Low Seroprevalence of WNV in Namibian Dogs Suggests a Limited Effectiveness as Sentinels for Infection Monitoring
Abstract
:1. Introduction
- (a)
- Develop a strong and long-lasting antibody response that can be easily detected;
- (b)
- Have low levels of viremia, thereby not participating in the propagation of the infection and minimizing the risk to operators;
- (c)
- Be distributed in the region(s) of interest and be able to be easily sampled;
- (d)
- Ideally, share the same environment and risk/exposure factors as human beings to maximize their representativeness and predictive power.
2. Materials and Methods
2.1. Sample Collection
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sejvar, J.J. Clinical Manifestations and Outcomes of West Nile Virus Infection. Viruses 2014, 6, 606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saiz, J.C.; Martín-Acebes, M.A.; Blázquez, A.B.; Escribano-Romero, E.; Poderoso, T.; Jiménez de Oya, N. Pathogenicity and Virulence of West Nile Virus Revisited Eight Decades after Its First Isolation. Virulence 2021, 12, 1145–1173. [Google Scholar] [CrossRef] [PubMed]
- Angenvoort, J.; Brault, A.C.; Bowen, R.A.; Groschup, M.H. West Nile Viral Infection of Equids. Vet. Microbiol. 2013, 167, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Steyn, J.; Botha, E.; Stivaktas, V.I.; Buss, P.; Beechler, B.R.; Myburgh, J.G.; Steyl, J.; Williams, J.; Venter, M. West Nile Virus in Wildlife and Nonequine Domestic Animals, South Africa, 2010–2018. Emerg. Infect. Dis. 2019, 25, 2290–2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habarugira, G.; Suen, W.W.; Hobson-Peters, J.; Hall, R.A.; Bielefeldt-Ohmann, H. West Nile Virus: An Update on Pathobiology, Epidemiology, Diagnostics, Control and “One Health” Implications. Pathogens 2020, 9, 589. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey Root, J. West Nile Virus Associations in Wild Mammals: A Synthesis. Arch. Virol. 2013, 158, 735–752. [Google Scholar] [CrossRef] [PubMed]
- Komar, N.; Panella, N.A.; Boyce, E. Exposure of Domestic Mammals to West Nile Virus during an Outbreak of Human Encephalitis, New York City, 1999. Emerg. Infect. Dis. 2001, 7, 736. [Google Scholar] [CrossRef]
- Blackburn, N.K.; Reyers, F.; Berry, W.L.; Shepherd, A.J. Susceptibility of Dogs to West Nile Virus: A Survey and Pathogenicity Trial. J. Comp. Pathol. 1989, 100, 59–66. [Google Scholar] [CrossRef]
- Austgen, L.E.; Bowen, R.A.; Bunning, M.L.; Davis, B.S.; Mitchell, C.J.; Chang, G.J.J. Experimental Infection of Cats and Dogs with West Nile Virus. Emerg. Infect. Dis. 2004, 10, 82–86. [Google Scholar] [CrossRef]
- Kile, J.C.; Panella, N.A.; Komar, N.; Chow, C.C.; MacNeil, A.; Robbins, B.; Bunning, M.L. Serologic Survey of Cats and Dogs during an Epidemic of West Nile Virus Infection in Humans. J. Am. Vet. Med. Assoc. 2005, 226, 1349–1353. [Google Scholar] [CrossRef] [Green Version]
- Resnick, M.P.; Grunenwald, P.; Blackmar, D.; Hailey, C.; Bueno, R.; Murray, K.O. Juvenile Dogs as Potential Sentinels for West Nile Virus Surveillance. Zoonoses Public Health 2008, 55, 443–447. [Google Scholar] [CrossRef] [PubMed]
- di Gennaro, A.; Lorusso, A.; Casaccia, C.; Conte, A.; Monaco, F.; Savini, G. Serum Neutralization Assay Can Efficiently Replace Plaque Reduction Neutralization Test for Detection and Quantitation of West Nile Virus Antibodies in Human and Animal Serum Samples. Clin. Vaccine Immunol. 2014, 21, 1460–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; World Organisation for Animal Health: Paris, France, 2013; pp. 1185–1191.
- Stevenson, M.; Stevenson, M.M.; BiasedUrn, I. Package ‘EpiR.’ Tools for the analysis of epidemiological data R package version 0.9—62. 2015. Available online: https://CRAN.R-project.org/package=epiR (accessed on 1 March 2023).
- Sule, W.F.; Oluwayelu, D.O.; Hernández-Triana, L.M.; Fooks, A.R.; Venter, M.; Johnson, N. Epidemiology and ecology of West Nile virus in sub-Saharan Africa. Parasit Vectors 2018, 11, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joubert, J.J.; Prozesky, O.W.; Lourens, J.G.; van Straten, A.M.; Theron, J.W.; Swanevelder, C.; Meenehan, G.M.; van der Merwe, C.A. Prevalence of Hepatitis Virus and Some Arbovirus Infections in Kavango, Northern SWA/Namibia. S. Afr. Med. J. 1985, 67, 500–502. [Google Scholar]
- Joubert, J.J.; van der Merwe, C.A.; Lourens, J.H.; Lecatsas, G.; Siegrühn, C. Serological Markers of Hepatitis B Virus and Certain Other Viruses in the Population of Eastern Caprivi, Namibia. Trans. R. Soc. Trop. Med. Hyg. 1991, 85, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Noden, B.H.; Musuuo, M.; Aku-Akai, L.; van der Colf, B.; Chipare, I.; Wilkinson, R. Risk Assessment of Flavivirus Transmission in Namibia. Acta Trop. 2014, 137, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Mencattelli, G.; Ndione, M.H.D.; Rosà, R.; Marini, G.; Diagne, C.T.; Diagne, M.M.; Fall, G.; Faye, O.; Diallo, M.; Faye, O.; et al. Epidemiology of West Nile Virus in Africa: An Underestimated Threat. PLoS Negl. Trop. Dis. 2022, 16, e0010075. [Google Scholar] [CrossRef]
- Jupp, P.G. The Ecology of West Nile Virus in South Africa and the Occurrence of Outbreaks in Humans. Ann. N. Y. Acad. Sci. 2001, 951, 143–152. [Google Scholar] [CrossRef]
- Molini, U.; Franzo, G.; Nel, H.; Khaiseb, S.; Ntahonshikira, C.; Chiwome, B.; Baines, I.; Madzingira, O.; Monaco, F.; Savini, G.; et al. West Nile Virus Seroprevalence in a Selected Donkey Population of Namibia. Front. Vet. Sci. 2021, 8, 681354. [Google Scholar] [CrossRef]
- Lillibridge, K.M.; Parsons, R.; Randle, Y.; Travassos Da Rosa, A.P.A.; Guzman, H.; Siirin, M.; Wuithiranyagool, T.; Hailey, C.; Higgs, S.; Bala, A.A.; et al. The 2002 introduction of west nile virus into harris county, texas, an area historically endemic for ST. louis encephalitis. Am. J. Trop. Med. Hyg. 2004, 70, 676–681. [Google Scholar] [CrossRef]
- Davila, E.; Fernández-Santos, N.A.; Estrada-Franco, J.G.; Wei, L.; Aguilar-Durán, J.A.; de López-López, M.J.; Solís-Hernández, R.; García-Miranda, R.; Velázquez-Ramírez, D.D.; Torres-Romero, J.; et al. Domestic Dogs as Sentinels for West Nile Virus but Not Aedes-Borne Flaviviruses, Mexico. Emerg. Infect. Dis. 2022, 28, 1071. [Google Scholar] [CrossRef] [PubMed]
Region | N. Dogs | cELISA | VNT WNV |
---|---|---|---|
Omaheke | 64 | 6/64 (9.37%; 95 CI: 3.51–19.29%) | 1/64 (1.56%; 95 CI: 0.039–8.40%) |
Erongo | 42 | 0/42 (0%; 95 CI: 0–8.41%) | 0/42 (0%; 95 CI: 0–8.41%) |
Khomas | 51 | 5/51 (9.8%; 95 CI: 3.26–21.41%) | 2/51 (3.92%; 95 CI: 0.47–13.45%) |
Kunene | 62 | 10/62 (16.13%; 95 CI: 8.01–27.66%) | 2/62 (3.23%; 95 CI: 0.39–11.17%) |
Otjozondjupa | 64 | 9/64 (14.06%; 95 CI: 6.63–25.02%) | 1/64 (1.56%; 95 CI: 0.04–8.40%) |
Kavango west | 43 | 15/43 (34.88%; 95 CI: 21.01–50.93%) | 4/43 (9.3%; 95 CI: 2.59–22.13%) |
Karas | 40 | 6/40 (15%; 95 CI: 5.71–29.83%) | 0/40 (0%; 95 CI: 0–8.81%) |
Hardap | 60 | 19/60 (31.67%; 95 CI: 20.25–44.95%) | 2/60 (3.33%; 95 CI: 0.41–11.53%) |
Total | 426 | 70/426 (16.43%; 95 CI: 13.10–20.39%) | 12/426 (2.82%; 95 CI: 1.47–4.90%) |
Test | Variable (Reference Level) | Target Level | Odds Ratio (CI 95%) | p-Value |
---|---|---|---|---|
ELISA | Sex (female) | Male | 1.34 (0.80–2.31) | 0.267 |
Age (age < 1 year) | Age 1–7 years | 7.83 (2.809–32.65) | <0.001 | |
Age > 7 years | 22.00 (5.97–106.91) | <0.001 | ||
Breed (crossbreed) | Purebred | 1.46 (0.56–3.36) | 0.398 | |
VN | Sex (female) | Male | 1.06 (0.33–3.66) | 0.921 |
Age (age < 1 year) | Age 1–7 years | 2.17 (0.09–23.64) | 0.572 | |
Age > 7 years | 1.56 (0.39–10.36) | 0.533 | ||
Breed (crossbreed) | Purebred | 2.54 (0.669–2.32) | 0.242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molini, U.; Franzo, G.; Bonfini, B.; de Villiers, L.; de Villiers, M.; Khaiseb, S.; Monaco, F.; Savini, G.; D’Alterio, N. Low Seroprevalence of WNV in Namibian Dogs Suggests a Limited Effectiveness as Sentinels for Infection Monitoring. Trop. Med. Infect. Dis. 2023, 8, 203. https://doi.org/10.3390/tropicalmed8040203
Molini U, Franzo G, Bonfini B, de Villiers L, de Villiers M, Khaiseb S, Monaco F, Savini G, D’Alterio N. Low Seroprevalence of WNV in Namibian Dogs Suggests a Limited Effectiveness as Sentinels for Infection Monitoring. Tropical Medicine and Infectious Disease. 2023; 8(4):203. https://doi.org/10.3390/tropicalmed8040203
Chicago/Turabian StyleMolini, Umberto, Giovanni Franzo, Barbara Bonfini, Lourens de Villiers, Mari de Villiers, Siegfried Khaiseb, Federica Monaco, Giovanni Savini, and Nicola D’Alterio. 2023. "Low Seroprevalence of WNV in Namibian Dogs Suggests a Limited Effectiveness as Sentinels for Infection Monitoring" Tropical Medicine and Infectious Disease 8, no. 4: 203. https://doi.org/10.3390/tropicalmed8040203
APA StyleMolini, U., Franzo, G., Bonfini, B., de Villiers, L., de Villiers, M., Khaiseb, S., Monaco, F., Savini, G., & D’Alterio, N. (2023). Low Seroprevalence of WNV in Namibian Dogs Suggests a Limited Effectiveness as Sentinels for Infection Monitoring. Tropical Medicine and Infectious Disease, 8(4), 203. https://doi.org/10.3390/tropicalmed8040203