Common Prognostic Biomarkers and Outcomes in Patients with COVID-19 Infection in Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Subjects and Methods
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Definitions
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Limitations of Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.H.; Lin, S.W.; Shen, C.F.; Hsieh, K.S.; Cheng, C.M. Biomarkers during COVID-19: Mechanisms of change and implications for patient outcomes. Diagnostics 2022, 12, 509. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in china: Summary of a report of 72 314 cases from the chinese center for disease control and prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Badulak, J.; Antonini, M.V.; Stead, C.M.; Shekerdemian, L.; Raman, L.; Paden, M.L.; Agerstrand, C.; Bartlett, R.H.; Barrett, N.; Combes, A.; et al. Extracorporeal membrane oxygenation for covid-19: Updated 2021 guidelines from the extracorporeal life support organization. Asaio J. 2021, 67, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016, 24, 490–502. [Google Scholar] [CrossRef]
- Gogate, N.; Lyman, D.; Bell, A.; Cauley, E.; Crandall, K.A.; Joseph, A.; Kahsay, R.; Natale, D.A.; Schriml, L.M.; Sen, S.; et al. COVID-19 biomarkers and their overlap with comorbidities in a disease biomarker data model. Brief. Bioinform. 2021, 22, bbab191. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- Noval Rivas, M.; Porritt, R.A.; Cheng, M.H.; Bahar, I.; Arditi, M. COVID-19-associated multisystem inflammatory syndrome in children (mis-c): A novel disease that mimics toxic shock syndrome-the superantigen hypothesis. J. Allergy Clin. Immunol. 2021, 147, 57–59. [Google Scholar] [CrossRef]
- Samprathi, M.; Jayashree, M. Biomarkers in COVID-19: An up-to-date review. Front. Pediatr. 2020, 8, 607647. [Google Scholar] [CrossRef]
- Zhao, Y.; Yin, L.; Patel, J.; Tang, L.; Huang, Y. The inflammatory markers of multisystem inflammatory syndrome in children (mis-c) and adolescents associated with COVID-19: A meta-analysis. J. Med. Virol. 2021, 93, 4358–4369. [Google Scholar] [CrossRef]
- Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Robb, M.A.; McInnes, P.M.; Califf, R.M. Biomarkers and surrogate endpoints: Developing common terminology and definitions. JAMA 2016, 315, 1107–1108. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med. 2020, 58, 1021–1028. [Google Scholar] [CrossRef]
- Yang, L.; Xie, X.; Tu, Z.; Fu, J.; Xu, D.; Zhou, Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct. Target. Ther. 2021, 6, 255. [Google Scholar] [CrossRef] [PubMed]
- Bairwa, M.; Kumar, R.; Beniwal, K.; Kalita, D.; Bahurupi, Y. Hematological profile and biochemical markers of COVID-19 non-survivors: A retrospective analysis. Clin. Epidemiol. Glob. Health 2021, 11, 100770. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, V.; Mohanty, A.; Bahurupi, Y.; Gupta, P.K. Corona health-care warriors in india: Knowledge, attitude, and practices during COVID-19 outbreak. J. Educ. Health Promot. 2021, 10, 44. [Google Scholar] [CrossRef]
- Martins-Filho, P.R.; Tavares, C.S.S.; Santos, V.S. Factors associated with mortality in patients with COVID-19. A quantitative evidence synthesis of clinical and laboratory data. Eur. J. Intern. Med. 2020, 76, 97–99. [Google Scholar] [CrossRef]
- Tian, S.; Liu, H.; Liao, M.; Wu, Y.; Yang, C.; Cai, Y.; Peng, Z.; Xiao, S.Y. Analysis of mortality in patients with COVID-19: Clinical and laboratory parameters. Open Forum Infect. Dis. 2020, 7, ofaa152. [Google Scholar] [CrossRef]
- Wang, K.; Qiu, Z.; Liu, J.; Fan, T.; Liu, C.; Tian, P.; Wang, Y.; Ni, Z.; Zhang, S.; Luo, J.; et al. Analysis of the clinical characteristics of 77 COVID-19 deaths. Sci. Rep. 2020, 10, 16384. [Google Scholar] [CrossRef]
- Velichko, A.; Huyut, M.T.; Belyaev, M.; Izotov, Y.; Korzun, D. Machine Learning Sensors for Diagnosis of COVID-19 Disease Using Routine Blood Values for Internet of Things Application. Sensors 2022, 22, 7886. [Google Scholar] [CrossRef]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25–36. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Qu, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Iwasaki, A. Sex differences in immune responses. Science 2021, 371, 347–348. [Google Scholar] [CrossRef] [PubMed]
- Huyut, M.T.; Velichko, A. Diagnosis and Prognosis of COVID-19 Disease Using Routine Blood Values and LogNNet Neural Network. Sensors 2022, 22, 4820. [Google Scholar] [CrossRef]
- Wang, S.; Ma, P.; Zhang, S.; Song, S.; Wang, Z.; Ma, Y.; Xu, J.; Wu, F.; Duan, L.; Yin, Z.; et al. Fasting blood glucose at admission is an independent predictor for 28-day mortality in patients with COVID-19 without previous diagnosis of diabetes: A multi- centre retrospective study. Diabetologia 2020, 63, 2102–2110. [Google Scholar] [CrossRef] [PubMed]
- Bonetti, G.; Manelli, F.; Patroni, A.; Bettinardi, A.; Borrelli, G.; Fiordalisi, G.; Marino, A.; Menolfi, A.; Saggini, S.; Volpi, R.; et al. Laboratory predictors of death from coronavirus disease 2019 (COVID-19) in the area of Valcamonica, Italy. Clin. Chem. Lab. Med. 2020, 58, 1100–1105. [Google Scholar] [CrossRef]
- Taylor, E.H.; Marson, E.J.; Elhadi, M.; Macleod, K.D.M.; Yu, J.C.; Davids, R.; Boden, R.; Overmeyer, R.C.; Ramakrishnan, R.; Thomson, D.A.; et al. Factors associated with mortality in patients with COVID-19 admitted to intensive care: A systematic review and meta-analysis. Anaesthesia 2021, 76, 1224–1232. [Google Scholar] [CrossRef]
- Alhasan, K.A.; Shalaby, M.A.; Temsah, M.H.; Albanna, A.S.; Kari, J.A. Factors That Influence Mortality in Critically Ill Patients with SARS-CoV-2 Infection: A Multicenter Study in the Kingdom of Saudi Arabia. Healthcare 2021, 9, 1608. [Google Scholar] [CrossRef]
- Alguwaihes, A.M.; Al-Sofiani, M.E.; Megdad, M.; Albader, S.S.; Alsari, M.H.; Alelayan, A.; Alzahrani, S.H.; Sabico, S.; Al-Daghri, N.M.; Jammah, A.A. Diabetes and COVID-19 among hospitalized patients in saudi arabia: A single-centre retrospective study. Cardiovasc. Diabetol. 2020, 19, 205. [Google Scholar] [CrossRef]
- Elkhalifa, A.M. D-diamer as a predective and prognestic markers among COVID-19 patients. Saudi Med. J. 2022, 43, 723–729. [Google Scholar] [CrossRef]
- Hariyanto, T.I.; Japar, K.V.; Kwenandar, F.; Damay, V.; Siregar, J.I.; Lugito, N.P.H.; Tjiang, M.M.; Kurniawan, A. Inflammatory and hematologic markers as predictors of severe outcomes in COVID-19 infection: A systematic review and meta-analysis. Am. J. Emerg. Med. 2021, 41, 110–119. [Google Scholar] [CrossRef]
- Kaufmann, C.C.; Ahmed, A.; Burger, A.L.; Muthspiel, M.; Jäger, B.; Wojta, J.; Huber, K. Biomarkers associated with cardiovascular disease in COVID-19. Cells 2022, 11, 922. [Google Scholar] [CrossRef]
- Toraih, E.A.; Elshazli, R.M.; Hussein, M.H.; Elgaml, A.; Amin, M.; El-Mowafy, M.; El-Mesery, M.; Ellythy, A.; Duchesne, J.; Killackey, M.T.; et al. Association of cardiac biomarkers and comorbidities with increased mortality, severity, and cardiac injury in COVID-19 patients: A meta-regression and decision tree analysis. J. Med. Virol. 2020, 92, 2473–2488. [Google Scholar] [CrossRef] [PubMed]
- Ponti, G.; Maccaferri, M.; Ruini, C.; Tomasi, A.; Ozben, T. Biomarkers associated with COVID-19 disease progression. Crit. Rev. Clin. Lab. Sci. 2020, 57, 389–399. [Google Scholar] [CrossRef]
- Lippi, G.; Plebani, M. Laboratory abnormalities in patients with COVID-2019 infection. Clin. Chem. Lab. Med. 2020, 58, 1131–1134. [Google Scholar] [CrossRef] [PubMed]
- Alsagaby, S.A.; Aljouie, A.; Alshammari, T.H.; Mir, S.A.; Alhumaydhi, F.A.; Al Abdulmonem, W.; Alshaalan, H.; Alomaish, H.; Daghistani, R.; Alsehawi, A.; et al. Haematological and radiological-based prognostic markers of COVID-19. J. Infect. Public Health 2021, 14, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Alharthy, A.; Aletreby, W.; Faqihi, F.; Balhamar, A.; Alaklobi, F.; Alanezi, K.; Jaganathan, P.; Tamim, H.; Alqahtani, S.A.; Karakitsos, D.; et al. Clinical characteristics and predictors of 28-day mortality in 352 critically ill patients with COVID-19: A retrospective study. J. Epidemiol. Glob. Health 2021, 11, 98–104. [Google Scholar] [CrossRef]
- Rizzi, M.; Costanzo, M.; Tonello, S. Prognostic Markers in Hospitalized COVID-19 patients: The role of IP-10 and C-Reactive Protein. Hindawi Dis. Markers 2022, 2022, 3528312. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Estimate |
---|---|
Age in years./mean (SD) | 46.2 (19.5) |
Agein years/median (IQR) | 48 (34–60) |
Male Sex | 680 (64.6) |
BMI—mean (SD) | 28.1 (11.3) |
BMI—median (IQR) | 27.0 (23.7–30.9) |
Comorbidities—No. (%) | |
Diabetes | 379 (36.0) |
Hypertension | 344 (32.7) |
Renal disease | 92 (8.7) |
Cardiac disease | 154 (14.6) |
Respiratory disease | 122 (11.6) |
Hematology disorder | 31 (3.0) |
Oncology disorder | 30 (2.9) |
Post-transplant | 6 (0.6) |
CNS disorder | 4 (1.8) |
HIV infection | 2 (0.9) |
Any comorbidity | 605 (57.5) |
Characteristics | % (95% CI) |
---|---|
Symptoms | |
Fever | 72.4 (69.6–75.0) |
Cough | 66.7 (63.7–69.5) |
Dyspnea | 56.4 (53.4–59.4) |
Diarrhea | 20.1 (17.7–22.7) |
Headache | 6.2 (4.8–7.8) |
Muscle Pain | 5.2 (4.0–6.7) |
Skin rash | 0.9 (0.4–1.6) |
Flu-like symptoms | 14.3 (12.3–16.6) |
Any Symptom | 93.3 (91.6–94.7) |
Signs | |
Fever | 53.9 (50.9–57.0) |
Mild respiratory distress | 33.9 (31.0–36.9) |
Severe respiratory distress | 19.6 (17.2–22.1) |
Heart failure | 2.6 (1.7–3.7) |
Hematemesis | 0.6 (0.2–1.2) |
Dehydration | 3.5 (2.5–4.8) |
Tonsilitis | 5.9 (4.5–7.5) |
No clinical signs | 14.7 (12.6–17.0) |
Biomarkers | Stable | Unstable | |||
---|---|---|---|---|---|
Estimate | 95% CI | Estimate | 95% CI | p-Value | |
Anemia (%) | 32.3 | 29.0–35.8 | 57.3 | 50.4–64.1 | <0.001 |
Leukocytosis (%) | 20.2 | 17.3–23.4 | 77.0 | 70.3–82.8 | <0.001 |
Leukopenia (%) | 29.5 | 26.3–32.9 | 20.6 | 15.3–26.7 | 0.011 |
Thrombocytopenia (%) | 12.7 | 10.2–15.6 | 41.6 | 34.7–48.7 | <0.001 |
High PT (%) | 83.0 | 79.6–86.1 | 95.2 | 91.3–97.7 | <0.001 |
High APTT (%) | 46.3 | 42.0–50.7 | 79.9 | 73.8–85.1 | <0.001 |
High INR (%) | 8.3 | 6.1–10.9 | 50.0 | 43.1–56.9 | <0.001 |
High fibrinogen (%) | 14.5 | 10.4–19.5 | 92.3 | 86.9–95.9 | <0.001 |
High D-dimer (%) | 67.7 | 62.4–72.6 | 99.0 | 96.3–99.9 | <0.001 |
High CRP (%) | 72.3 | 68.7–75.7 | 96.3 | 92.8–98.4 | <0.001 |
High troponin I | 49.7 | 44.3– 55.2 | 81.9 | 75.2–87.5 | <0.001 |
High ferritin (%) | 62.2 | 58.2–66.1 | 75.9 | 69.2–81.9 | 0.001 |
High LDH (%) | 73.5 | 69.5–77.2 | 97.5 | 94.2–99.2 | <0.001 |
Disturbed LFT (%) | 47.0 | 43.4–50.6 | 84.7 | 79.3–89.2 | <0.001 |
AKI (%) | 1.4 | 0.7–2.5 | 56.6 | 49.9–63.2 | <0.001 |
Biomarkers | Stable | Unstable * | ||
---|---|---|---|---|
Estimate | 95% CI | Estimate | 95% CI | |
Hemoglobin (mean/SD) $ | 12.7/2.1 | 12.5–12.8 | 10.9/3.2 | 10.4–11.3 |
Highest WBC (mean/SD) @ | 8.8/4.1 | 8.5–9.1 | 18.0/9.1 | 16.6–19.3 |
Lowest WBC (mean/SD) $ | 6.0/2.8 | 5.8–6.2 | 7.4/3.8 | 6.8–7.9 |
Platelet (mean/SD) $ | 261/115 | 251–270 | 205/145 | 184–224 |
PT (mean/SD) @ | 13.8/2.2 | 13.7–14.0 | 19.4/17.3 | 17.3–21.4 |
APTT (mean/SD) @ | 37.9/14.1 | 36.7–39.2 | 76.9/51.9 | 69.8–84.0 |
INR (mean/SD) @ | 1.11/0.2 | 1.09–1.13 | 1.54/1.1 | 1.39–1.69 |
Fibrinogen (mean/SD) @ | 81/205 | 55–106 | 674/656 | 569–778 |
D-dimer (mean/SD) @ | 2.4/8.1 | 1.5–3.3 | 16.3/20.6 | 13.3–19.2 |
CRP (mean/SD) @ | 32.3/47 | 28.7–35.9 | 82.1/101 | 68.6–95.6 |
Troponin I (mean/SD) @ | 5.3/13.3 | 3.9–7.0 | 3.0/8.9 | 1.7–4.4 |
Ferritin (mean/SD) @ | 583/965 | 506–659 | 1409/1850 | 1142–1675 |
LDH (mean/SD) @ | 383/213 | 365–402 | 931/909 | 804–1057 |
ALT (mean/SD) @ | 55/57 | 51–59 | 218/548 | 145–290 |
AST (mean/SD) @ | 51/55 | 47–55 | 235/601 | 153–316 |
Creatinine (mean/SD) @ | 96/133 | 86–105 | 348/384 | 297–399 |
GFR (mean/SD) $ | 84/35 | 82–87 | 47/39 | 41–52 |
Test Result Variable(s) | Area (AUC) | Diagnostic Performance | p-Value | Cut off Point | Sensitivity | Specificity | Accuracy | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||||
Highest WBCs k/uL | 0.853 | Good (B) | <0.001 | 12.8500 | 0.752 | 0.735 | 0.738 | 0.807 | 0.899 |
Highest INR (ratio) | 0.777 | Fair (C) | <0.001 | 1.21500 | 0.664 | 0.571 | 0.591 | 0.718 | 0.836 |
Highest D-dimer mg/L | 0.872 | Good (B) | <0.001 | 3.26800 | 0.721 | 0.378 | 0.454 | 0.827 | 0.917 |
CRP mg/L | 0.531 | Fail (F) | 0.410 | 16.9000 | 0.650 | 0.483 | 0.520 | 0.457 | 0.604 |
Ferritin ng/L | 0.653 | Poor (D) | <0.001 | 170.550 | 0.801 | 0.326 | 0.431 | 0.583 | 0.723 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abujabal, M.; Shalaby, M.A.; Abdullah, L.; Albanna, A.S.; Elzoghby, M.; Alahmadi, G.G.; Sethi, S.K.; Temsah, M.-H.; Aljamaan, F.; Alhasan, K.; et al. Common Prognostic Biomarkers and Outcomes in Patients with COVID-19 Infection in Saudi Arabia. Trop. Med. Infect. Dis. 2023, 8, 260. https://doi.org/10.3390/tropicalmed8050260
Abujabal M, Shalaby MA, Abdullah L, Albanna AS, Elzoghby M, Alahmadi GG, Sethi SK, Temsah M-H, Aljamaan F, Alhasan K, et al. Common Prognostic Biomarkers and Outcomes in Patients with COVID-19 Infection in Saudi Arabia. Tropical Medicine and Infectious Disease. 2023; 8(5):260. https://doi.org/10.3390/tropicalmed8050260
Chicago/Turabian StyleAbujabal, Mashael, Mohamed A. Shalaby, Layla Abdullah, Amr S. Albanna, Mohamed Elzoghby, Ghadeer Ghazi Alahmadi, Sidharth Kumar Sethi, Mohamad-Hani Temsah, Fadi Aljamaan, Khalid Alhasan, and et al. 2023. "Common Prognostic Biomarkers and Outcomes in Patients with COVID-19 Infection in Saudi Arabia" Tropical Medicine and Infectious Disease 8, no. 5: 260. https://doi.org/10.3390/tropicalmed8050260
APA StyleAbujabal, M., Shalaby, M. A., Abdullah, L., Albanna, A. S., Elzoghby, M., Alahmadi, G. G., Sethi, S. K., Temsah, M. -H., Aljamaan, F., Alhasan, K., & Kari, J. A. (2023). Common Prognostic Biomarkers and Outcomes in Patients with COVID-19 Infection in Saudi Arabia. Tropical Medicine and Infectious Disease, 8(5), 260. https://doi.org/10.3390/tropicalmed8050260