Negl. Trop. Dis. 2016, 10, e0004677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutra, H.L.; Rocha, M.N.; Dias, F.B.; Mansur, S.B.; Caragata, E.P.; Moreira, L.A. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes. Cell Host Microbe 2016, 19, 771–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utarini, A.; Indriani, C.; Ahmad, R.A.; Tantowijoyo, W.; Arguni, E.; Ansari, M.R.; Supriyati, E.; Wardana, S.; Meitika, Y.; Emesia, I.; et al. Efficacy of Wolbachia-infected Mosquito Deployments for the Control of Dengue. N. Engl. J. Med. 2021, 384, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
- World Mosquito Program. Global Progress. Available online: https://www.worldmosquitoprogram.org/en/global-progress (accessed on 26 January 2023).
- Nazni, W.A.; Hoffmann, A.A.; NoorAfizah, A.; Cheong, Y.-L.; Mancini, M.V.; Golding, N.; Kamarul, G.M.R.; Arif, M.A.K.; Thohir, H.; NurSyamimi, H.; et al. Establishment of Wolbachia Strain wAlbB in Malaysian Populations of Aedes aegypti for Dengue Control. Curr. Bio. 2019, 29, 4241–4248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helenski, M.E.H.; Hassan, M.; El-Motasim, W.M.; Malcolm, B.G.J.; El-Sayed, B. Towards a Sterile Insect Technique Field Release of Anopheles arabiensis Mosquitoes in Sudan: Irradiation, Transportation, and Field Cage Experimentation. Malar. J. 2008, 7, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oxitec. FriendlyTM Anopheles stephensi. Available online: https://www.oxitec.com/anopheles-stephensi (accessed on 8 February 2023).
- Sinka, M.E.; Pironon, S.; Massey, N.C.; Longbottom, L.; Hemingway, J.; Moyes, C.L.; Willis, K.J. A New Malaria Vector in Africa: Predicting the Expansion Range of Anopheles stephensi and Identifying the Urban Populations at Risk. Proc. Natl. Acad. Sci. USA 2020, 117, 24900–24908. [Google Scholar] [CrossRef]
- Gomes, F.M.; Barillas-Mury, C. Infection of Anopheline Mosquitoes with Wolbachia: Implications for Malaria Control. PLoS Pathog. 2018, 14, e1007333. [Google Scholar] [CrossRef] [Green Version]
- Joshi, D.; Pan, X.; McFadden, M.J.; Bevins, D.; Liang, X.; Lu, P.; Thiem, S.; Xi, Z. The Maternally Inheritable Wolbachia wAlbB Induces Refractoriness to Plasmodium berghei in Anopheles stephensi. Front. Microbiol. 2017, 8, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, L.A.; Iturbe-Ormaetxe, I.; Jeffrey, J.A.; Lu, G.; Pyke, A.T.; Hedges, L.M.; Rocha, B.C.; Hall-Mendelin, S.; Day, A.; Riegler, M.; et al. A Wolbachia Symbiont in Aedes aegypti Limits Infection with Dengue, Chikungunya, and Plasmodium. Cell 2009, 139, 1268–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, F.M.; Hixson, B.L.; Tyner, M.D.W.; Ramirez, J.L.; Canipa, G.E.; Alves e Silva, T.L.; Molina-Cruz, A.; Keita, M.; Kane, M.; Traore, B.; et al. Effect of Naturally Occurring Wolbachia in Anopheles gambiae s.l. Mosquitoes from Mali on Plasmodium falciparum Malaria. Proc. Natl. Acad. Sci. USA 2017, 114, 12566–12571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, K.L.; Abernathy, D.G.; Willett, B.C.; Selland, E.K.; Itoe, M.A.; Cateruccia, F. Wolbachia cifB Induces Cytoplasmic Incompatibility in the Malaria Mosquito Vector. Nat. Microbiol. 2021, 6, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Nattoh, G.; Maina, T.; Makhulu, E.E.; Mbaisi, L.; Mararo, E.; Otieno, G.G.; Bukhari, T.; Ochruru, T.O.; Teal, E.; Paradus, J.; et al. Horizontal Transmission of the Symbiont Microsporidia MB in Anopheles arabiensis. Front. Microbiol. 2021, 12, 647183. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Wang, L.; Vega-Rodriguez, J.; Wang, G.; Wang, S. A Gut Symbiotic Bacterium Serratia marcescens Renders Mosquito Resistance to Plasmodium Infection Through Activation of Mosquito Immune Responses. Front. Microbiol. 2019, 10, 1580. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Evaluation of Genetically Modified Mosquitoes for the Control of Vector-borne Diseases. Available online: https://apps.who.int/iris/bitstream/handle/10665/336031/9789240013155-eng.pdf (accessed on 8 February 2023).
- Global Health Network. Global Vector Hub. Available online: https://globalvectorhub.tghn.org/vector-species/anopheles-mosquitoes/ (accessed on 8 February 2023).
- Sinka, M.E. Global Distribution of the Dominant Vector Species of Malaria Anopheles Mosquitoes—New Insights into Malaria Vectors; InTech: London, UK, 2012. [Google Scholar] [CrossRef] [Green Version]
- Stoddard, B.L. Homing Endonucleases: From Microbial Genetic Invaders to Reagents for Targeted DNA Modification. Structure 2011, 19, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Burt, A. Site-specific Selfish Genes as Tools for the Control and Genetic Engineering of Natural Populations. Proc. Biol. Sci. 2003, 270, 921–928. [Google Scholar] [CrossRef] [Green Version]
- Windbichler, N.; Papthanos, P.A.; Catterucia, F.; Ranson, H.; Burt, A.; Crisanti, A. Homing Endonuclease Mediated Gene Targeting in Anopheles gambiae Cells and Embryos. Nucleic Acids Res. 2007, 35, 5922–5933. [Google Scholar] [CrossRef] [Green Version]
- Esvelt, K.M.; Smidler, A.L.; Catteruccia, F.; Church, G.M. Emerging Technology: Concerning RNA-guided Gene Drives for the Alteration of Wild Populations. eLife 2014, 3, e03401. [Google Scholar] [CrossRef]
- Gantz, V.M.; Jasinskiene, N.; Tatarenkova, O.; Fazekas, V.M.; Bier, E.; James, A.A. Highly Efficient Cas9-mediated Gene Drive for Population Modification of the Malaria Vector Mosquito Anopheles stephensi. Proc. Natl. Acad. Sci. USA 2015, 112, E6736–E6743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, A.; Galizi, R.; Kyrou, K.; Simoni, A.; Sinicalchi, C.; Katsanos, D.; Gibble, M.; Baker, D.; Marois, E.; Russell, S.; et al. A CRISPR-Cas9 Gene Drive System Targeting Female Reproduction in the Malaria Mosquito Vector Anopheles gambiae. Nat. Biotechol. 2016, 34, 78–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyrou, K.; Hammond, A.M.; Galizi, R.; Kranjc, N.; Burt, A.; Beaghton, A.K.; Nolan, T.; Crisanti, A. A CRISPR-Cas9 Gene Drive Targeting doublesex Causes Complete Population Suppression in Caged Anopheles gambiae Mosquitoes. Nat. Biotechnol. 2018, 36, 1062–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carballar-Lejarazu, R.; James, A.A. Population Modification of Anopheline Species to Control Malaria Transmission. Pathog. Glob. Health 2017, 111, 424–435. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Simoes, M.L.; Dimpopoulos, G. Versatile Transgenic Multistage Effector-gene Combinations for Plasmodium falciparum Suppression in Anopheles. Sci. Adv. 2020, 6, eaay5898. [Google Scholar] [CrossRef]
- Hoermann, A.; Habtewold, T.; Selvaraj, P.; Del Corsano, G.; Capriotti, P.; Inghilterra, M.; Kebede, T.M.; Christophides, G.K.; Windbichler, N. Gene Drive Mosquitoes Can Aid Malaria Elimination by Retarding Plasmodium Sporogonic Development. Sci. Adv. 2022, 8, eabo1733. [Google Scholar] [CrossRef]
- Hammond, A.; Polgioni, P.; Persampieri, T.; North, A.; Minuz, R.; Trusso, A.; Bucci, A.; Kyrou, K.; Morianou, I.; Simoni, A.; et al. Gene-drive Suppression of Mosquito Populations in Large Cages as a Bridge Between Lab and Field. Nat. Commun. 2021, 12, 4589. [Google Scholar] [CrossRef]
- Pham, T.B.; Phong, C.H.; Bennett, J.B.; Hwang, K.; Jasinkiene, N.; Parker, K.; Stillinger, D.; Marshall, J.M.; Carballar-Lejarazu, R.; James, A.A. Experimental Population Modification of the Malaria Vector Mosquito Anopheles stephensi. PLoS Genet. 2019, 15, e1008440. [Google Scholar] [CrossRef] [Green Version]
- Carballar-Lejarazu, R.; Ogaugwu, C.; Tushar, T.; Kelsey, A.; Pham, T.B.; Murphy, J.; Schmidt, H.; Lee, Y.; Lanzaro, G.C.; James, A.A. Next-generation Gene Drive for Population Modification of the Malaria Vector Mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2020, 117, 22805–22814. [Google Scholar] [CrossRef]
- Deredec, A.; Godfray, H.C.J.; Burt, A. Requirements for Effective Malaria Control with Homing Endonuclease Genes. Proc. Natl. Acad. Sci. USA 2011, 108, E874–E880. [Google Scholar] [CrossRef] [Green Version]
- Eckhoff, P.A.; Wenger, E.A.; Godfray, H.C.J.; Burt, A. Impact of Mosquito Gene Drive on Malaria Elimination in a Computational Model with Explicit Spatial and Temporal Dynamics. Proc. Natl. Acad. Sci. USA 2016, 114, E225–E264. [Google Scholar] [CrossRef] [Green Version]
- North, A.R.; Burt, A.; Godfray, H.C.J. Modelling the Suppression of a Malaria Vector Using a CRISPR-Cas9 Gene Drive to Reduce Female Fertility. BMC Biol. 2020, 18, 98. [Google Scholar] [CrossRef]
- Galizi, R.; Hammond, A.; Kyrou, K.; Taxiarchi, C.; Bernardin, F.; O’Loughlin, S.M.; Papathanos, P.-A.; Nolan, T.; Windbichler, N.; Crisanti, A. A CRISPR-Cas9 Sex-ratio Distortion system for Genetic Control. Sci. Rep. 2016, 6, 31139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metchanun, N.; Borgemeister, C.; Amzati, G.; von Braun, J.; Nikolov, M.; Selvaraj, P.; Gerardin, J. Modeling Impact and Cost-effectiveness of Driving-Y Gene Drives for Malaria Elimination in the Democratic Republic of the Congo. Evol. App. 2022, 15, 132–148. [Google Scholar] [CrossRef] [PubMed]
- Beaghton, P.J.; Burt, A. Gene Drives and Population Persistence vs. Elimination: The Impact of Spatial Structure and Inbreeding at Low Density. Theoret. Pop. Biol. 2022, 145, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Huang, H.H.; Ward, C.M.; Su, J.T.; Schaeffer, L.V.; Guo, M.; Hay, B.A. A Synthetic Maternal-effect Selfish Genetic Element Drives Population Replacement in Drosophila. Science 2007, 316, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Oberholm, G.; Ivy, T.; Hay, B.A. Cleave and Rescue, a Novel Selfish Genetic Element and General Strategy for Gene Drive. Proc. Natl. Acad. Sci. USA 2019, 116, 6250–6259. [Google Scholar] [CrossRef] [Green Version]
- Champer, J.; Yang, E.; Lee, E.; Liu, J.; Clark, A.G.; Messer, P.W. A CRISPR Homing Gene Drive Targeting a Haplolethal Gene Removes Resistance Alleles and Successfully Spreads through a Cage Population. Proc. Natl. Acad. Sci. USA 2020, 117, 24377–24383. [Google Scholar] [CrossRef]
- Hay, B.A.; Oberhofer, G.; Guo, M. Engineering the Composition and Fate of Wild Populations with Gene Drive. Ann. Rev. Entomol. 2021, 66, 407–434. [Google Scholar] [CrossRef]
- Wang, G.-H.; Du, J.; Chu, C.Y.; Madhav, M.; Hughes, G.L.; Champer, J. Symbionts and Gene Drive: Two Strategies to Combat Vector-borne Disease. Trends Genet. 2022, 38, 708–723. [Google Scholar] [CrossRef]
- Garrood, W.T.; Cuber, P.; Willis, K.; Bernardini, F.; Page, N.M.; Haghighat-Khah, R.E. Driving Down Malaria Transmission with Engineered Gene Drives. Front. Genet. 2022, 13, 891218. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, T.; Kandul, N.P.; Bui, M.; Gamez, S.; Raban, R.; Bennett, J.; Sanchez, C.H.M.; Lanzaro, G.M.; Schmidt, H.; et al. Development of a Confinable Gene Drive System in the Human Disease Vector Aedes aegypti. eLife 2020, 9, e512701. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.A.E.; Gonzalez, E.; Edgington, M.P.; Ang, J.X.D.; Purusothaman, D.-K.; Shackleford, L.; Nevard, K.; Verkuijl, S.A.N.; Harvey-Samuel, T.; Leftwich, P.T.; et al. A Multiplexed, Confinable CRISPR/Cas9 Gene Drive Propagates in Caged Aedes aegypti Populations. bioRxiv 2022. [Google Scholar] [CrossRef]
- American Committee of Medical Entomology and American Society of Tropical Medicine and Hygiene. Containment Practices for Arthropods Modified with Engineered Transgenes Capable of Gene Drive Addendum 1 to the Arthropod Containment Guidelines, Version 3.2. Vector Borne Zoonotic Dis. 2022, 22, 3–17. [Google Scholar] [CrossRef]
- James, S.; Collins, F.H.; Welkhoff, P.A.; Emerson, C.; Godfray, H.C.J.; Gottlieb, M.; Greenwood, B.; Lindsay, S.W.; Mbogo, C.M.; Okumu, F.O.; et al. Pathway to Deployment of Gene Drive Mosquitoes as a Potential Biocontrol Tool for Elimination of Malaria in Sub-Saharan Africa: Recommendations of a Scientific Working Group. Am. J. Trop. Med. Hyg. 2018, 98 (Suppl. 6), 1–49. [Google Scholar] [CrossRef]
- James, S.L.; Marshall, J.M.; Christophides, G.K.; Okumu, F.O.; Nolan, T. Toward the Definition of Efficacy and Safety Criteria for Advancing Gene Drive-Modified Mosquitoes to Field Testing. Vector Borne Zoonotic Dis. 2020, 20, 237–251. [Google Scholar] [CrossRef]
- World Health Organization. Global Framework for the Response to Malaria in Urban Areas. Available online: https://www.who.int/publications/i/item/9789240061781 (accessed on 8 February 2023).
- International Atomic Energy Agency. Drone Test Yields Breakthrough for Use of Nuclear Technique to Fight Mosquitoes. Available online: https://www.iaea.org/newscenter/pressreleases/drone-test-yields-breakthrough-for-use-of-nuclear-technique-to-fight-mosquitoes-iaea-study (accessed on 8 February 2023).
- World Health Organization. World Malaria Report. 2021. Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 (accessed on 8 February 2023).
- National Academies of Science, Engineering, and Medicine. Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Lanzaro, G.C.; Sanchez, C.H.M.; Collier, T.C.; Marshall, J.M.; James, A.A. Population Modification Strategies for Malaria Vector Control are Uniquely Resilient to Observed Levels of Gene Drive Resistance Alleles. BioEssays 2021, 43, 2000282. [Google Scholar] [CrossRef]
- Hammond, A.M.; Kyrou, K.; Bruttini, M.; North, A.; Galizi, R.; Karlsson, X.; Kranjc, N.; Carpi, F.M.; D’Aurizo, R.; Crisanti, A.; et al. The Creation and Selection of Mutations Resistant to a Gene Drive over Multiple Generations in the Malaria Mosquito. PLoS Genet. 2017, 13, e1007039. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, S.; Garrood, W.T.; Beber, A.; Hammond, A.; Galizi, R.; Gribble, M.; Morselli, G.; Hui, T.-Y.; Willis, K.; Kranjc, N.; et al. Resistance to a CRISPR-based Gene Drive at an Evolutionarily Conserved Site is Revealed by Mimicking Genotype Fixation. PloS Genet. 2021, 17, e1009740. [Google Scholar] [CrossRef]
- O’Loughlin, S.M.; Forster, A.J.; Fuchs, S.; Dottorini, T.; Nolan, T.; Crisanti, A.; Burt, A. Ultra-conserved Sequences in the Genomes of Highly Diverse Anopheles Mosquitoes, with Implications for Malaria Vector Control. G3 Genes/Genet. 2021, 11, jkab0856. [Google Scholar] [CrossRef]
- Riveron, J.M.; Tchouakui, M.; Mugenzi, L.; Menze, B.D.; Chiang, M.-C.; Wondji, C.S. Insecticide Resistance in Malaria Vectors: An Update at a Global Scale; Intech: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Menard, D.; Dondorp, A. Antimalarial Drug Resistance: A Threat to Malaria Elimination. Cold Spring Harb. Perpect. Med. 2017, 7, a025619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.-R.S.; Bulger, E.A.; Gantz, V.M.; Klanseck, C.; Heimler, S.R.; Auradkar, A.; Bennett, J.B.; Miller, L.A.; Leahy, S.; Juste, S.S.; et al. Active Genetic Neutralizing Elements for Halting or Deleting Gene Drives. Mol. Cell 2020, 2, 246–262. [Google Scholar] [CrossRef] [PubMed]
- Zapletal, J.; Najimitabrizi, N.; Erraguntla, M.; Lawley, M.A.; Myles, K.M.; Adelman, Z.N. Making Gene Drives Biodegradable. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2021, 376, 20190804. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Genetically Modified Mosquitoes; Naegeli, H.; Bresson, J.-L.; Dalmay, T.; Dewhurst, I.C.; Epstein, M.M.; Guerche, P.; Hejatko, J.; Moreno, F.J.; Mullins, E.; et al. Adequacy and Sufficiency Evaluation of Existing EFSA Guidelines for the Molecular Characterization, Environmental Risk Assessment and Post-Market Environmental Monitoring of Genetically Modified Insects Containing Engineered Gene Drives. EFSA J. 2020, 18, 6297. [Google Scholar] [CrossRef]
- Devos, Y.; Mumford, J.D.; Bonsall, M.B.; Glandorf, D.C.M.; Quemada, H.D. Risk Management Recommendations for Environmental Releases of Gene Drive Modified Insects. Biotechnol. Adv. 2022, 54, 107807. [Google Scholar] [CrossRef] [PubMed]
- Convention on Biological Diversity CBD/CP/MOP/10/L.8. Risk Assessment and Risk Management (Articles 15 and 16). 2022. Available online: https://www.cbd.int/doc/c/c750/0f0a/6cd323ebe26a29d55f4e294b/cp-mop-10-l-08-en.pdf (accessed on 9 February 2023).
- Oye, K.A.; Esvelt, K.; Appleton, E.; Cateruccia, F.; Church, G.; Kuiken, T.; Lightfoot, S.B.; McNamara, J.; Smidler, A.; Collins, J.F. Regulating Gene Drives. Science 2014, 345, 626–628. [Google Scholar] [CrossRef] [Green Version]
- Meghani, Z.; Kuzma, J. Regulating Animals with Gene Drive Systems: Lessons from the Regulatory Assessment of a Genetically Engineered Mosquito. J. Responsible Innov. 2018, 5 (Suppl. 1), S203–S222. [Google Scholar] [CrossRef] [Green Version]
- Rabitz, F. Gene drives and the International Biodiversity Regime. RECIEL. 2019, 28, 339–348. [Google Scholar] [CrossRef]
- Dolezel, M.; Lüthi, C.; Gaugitsch, H. Beyond Limits—The Pitfalls of Global Gene Drives for Environmental Risk Assessment in the European Union. BioRisk 2020, 15, 1–29. [Google Scholar] [CrossRef]
- Esvelt, K. Gene Editing Can Drive Science to Openness. Nature 2016, 534, 153. [Google Scholar] [CrossRef] [Green Version]
- Kofler, N.; Collins, J.P.; Kuzma, J.; Marris, E.; Esvelt, K.; Nelson, M.P.; Newhouse, A.; Rothschild, L.J.; Vigliotti, V.S.; Semenov, M.; et al. Editing Nature: Local Roots of Global Governance. Science 2018, 362, 527–529. [Google Scholar] [CrossRef] [PubMed]
- Romeis, J.; Collatz, J.; Glandorf, D.C.M.; Bonsall, M. The Value of Existing Regulatory Frameworks for the Environmental Risk Assessment of Agricultural Pest Control Using Gene Drives. Env. Sci. Pol. 2020, 108, 19–36. [Google Scholar] [CrossRef]
- Peterson, R.K.D.; Rolston, M.G. Larval mosquito management and risk to aquatic ecosystems: A comparative approach including current tactics and gene-drive Anopheles techniques. Transgenic. Res. 2022, 31, 489–504. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Dass, B.; Quemada, H.M. Regulatory and Policy Considerations for the Implementation of Gene Drive-Modified Mosquitoes to Prevent Malaria Transmission. Transgenic Res. 2023. accepted. [Google Scholar] [CrossRef]
- African Union Development Agency-NEPAD. Integrated Vector Management. Available online: https://www.nepad.org/microsite/integrated-vector-management-ivm#:~:text=The%20purpose%20of%20the%20IVM,order%20to%20effectively%20control%20vectors. (accessed on 14 February 2023).
- Backus, G.A.; Delborne, J.A. Threshold-dependent Gene Drives in the Wild: Spread, Controllability, and Ecological Uncertainty. BioScience 2019, 69, 900–907. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency. Permethrin Facts EPA 738-F-06-012. 2006. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-109701_1-Jun-06.pdf (accessed on 9 February 2023).
- Travassos, M.; Laufer, M.K. Antimalarial Drugs: An Overview. 2022. Available online: https://www.uptodate.com/contents/antimalarial-drugs-an-overview (accessed on 9 February 2023).
- World Health Organization. Ethics and Vector-borne Diseases. 2020. Available online: https://www.who.int/publications/i/item/9789240012738 (accessed on 9 February 2023).
- Kolopak, P.A.; Lavery, J.V. Informed Consent in Field Trials of Gene-drive Mosquitoes. Gates Open Res. 2017, 1, 14. [Google Scholar] [CrossRef]
- Thizy, D.; Emerson, C.; Gibbs, J.; Hartley, S.; Kapiriri, L.; Lavery, J.; Lunshof, J.; Ramsey, J.; Shapiro, J.; Singh, J.A.; et al. Guidance on Stakeholder Engagement Practices to Inform the Development of Area-wide Vector Control Methods. PLoS Negl. Trop. Dis. 2019, 13, e0007286. [Google Scholar] [CrossRef] [Green Version]
- Costa, G.B.; Smithyman, R.; O’Neill, S.L.; Moreira, L.A. How to Engage Communities on a Large Scale? Lessons from the World Mosquito Program in Rio de Janeiro, Brazil. Gates Open Res. 2020, 4, 109. [Google Scholar] [CrossRef]
- Thizy, D.; Toe, L.P.; Mbogo, C.; Matoke-Muhia, D.; Alibu, V.P.; Bartnhill-Dunning, K.; Chandler, T.; Chongwe, G.; Delborne, J.; Kapiriri, L.; et al. Proceedings of an Expert Workshop on Community Agreement for Gene Drive Research in Africa—Co-organized by KEMRI, PAMCA, and Target Malaria. Gates Open Res. 2021, 5, 19. [Google Scholar] [CrossRef]
- Kormos, A.; Lanzaro, G.C.; Bier, E.; Santos, V.; Nazare, L.; Pinto, J.; dos Santos, A.A.; James, A.A. Ethical Considerations for Gene Drive: Challenges of Balancing Inclusion, Power and Perspectives. Front. Bioeng. Biotechnol. 2022, 10, 826727. [Google Scholar] [CrossRef]
- Neuhaus, C.P.; Kaplan, A.L. Ethical Lessons from a Tale of Two Genetically Modified Insects. Nat. Biotechnol. 2017, 35, 713–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, W.F.; Buchman, L.W.; Medina, R.F. Public Deliberation and the Regulation of Gene Drive in the USA. Sci. Public Policy 2022, 49, 843–852. [Google Scholar] [CrossRef]
- Emerson, C.; James, S.L.; Littler, K.; Randazzo, F. Principles for Gene Drive Research. Science 2017, 358, 1135–1136. [Google Scholar] [CrossRef] [Green Version]
- Annas, G.J.; Beisel, C.L.; Clement, K.; Crisanti, A.; Francis, S.; Galardini, M.; Galizi, R.; Grunewald, J.; Immobile, G.; Khalil, A.S.; et al. A Code of Ethics for Gene Drive Research. CRISPR J. 2021, 4, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Long, K.C.; Alphey, L.; Annas, G.J.; Bloss, C.B.; Campbell, K.J.; Champer, J.; Chen, C.; Choudhary, A.; Church, G.M.; Collins, J.P.; et al. Core Commitments for Field Trials of Gene Drive Organisms. Science 2020, 370, 1417–1419. [Google Scholar] [CrossRef]
- Saha, K.; Hurlbut, J.B.; Jasanoff, S.; Ahmed, A.; Appiah, A.; Bartholet, E.; Baylis, F.; Bennett, G.; Church, G.; Cohen, J.G.; et al. Building Capacity for a Global Genome Editing Observatory: Institutional Design. Trends Biotechnol. 2018, 36, 741–743. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, A.; Stillinger, D.; Pham, T.B.; Murphy, J.; Firth, S.; Carballar-Lejarazu, R. Global Governing Bodies: A Pathway for Gene Drive Governance for Vector Mosquito Control. Am. J. Trop. Med. Hyg. 2020, 103, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Barnhill-Dunning, S.K.; Kokotovich, A.; Delborne, J.A. The Decision Phases Framework for Public Engagement: Engaging Stakeholders about Gene Editing in the Wild. Hastings Cent. Rep. 2021, 51, S48–S61. [Google Scholar] [CrossRef]
- Haakenstad, A.; Harle, A.C.; Tsakalos, G.; Micah, A.E.; Tao, T.; Anjomshjoa, M.; Cohen, J.; Fullman, N.; Hay, S.I.; Mestovic, T.; et al. Tracking Spending on Malaria by Source in 106 Countries, 2000–2016: An Economic Modelling Study. Lancet 2019, 19, 703–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, A.; Holt, H.R.; Selby, R.; Guilian, J. Past and Ongoing Tsetse and Animal Trypanosomiasis Control Operations in Five African Countries: A Systematic Review. PLoS Negl. Trop. Dis. 2016, 10, e0005247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cima, G. Screwworm Again Eradicated in Florida. 2017. Available online: https://www.avma.org/javma-news/2017-05-15/screwworm-again-eradicated-florida (accessed on 9 February 2023).
- World Health Organization. Norms, Standards and Processes Underpinning Development of WHO Recommendations on Vector Control. 2020. Available online: https://www.who.int/publications/i/item/9789240017382 (accessed on 9 February 2023).
- World Health Organization. Handbook for Guideline Development, Second Edition. 2014. Available online: https://apps.who.int/iris/bitstream/handle/10665/145714/9789241548960_eng.pdf?sequence=1&isAllowed=y (accessed on 9 February 2023).
- Bouyer, J.; Yamada, H.; Pereira, R.; Bourtzis, K.; Vreysen, M.J.B. Phased Conditional Approach for Mosquito Management Using Sterile Insect Technique. Trends Parasitol. 2020, 36, 325–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Park, A.; Che-Mendoza, A.; Contreras-Perera, Y.; Perez-Carrillo, S.; Puerta-Guardo, H.; Vellegas-Chin, J.; Guillermo-May, G.; Medina-Barreiro, A.; Delfin-Gonzalez, H.; Mendez-Vales, R.; et al. Pilot trial using mass field-releases of sterile males produced with the incompatible and sterile insect techniques as part of integrated Aedes aegypti control in Mexico. PLoS Negl. Trop. Dis. 2022, 16, e0010324. [Google Scholar] [CrossRef] [PubMed]
Biocontrol Method | Current Status | References |
---|---|---|
Incompatible Insect Technique (IIT) for population suppression | Operational | [22,26] |
Conditional lethal genetic modification for population suppression | Operational | [20,21] |
Wolbachia bacteria for population replacement | Operational | [32,33,34] |
Sterile Insect Technique(SIT)-IIT for population suppression | Large field tests | [28,125,126] |
SIT for population suppression | Small field tests | [15,125] |
Self-sustaining gene drive for population suppression | Indoor cage tests | [54,58] |
Self-sustaining gene drive for population replacement | Indoor cage tests | [59,60] |
Self-limiting or localizing gene drive for population suppression or replacement | Early research | [70,71,72,73,74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
James, S.; Santos, M. The Promise and Challenge of Genetic Biocontrol Approaches for Malaria Elimination. Trop. Med. Infect. Dis. 2023, 8, 201. https://doi.org/10.3390/tropicalmed8040201
James S, Santos M. The Promise and Challenge of Genetic Biocontrol Approaches for Malaria Elimination. Tropical Medicine and Infectious Disease. 2023; 8(4):201. https://doi.org/10.3390/tropicalmed8040201
Chicago/Turabian StyleJames, Stephanie, and Michael Santos. 2023. "The Promise and Challenge of Genetic Biocontrol Approaches for Malaria Elimination" Tropical Medicine and Infectious Disease 8, no. 4: 201. https://doi.org/10.3390/tropicalmed8040201
APA StyleJames, S., & Santos, M. (2023). The Promise and Challenge of Genetic Biocontrol Approaches for Malaria Elimination. Tropical Medicine and Infectious Disease, 8(4), 201. https://doi.org/10.3390/tropicalmed8040201