Microencapsulation of a Native Strain of the Entomopathogenic Fungus Beauveria bassiana and Bioinsecticide Activity against Pyrethroid-Resistant Triatoma infestans to Vector Control of Chagas Disease in the Argentine Gran Chaco Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungus Source and Culture
2.2. Fungal Microencapsulation
2.3. Insects
2.4. Experimental Formulations
2.5. Semi-Field Assays
2.6. Statistical Analyses
3. Results
3.1. Entomopathogenic Effect of Both Bare and Microencapsulated Conidia on T. infestans Nymphs
3.2. Viability and Residual Effect of Formulations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schofield, C.J.; Dias, J.C.P. The southern cone initiative against Chagas disease. Adv. Parasitol. 1999, 42, 1–27. [Google Scholar]
- Gurevitz, J.M.; Gaspe, M.S.; Enriquez, G.F.; Provecho, Y.M.; Kitron, U.; Gürtler, R.E. Intensified surveillance and insecticide-based control of the Chagas disease vector Triatoma infestans in the Argentinean Chaco. PLoS Negl. Trop. Dis. 2013, 7, 2158. [Google Scholar] [CrossRef] [PubMed]
- Lardeux, F.; Depickère, S.; Duchon, S.; Chavez, T. Insecticide resistance of Triatoma infestans (Hemiptera, Reduviidae) vector of Chagas disease in Bolivia. Trop. Med. Int. Health 2010, 15, 1037–1048. [Google Scholar] [CrossRef]
- Cardozo, R.M.; Panzera, F.; Gentile, A.G.; Segura, M.A.; Perez, R.; Diaz, R.A.; Basombrio, M.A. Inheritance of resistance to pyrethroids in Triatoma infestans, the main Chagas disease vector in South America. Infect Genet Evol. 2010, 10, 1174–1178. [Google Scholar] [CrossRef]
- Germano, M.D.; Acevedo, G.R.; Cueto, G.M.; Toloza, A.C.; Vassena, C.V.; Picollo, M.I. New findings of insecticide resistance in Triatoma infestans (Heteroptera: Reduviidae) from the Gran Chaco. J. Med. Entomol. 2010, 47, 1077–1081. [Google Scholar] [CrossRef] [PubMed]
- Pedrini, N.; Mijailovsky, S.J.; Girotti, J.R.; Stariolo, R.; Cardozo, R.M.; Gentile, A.; Juarez, M.P. Control of pyrethroid-resistant Chagas disease vectors with entomopathogenic fungi. PLoS Negl. Trop. Dis. 2009, 3, e434. [Google Scholar] [CrossRef]
- Forlani, L.; Pedrini, N.; Girotti, J.R.; Mijailovsky, S.J.; Cardozo, R.M.; Gentile, A.G.; Juárez, M.P. Biological control of the Chagas disease vector Triatoma infestans with the entomopathogenic fungus Beauveria bassiana combined with an aggregation cue: Field, laboratory and mathematical modeling assessment. PLoS Negl. Trop. Dis. 2015, 9, e0003778. [Google Scholar] [CrossRef]
- Tanzini, M.R.; Batista, S.; Setten, A.; Toschi, N. Compatibilidad de agentes tensoactivos con Beauveria bassiana y Metarhizium anisopliae. Manejo Integr. Plagas Costa Rica. 2001, 59, 15–18. [Google Scholar]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Park, J.K.; Chang, H.N. Microencapsulation of microbial cells. Biotechnol. Adv. 2000, 18, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Bashan, Y.; Hernández, J.P.; Leyva, L.A.; Bacilio, M. Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol Fertil Soils 2002, 35, 359–368. [Google Scholar] [CrossRef]
- Yabur, R.; Bashan, Y.; Hernández-Carmona, G. Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion. J. Appl. Phycol. 2006, 19, 43–53. [Google Scholar] [CrossRef]
- Gombotz, W.R.; Wee, S. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 1998, 31, 267–285. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, G.R.; Johnson, J.B.; Eschen, D.J. Alginate Pellet Formulation of a Beauveria bassiana (Fungi: Hyphomycetes): Isolate Pathogenic to Cereal Aphids. J. Econ. Entomol. 1990, 83, 2225–2228. [Google Scholar] [CrossRef]
- Pereira, R.M.; Roberts, D.W. Alginate and Cornstarch Mycelial Formulations of Entomopathogenic Fungi, Beauveria bassiana and Metarhizium anisopliae. J. Econ. Entomol. 1991, 84, 1657–1661. [Google Scholar] [CrossRef]
- Gerding-González, M.; France, A.; Sepulveda, M.E.; Campos, J. Use of chitin to improve a Beauveria bassiana alginate-pellet formulation. Biocontrol Sci. Technol. 2007, 17, 105–110. [Google Scholar] [CrossRef]
- Vemmer, M.; Patel, A.V. Review of encapsulation methods suitable for microbial biological control agents. Biol. Control 2013, 67, 380–389. [Google Scholar] [CrossRef]
- Baldiviezo, L.V.; Pedrini, N.; Santana, M.; Mannino, M.C.; Nieva, L.B.; Gentile, A.; Cardozo, R.M. Isolation of Beauveria bassiana from the Chagas Disease Vector Triatoma infestans in the Gran Chaco Region of Argentina: Assessment of Gene Expression during Host–Pathogen Interaction. J. Fungi 2020, 6, 219. [Google Scholar] [CrossRef]
- Monzón, A. Producción, uso y control de calidad de hongos entomopatógenos en Nicaragua. Avances en el fomento de productos fitosanitarios no-sintéticos. Manejo Integr. Plagas 2001, 63, 95–103. [Google Scholar]
- Arzumanov, T.; Jenkins, N.; Roussos, S. Effect of aeration and substrate moisture content on sporulation of Metarhizium anisopliae var. acridum. Process Biochem. 2005, 40, 1037–1042. [Google Scholar] [CrossRef]
- Carrillo, A.; Bashan, Y. Microencapsulation as a potential carrier for plant growth-promoting bacteria. In Plant Growth-Promoting Rhizobacteria-Present Status and Future Prospects; Ogoshi, A., Kobayashi, K., Homma, Y., Kodama, F., Kondo, N., Akino, S., Eds.; Faculty of Agriculture, Hokkaido University: Sapporo, Japan, 1997; pp. 460–463. [Google Scholar]
- Brewer, M.; Garay, M.; Gorla, D.; Murua, F.; Favot, R. Caracterización de los estadios ninfales del genero Triatoma laporte 1833 y Triatoma infestans Klug 1834 (Hemiptera, Reduviidae). Rev. Soc. Entomológica Argent. 1981, 40, 91–102. [Google Scholar]
- Peng, G.; Xia, Y. The mechanism of the mycoinsecticide diluents on the efficacy of the oil formulation of insecticidal fungus. Biocontrol 2011, 53, 893–902. [Google Scholar] [CrossRef]
- Simonazzi, A.; Davies, C.; Cid, A.G.; Gonzo, E.; Parada, L.; Bermúdez, J.M. Preparation and characterization of Poloxamer 407 solid dispersions as an alternative strategy to improve benznidazole bioperformance. J. Pharm. Sci. 2018, 107, 2829–2836. [Google Scholar] [CrossRef]
- Lord, J.C. Desiccant dusts synergize the effect of Beauveria bassiana (Hyphomycetes: Moniliales) on stored-grain beetles. J. Econ. Entomol. 2001, 94, 367–372. [Google Scholar] [CrossRef]
- Malsam, O.; Kilian, M.; Oerke, E.C.; Dehne, H.W. Oils for increased efficacy of Metarhizium anisopliae to control whiteflies. Biocontrol Sci. Technol. 2002, 12, 337–348. [Google Scholar] [CrossRef]
- Luz, C.; Batagin, I. Potential of oil-based formulations of Beauveria bassiana to control Triatoma infestans. Mycopathol 2005, 160, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Inglis, D.G.; Goettel, M.S.; Butt, T.M.; Strasser, H. Use of hyphomycetes fungi for managing insect pests. In Fungi as Biocontrol Agents: Progress, Problems and Potential; Butt, T.M., Jackson, C., Magan, N., Eds.; CABI International: Wallingford, UK, 2001; pp. 26–69. [Google Scholar]
- Roy, H.E.; Steinkraus, D.C.; Eilenberg, J.; Hajek, A.E.; Pell, J.K. Bizarre interactions and endgames: Entomopathogenic fungi and their arthropod hosts. Annu. Rev. Entomol. 2006, 51, 331–357. [Google Scholar] [CrossRef]
- Jaronski, S.T. Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 2010, 55, 159–185. [Google Scholar] [CrossRef]
- Pozo, C. Effectiveness of a Beauveria bassiana Microencapsulation on Metamasius spinolae. Master’s Thesis, Center for the Development of Biotic Products of the National Polytechnic Institute, Mexico City, Mexico, 2012; p. 76. [Google Scholar]
- Chumtong, A.; Wiwattanapatapee, R.; Viernstein, H.; Pengnoo, A.; Kanjanamaneesathian, M. Spay-dried powder Bacillus megaterium for control of rice sheath blight disease: Formulation protocol and efficacy testing in laboratory and greenhouse. Cereal Res. Commun. 2016, 4, 131–140. [Google Scholar] [CrossRef]
- Lynch, P.A.; Grimm, U.; Thomas, M.B.; Read, A.F. Prospective malaria control using entomopathogenic fungi: Comparative evaluation of impact on transmission and selection for resistance. Malaria J. 2012, 11, 383. [Google Scholar] [CrossRef]
- Liu, C.P.; Liu, S.D. Formulation and characterization of the microencapsulated entomopathogenic fungus Metarhizium anisopliae MA126. J. Microencapsul. 2009, 26, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Lopes, A.R.; Locatelli, G.O.; Melo-Barbosa, R.; Lobo, M.J.; Moura-Mascarin, G.; Finkler, C.L.L. Preparation, characteriztion and cell viability of encapsulated Trichoderma asperellum in alginate beads. J. Microencapsul. 2020, 37, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Simonazzi, A.; Baldiviezo, V.; Virgili, V.; Bermúdez, J.M.; Arnal, P.; Herrera, C.A.; Enriquez, C.; Gentile, A.G.; Cardozo, R.M. Evaluation of oily formulations of Beauveria bassiana using Poloxamer 407 for the development of a powerful bioinsecticide for the control of the Chagas disease vector. Res. Eng. Fac. NOA 2015, 152–158. Available online: https://www.researchgate.net/publication/294089509_Evaluacion_de_formulaciones_oleosas_de_Beauveria_bassiana_utilizando_Poloxamer_407_para_el_desarrollo_de_un_potente_bioinsecticida_contra_el_vector_de_la_enfermedad_de_Chagas (accessed on 20 April 2023).
Components | BbC 1 | MicBbC 2 | Control |
---|---|---|---|
Fungus (conidia/g) | 1 × 1012 | - | - |
Microencapsulated (conidia/g) | - | 1 × 1012 | - |
Sunflower oil (mL) | 30 | 30 | 30 |
P407 (g) | 0.59 | 0.59 | 0.59 |
DE (g) | 10 | 10 | 10 |
Time (Days) 1 | BbC | MicBbC |
---|---|---|
LT50 (Days) | LT50 (Days) | |
0 2 | 5 | 8 |
15 | 10 | 11.5 |
30 | 10.5 | 12.5 |
45 | ND 3 | 26 |
60 | ND 3 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldiviezo, L.V.; Nieva, L.B.; Pedrini, N.; Cardozo, R.M. Microencapsulation of a Native Strain of the Entomopathogenic Fungus Beauveria bassiana and Bioinsecticide Activity against Pyrethroid-Resistant Triatoma infestans to Vector Control of Chagas Disease in the Argentine Gran Chaco Region. Trop. Med. Infect. Dis. 2023, 8, 245. https://doi.org/10.3390/tropicalmed8050245
Baldiviezo LV, Nieva LB, Pedrini N, Cardozo RM. Microencapsulation of a Native Strain of the Entomopathogenic Fungus Beauveria bassiana and Bioinsecticide Activity against Pyrethroid-Resistant Triatoma infestans to Vector Control of Chagas Disease in the Argentine Gran Chaco Region. Tropical Medicine and Infectious Disease. 2023; 8(5):245. https://doi.org/10.3390/tropicalmed8050245
Chicago/Turabian StyleBaldiviezo, Linda Vanesa, Lucía Beatriz Nieva, Nicolás Pedrini, and Rubén Marino Cardozo. 2023. "Microencapsulation of a Native Strain of the Entomopathogenic Fungus Beauveria bassiana and Bioinsecticide Activity against Pyrethroid-Resistant Triatoma infestans to Vector Control of Chagas Disease in the Argentine Gran Chaco Region" Tropical Medicine and Infectious Disease 8, no. 5: 245. https://doi.org/10.3390/tropicalmed8050245
APA StyleBaldiviezo, L. V., Nieva, L. B., Pedrini, N., & Cardozo, R. M. (2023). Microencapsulation of a Native Strain of the Entomopathogenic Fungus Beauveria bassiana and Bioinsecticide Activity against Pyrethroid-Resistant Triatoma infestans to Vector Control of Chagas Disease in the Argentine Gran Chaco Region. Tropical Medicine and Infectious Disease, 8(5), 245. https://doi.org/10.3390/tropicalmed8050245