Superimposed Pulmonary Tuberculosis (PTB) in a 26-Year-Old Female with No Underlying Co-Morbidities Recovering from COVID-19—Case Report
Abstract
:1. Introduction
2. Case Representation
3. Discussion
3.1. COVID-19 and PTB
3.2. Clinical Symptoms
3.3. Radiological Findings
3.4. Laboratory Findings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATT | Anti-tuberculosis |
CAP | Community Acquired Pneumonia |
COVID-19 | Coronavirus Disease 2019 |
DOTs | Daily Observed Treatment |
FBC | Full Blood Count |
GGT | Gamma-Glutamyl Transferase |
HIV | Human Immunodeficiency Virus |
LFTs | Liver Function Tests |
MCH | Mean Corpuscular Hemoglobin |
MCHC | Mean Corpuscular Hemoglobin Concentration |
MCV | Mean Corpuscular Volume |
LMR | Lymphocyte-to-Monocyte Ratio |
LTBI | Latent Tuberculosis Infection |
NLR | Neutrophil-to-Lymphocyte Ratio |
NPS | Nasal Pharyngeal Swab |
PTB | Pulmonary Tuberculosis |
RFTs | Renal Function Tests |
RT-PCR | Real-Time Polymerase Chain Reaction |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus 2 |
TB | Tuberculosis |
WHO | World Health Organization |
References
- Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal. 2020, 10, 102–108. [Google Scholar] [CrossRef]
- Day, T.; Gandon, S.; Lion, S.; Otto, S.P. On the evolutionary epidemiology of SARS-CoV-2. Curr. Biol. 2020, 30, R849–R857. [Google Scholar] [CrossRef]
- WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 25 November 2021).
- World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard With Vaccination Data|WHO Coronavirus (COVID-19) Dashboard With Vaccination Data; World Health Organization: Geneva, Switzerland, 2023; Available online: https://covid19.who.int/ (accessed on 1 February 2023).
- ZNPHI. ZNPHI—A Centre of Excellence in Public Health Security for a Healthy Zambia. 2023. Available online: http://znphi.co.zm/ (accessed on 1 February 2023).
- Martín-Sánchez, F.J.; del Toro, E.; Cardassay, E.; Carbó, A.V.; Cuesta, F.; Vigara, M.; Gil, P.; Picado, A.L.L.; Valero, C.M.; Miranda, J.D.; et al. Clinical presentation and outcome across age categories among patients with COVID-19 admitted to a Spanish Emergency Department. Eur. Geriatr. Med. 2020, 11, 829–841. [Google Scholar] [CrossRef]
- National Center for Immunization and Respiratory Diseases (NCIRD). Underlying Medical Conditions Associated with Higher Risk for Severe COVID-19: Information for Healthcare Professionals. 2022. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html (accessed on 20 November 2022).
- Khedr, E.M.; Daef, E.; Mohamed-Hussein, A.; Mostafa, E.F.; Zein, M.; Hassany, S.M.; Galal, H.; Hassan, S.A.; Galal, I.; Zarzour, A.A.; et al. Comorbidities and outcomes among patients hospitalized with COVID-19 in Upper Egypt. Egypt. J. Neurol. Psychiatry Neurosurg. 2022, 58, 1–12. [Google Scholar] [CrossRef]
- Ismail, K.; Bensasi, H.; Taha, A.; Nazir, A.; Abdelkhalek, M.; Mohamed, W.; Lodhe, D.; Buschbeck, S.; Bauer, M.; Sakr, Y. Characteristics and outcome of critically ill patients with coronavirus disease-2019 (COVID-19) pneumonia admitted to a tertiary care center in the United Arab Emirates during the first wave of the SARS-CoV-2 pandemic. A retrospective analysis. PLoS ONE 2021, 16, e0251687. [Google Scholar] [CrossRef]
- Mumcuoğlu, I.; Çağlar, H.; Erdem, D.; Aypak, A.; Gün, P.; Kurşun, Ş.; Çakır, E.Y.; Aydoğan, S.; Kırca, F.; Dinç, B. Secondary bacterial infections of the respiratory tract in COVID-19 patients. J. Infect. Dev. Ctries. 2022, 16, 1131–1137. [Google Scholar] [CrossRef]
- Elkattawy, S.; Alyacoub, R.; Mowafy, A.; Younes, I.; Remolina, C. Unfortunate Outcomes in Patients with SARS-CoV-2 Superimposed on Pneumococcal Pneumonia. Cureus 2020, 12, e10939. [Google Scholar] [CrossRef]
- NHS. Tuberculosis (TB)—Causes—NHS. 2019. Available online: https://www.nhs.uk/conditions/tuberculosis-tb/causes/ (accessed on 12 November 2022).
- Centers for Disease Control and Prevention. Basic TB Facts|TB|CDC; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020; p. 1. Available online: https://www.cdc.gov/tb/topic/basics/default.htm (accessed on 12 November 2022).
- WHO. Tuberculosis. Available online: https://www.who.int/news-room/fact-sheets/detail/tuberculosis (accessed on 12 November 2022).
- Rise in TB Deaths Another Fallout from the Pandemic, WHO Report Reveals-UN News. Available online: https://news.un.org/en/story/2022/10/1129927 (accessed on 12 November 2022).
- World Health Organization (WHO). Call for Case Studies Focusing on Programmatic Innovations in TB Prevention and Care, in the Context of the COVID-19 Pandemic. Available online: https://www.who.int/news-room/articles-detail/call-for-case-studies-focusing-on-programmatic-innovations-in-tb-prevention-and-care-in-the-context-of-the-covid-19-pandemic (accessed on 14 January 2022).
- World Health Organization (WHO). “1. COVID-19 and TB,” Global Tuberculosis Report 2021. 2022. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022/covid-19-and-tb (accessed on 1 February 2023).
- Trajman, A.; Felker, I.; Alves, L.C.; Coutinho, I.; Osman, M.; Meehan, S.-A.; Singh, U.B.; Schwartz, Y. The COVID-19 and TB syndemic: The way forward. Int. J. Tuberc. Lung Dis. 2022, 26, 710–719. [Google Scholar] [CrossRef]
- WHO. Coronavirus disease (COVID-19) Advice for the Public: Mythbusters. Available online: https://www.who.int/emergencies/Diseases/novel-coronavirus-2019/advice-for-public/myth-busters (accessed on 8 April 2021).
- Nachega, J.B.; Kapata, N.; Sam-Agudu, N.A.; Decloedt, E.H.; Katoto, P.D.; Nagu, T.; Mwaba, P.; Yeboah-Manu, D.; Chanda-Kapata, P.; Ntoumi, F.; et al. Minimizing the impact of the triple burden of COVID-19, tuberculosis and HIV on health services in sub-Saharan Africa. Int. J. Infect. Dis. 2021, 113, S16–S21. [Google Scholar] [CrossRef]
- WHO. Global Tuberculosis Report; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- CDC. Global HIV and TB-Zambia Country Profile. Volume 126, No. 9 Suppl 1. Available online: https://www.cdc.gov/globalhivtb/where-we-work/zambia/zambia.html (accessed on 12 November 2022).
- Dheda, K.; Perumal, T.; Moultrie, H.; Perumal, R.; Esmail, A.; Scott, A.J.; Udwadia, Z.; Chang, K.C.; Peter, J.; Pooran, A.; et al. Series Tuberculosis in the time of COVID-19 1 The intersecting pandemics of tuberculosis and COVID-19: Population-level and patient-level impact, clinical presentation, and corrective interventions. Lancet Respir. Med. 2022, 10, 603–622. [Google Scholar] [CrossRef]
- World Health Organization. Tuberculosis and COVID-19: Considerations for Tuberculosis Care; World Health Organization: Geneva, Switzerland, 2020; pp. 1–11. Available online: https://www.who.int/docs/default-source/documents/tuberculosis/infonote-tb-covid-19.pdf (accessed on 23 November 2022).
- Parolina, L.; Pshenichnaya, N.; Vasilyeva, I.; Lizinfed, I.; Urushadze, N.; Guseva, V.; Otpushchennikova, O.; Dyachenko, O.; Kharitonov, P. Clinical characteristics of COVID-19 in patients with tuberculosis and factors associated with the disease severity. Int. J. Infect. Dis. 2022, 124, S82–S89. [Google Scholar] [CrossRef]
- Luke, E.; Swafford, K.; Shirazi, G.; Venketaraman, V. TB and COVID-19: An Exploration of the Characteristics and Resulting Complications of Co-infection. Front. Biosci. 2022, 14, 6. [Google Scholar] [CrossRef]
- Visca, D.; Ong, C.; Tiberi, S.; Centis, R.; D’ambrosio, L.; Chen, B.; Mueller, J.; Duarte, R.; Dalcolmo, M.; Sotgiu, G.; et al. Tuberculosis and COVID-19 interaction: A review of biological, clinical and public health effects. Pulmonology 2021, 27, 151–165. [Google Scholar] [CrossRef]
- Aveyard, P.; Gao, M.; Lindson, N.; Hartmann-Boyce, J.; Watkinson, P.; Young, D.; Coupland, C.A.C.; Tan, P.S.; Clift, A.K.; Harrison, D.; et al. Association between pre-existing respiratory disease and its treatment, and severe COVID-19: A population cohort study. Lancet Respir. Med. 2021, 9, 909–923. [Google Scholar]
- Lohia, P.; Sreeram, K.; Nguyen, P.; Choudhary, A.; Khicher, S.; Yarandi, H.; Kapur, S.; Badr, M.S. Preexisting respiratory diseases and clinical outcomes in COVID-19: A multihospital cohort study on predominantly African American population. Respir. Res. 2021, 22, 37. [Google Scholar] [CrossRef]
- Beltramo, G.; Cottenet, J.; Mariet, A.-S.; Georges, M.; Piroth, L.; Tubert-Bitter, P.; Bonniaud, P.; Quantin, C. Chronic respiratory diseases are predictors of severe outcome in COVID-19 hospitalised patients: A nationwide study. Eur. Respir. J. 2021, 58, 2004474. [Google Scholar] [CrossRef]
- He, G.; Wu, J.; Shi, J.; Dai, J.; Gamber, M.; Jiang, X.; Sun, W.; Cai, J. COVID-19 in tuberculosis patients: A report of three cases. J. Med. Virol. 2020, 92, 1802–1806. [Google Scholar] [CrossRef]
- Yang, H.; Xu, Y.; Li, Z.; Yan, L.; Wang, J.; Liao, P. The clinical implication of dynamic hematological parameters in COVID-19: A retrospective study in Chongqing, China. Int. J. Gen. Med. 2021, 14, 4073–4080. [Google Scholar] [CrossRef]
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef]
- Matricardi, P.M.; Walter, R.; Negro, D.; Nisini, R. The first, holistic immunological model of COVID-19: Implications for prevention, diagnosis, and public health measures. Pediatr. Allergy Immunol. 2020, 31, 454–470. [Google Scholar] [CrossRef]
- Sheerin, D.; Peton, N.; Wang, X.; Johnson, E. Immunopathogenic overlap between COVID-19 and tuberculosis identified from transcriptomic meta-analysis and human macrophage infection. iScience 2022, 25, 104464. [Google Scholar] [CrossRef]
- Cliff, J.M.; Kaufmann, S.H.E.; Mcshane, H.; van Helden, P.; O’Garra, A. The human immune response to tuberculosis and its treatment: A view from the blood. Immunol. Rev. 2015, 264, 88–102. [Google Scholar] [CrossRef]
- Sheerin, D.; Abhimanyu, A.; Wang, X.; Johnson, W.E.; Coussens, A. Systematic evaluation of transcriptomic disease risk and diagnostic biomarker overlap between COVID-19 and tuberculosis: A patient-level meta-analysis. medRxiv 2020. [Google Scholar] [CrossRef]
- Mohammed, R.N.; Tamjidifar, R.; Rahman, H.S.; Adili, A.; Ghoreishizadeh, S.; Saeedi, H.; Thangavelu, L.; Shomali, N.; Aslaminabad, R.; Marofi, F.; et al. A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID-19). Cell Commun. Signal. 2022, 20, 79. [Google Scholar] [CrossRef]
- Riou, C.; du Bruyn, E.; Stek, C.; Daroowala, R.; Goliath, R.T.; Abrahams, F.; Said-Hartley, Q.; Allwood, B.W.; Hsiao, M.; Wilkinson, K.A.; et al. Profile of SARS-CoV-2-specific CD4 T cell response: Relationship with disease severity and impact of HIV-1 and active Mycobacterium tuberculosis co-infection. medRxiv 2021. [Google Scholar] [CrossRef]
- Mucheleng’Anga, L.A.; Telendiy, V.; Hamukale, A.; Shibemba, A.L.; Zumla, A.; Himwaze, C.M. COVID-19 and Sudden Unexpected Community Deaths in Lusaka, Zambia, Africa—A Medico-Legal Whole-Body Autopsy Case Series. Int. J. Infect. Dis. 2021, 109, 160–167. [Google Scholar] [CrossRef]
- Faqihi, F.; Alharthy, A.; Noor, A.F.; Balshi, A.; Balhamar, A.; Karakitsos, D. COVID-19 in a patient with active tuberculosis: A rare case-report. Respir. Med. Case Rep. 2020, 31, 101146. [Google Scholar] [CrossRef]
- Rivas, N.; Espinoza, M.; Loban, A.; Luque, O.; Jurado, J.; Henry-Hurtado, N.; Goodridge, A. Case report: COVID-19 recovery from triple infection with mycobacterium tuberculosis, HIV, and SARS-CoV-2. Am. J. Trop. Med. Hyg. 2020, 103, 1597–1599. [Google Scholar] [CrossRef]
- Yadav, S.; Rawal, G. The case of pulmonary tuberculosis with COVID-19 in an Indian male—A first of its type case ever reported from South Asia. Pan Afr. Med. J. 2020, 36, 1–5. [Google Scholar] [CrossRef]
- Tolossa, T.S.T.; Tsegaye, R.; Shiferaw, S.; Wakuma, B.; Ayala, D.; Bekele, B. Survival from a Triple Co-Infection of COVID-19, HIV, and Tuberculosis: A Case Report. Int. Med. Case Rep. J. 2021, 14, 611–615. [Google Scholar]
- Farias, L.A.B.G.; Moreira, A.L.G.; Corrêa, E.A.; Lima, C.A.L.D.O.; Lopes, I.M.P.; De Holanda, P.E.L.; Nunes, F.R.; Neto, R.D.J.P. Case report: Coronavirus disease and pulmonary tuberculosis in patients with human immunodeficiency virus: Report of two cases. Am. J. Trop. Med. Hyg. 2020, 103, 1593–1596. [Google Scholar] [CrossRef]
- Davies, N.G.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.; Pearson, C.A.B.; Russell, T.W.; Tully, D.C.; Abbott, S.; Gimma, A.; et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. medRxiv 2021. [Google Scholar] [CrossRef]
- Song, W.-M.; Zhao, J.-Y.; Zhang, Q.-Y.; Liu, S.-Q.; Zhu, X.-H.; An, Q.-Q.; Xu, T.-T.; Li, S.-J.; Liu, J.-Y.; Tao, N.-N.; et al. COVID-19 and Tuberculosis Coinfection: An Overview of Case Reports/Case Series and Meta-Analysis. Front. Med. 2021, 8, 1–13. [Google Scholar] [CrossRef]
- Nachiappan, A.C.; Rahbar, K.; Shi, X.; Guy, E.S.; Barbosa, E.J.M.; Shroff, G.S.; Ocazionez, D.; Schlesinger, A.E.; Katz, S.I.; Hammer, M.M. Pulmonary tuberculosis: Role of radiology in diagnosis and management. Radiographics 2017, 37, 52–72. [Google Scholar] [CrossRef]
- Bhalla, A.S.; Goyal, A.; Guleria, R.; Gupta, A.K. Chest tuberculosis: Radiological review and imaging recommendations. Indian J. Radiol. Imaging 2015, 25, 213–225. [Google Scholar] [CrossRef]
- Rastoder, E.; Shaker, S.B.; Naqibullah, M.; Wille, M.M.W.; Lund, M.; Wilcke, J.T.; Seersholm, N.; Jensen, S.G. Chest X-ray findings in tuberculosis patients identified by passive and active case finding: A retrospective study. J. Clin. Tuberc. Other Mycobact. Dis. 2019, 14, 26–30. [Google Scholar] [CrossRef]
- Murthy, S.E.; Chatterjee, F.; Crook, A.; Dawson, R.; Mendel, C.; Murphy, M.E.; Murray, S.R.; Nunn, A.J.; Phillips, P.P.J.; Singh, K.P.; et al. Pretreatment chest X-ray severity and its relation to bacterial burden in smear positive pulmonary tuberculosis. BMC Med. 2018, 16, 73. [Google Scholar] [CrossRef]
- World Health Organization. Chest Radiography in Tuberculosis; World Health Organization: Geneva, Switzerland, 2016; pp. 1–44. [Google Scholar]
- Krome, S. Radiologische Diagnostik mit dem Röntgen-Thorax beginnen. Pneumologie 2021, 75, 745. [Google Scholar] [CrossRef]
- Kohli, S.C.A.; Hande, P. Role of chest radiography in the management of COVID-19 pneumonia: An overview and correlation with pathophysiologic changes. Indian J. Radiol. Imaging 2021, 31, S70–S79. [Google Scholar] [CrossRef]
- Rousan, L.A.; Elobeid, E.; Karrar, M.; Khader, Y. Chest X-ray findings and temporal lung changes in patients with COVID-19 pneumonia. BMC Pulm. Med. 2020, 20, 245. [Google Scholar] [CrossRef]
- Al-Saadi, E.A.K.D.; Abdulnabi, M.A. Hematological changes associated with COVID-19 infection. J. Clin. Lab. Anal. 2021, 36, e24064. [Google Scholar] [CrossRef]
- Ouyang, S.-M.; Zhu, H.-Q.; Xie, Y.-N.; Zou, Z.-S.; Zuo, H.-M.; Rao, Y.-W.; Liu, X.-Y.; Zhong, B.; Chen, X. Temporal changes in laboratory markers of survivors and non-survivors of adult inpatients with COVID-19. BMC Infect. Dis. 2020, 20, 952. [Google Scholar] [CrossRef]
- Kwiecień, I.; Rutkowska, E.; Kulik, K.; Kłos, K.; Plewka, K.; Raniszewska, A.; Rzepecki, P.; Chciałowski, A. Neutrophil Maturation, Reactivity and Granularity Research Parameters to Characterize and Differentiate Convalescent Patients from Active SARS-CoV-2 Infection. Cells 2021, 10, 2332. [Google Scholar] [CrossRef]
- Rahman, A.; Niloofa, R.; Jayarajah, U.; De Mel, S.; Abeysuriya, V.; Seneviratne, S.L. Hematological abnormalities in COVID-19: A narrative review. Am. J. Trop. Med. Hyg. 2021, 104, 1188–1201. [Google Scholar] [CrossRef]
- Shafee, M.; Abbas, F.; Ashraf, M.; Alam Mengal, M.; Kakar, N.; Ahmad, Z.; Ali, F. Hematological profile and risk factors associated with pulmonary tuberculosis patients in Quetta, Pakistan. Pak. J. Med. Sci. 1969, 30, 36–40. [Google Scholar] [CrossRef]
- Rohini, K.; Bhat, M.S.; Srikumar, P.S.; Kumar, A.M. Assessment of Hematological Parameters in Pulmonary Tuberculosis Patients. Indian J. Clin. Biochem. 2015, 31, 332–335. [Google Scholar] [CrossRef]
- Ngahane, B.H.M.; Ebenezer, A.T.; Eveline, N.D.; Raïssa, M.N.E.; Fernando, K.L.; Lum, C.V.; Henry, N.L. Diagnostic Value of Leukocyte Count Abnormalities in Newly Diagnosed Tuberculosis Patients. Open J. Respir. Dis. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Yoon, N.B.; Son, C.; Um, S.J. Role of the neutrophil-lymphocyte count ratio in the differential diagnosis between pulmonary tuberculosis and bacterial community-acquired pneumonia. Ann. Lab. Med. 2013, 33, 105–110. [Google Scholar] [CrossRef]
- Arend, S.M.; Soolingen, D.V. Performance of Xpert MTB/RIF Ultra: A matter of dead or alive. Lancet Infect. Dis. 2017, 18, 8–10. [Google Scholar] [CrossRef]
- Centre for Disease Control. COVID-19 Testing: What You Need to Know|CDC. 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/testing.html (accessed on 21 February 2023).
- Ikegami, S.; Benirschke, R.; Flanagan, T.; Tanna, N.; Klein, T.; Elue, R.; Debosz, P.; Mallek, J.; Wright, G.; Guariglia, P.; et al. Persistence of SARS-CoV-2 nasopharyngeal swab PCR positivity in COVID-19 convalescent plasma donors. Transfusion 2020, 60, 2962–2968. [Google Scholar] [CrossRef]
- Coronavirus COVID-19 (SARS-CoV-2)|Johns Hopkins ABX Guide. Available online: https://www.hopkinsguides.com/hopkins/view/Johns_Hopkins_ABX_Guide/540747/all/Coronavirus_COVID_19__SARS_CoV_2 (accessed on 21 February 2023).
- Mwamba, C.; Kerkhoff, A.D.; Kagujje, M.; Lungu, P.; Muyoyeta, M.; Sharma, A. Diagnosed with TB in the Era of COVID-19: Patient Perspectives in Zambia. Public Health Action 2020, 10, 141–146. [Google Scholar]
Dates | 31 May 2021 | 7 June 2021 | 9 June 2021 | 15 June 2021 | 18 June 2021 | 22 June 2021 | 23 June 2021 | 26 July 2021 | 16 August 2021 | 21 September 2021 | Ref. Range |
---|---|---|---|---|---|---|---|---|---|---|---|
Hematology | |||||||||||
Complete blood count | |||||||||||
White Blood Cell | 6.46 | 7.02 | 7.76 | 8.13 ꜛ | 5.78 | 5.89 | ×109/L (2.96–7.58) | ||||
Red Cell Count | 4.49 | 4.43 | 4.34 | 4.44 | 4.24 | 4.11 | ×1012/L (4.04–5.52) | ||||
Hemoglobin | 12 | 11.9 | 11.8 | 12.1 | 10.9 ꜜ | 10.8 ꜜ | g/dL (11–15.7) | ||||
Hematocrit | 38.6 | 38.1 | 37.6 | 37.8 | 35.5 | 34.2 | % (33.3–45) | ||||
MCV | 86 | 86.0 | 86.6 | 85.1 | 83.7 | 83.2 | fL(71.4–94) | ||||
MCH | 26.7 | 26.9 | 27.2 | 27.3 | 25.7 | 26.3 | Pg (22.7–33.3) | ||||
MCHC | 31.1 | 31.2 | 31.4 | 32.0 | 30.7 ꜜ | 31.6 | g/dL (30.9–36.5) | ||||
Platelet Count | 408 | 369 | 418 ꜛ | 615 ꜛ | 438 ꜛ | 460 ꜛ | ×109/L (156–411) | ||||
Differential Count | |||||||||||
Neutrophils# | 4.07 | 3.63 | 4.41 | 5.06 ꜛ | 3 | 2.45 | ×109/L (1.01–4.49) | ||||
Lymphocytes# | 1.88 | 2.39 | 2.46 | 2.24 | 1.75 | 2.39 | ×109/L (1.11–3.12) | ||||
Monocytes# | 0.36 | 0.66 ꜛ | 0.71 ꜛ | 0.67 ꜛ | 0.83 ꜛ | 0.47 | ×109/L (0.21–0.59) | ||||
Eosinophils# | 0.12 | 0.30 | 0.15 | 0.12 | 0.15 | 0.58 ꜛ | ×109/L (0.01–0.39) | ||||
Basophil# | 0.03 | 0.04 | 0.03 | 0.04 | 0.05 | 5.89 ꜛ | ×109/L (0.00–0.05) | ||||
Neutrophils% | 62.9 | 51.7 | 56.9 | 62.2 | 51.8 | 41.6 | % (28.5–70.8) | ||||
Lymphocytes% | 29.1 | 34.0 | 31.7 | 27.6 | 30.3 | 40.6 | % (21.4–58.8) | ||||
Monocytes% | 5.6 | 9.4 | 9.1 | 8.2 | 14.4 ꜛ | 8.0 | % (4.6–12.2) | ||||
Eosinophils% | 1.9 ꜛ | 4.3 ꜛ | 1.9 ꜛ | 1.5 ꜛ | 2.6 ꜛ | 9.8 ꜛ | % (0.2–0.8) | ||||
Basophils% | 0.5 | 0.6 | 0.4 | 0.5 | 0.9 | 100 ꜛ | % (0.0–1.0) | ||||
Liver Function Tests | |||||||||||
Aspartate Transferase | 28 | 34 | U/L (0–38) | ||||||||
Alanine Transferase | 22 | 11 | U/L (0–33) | ||||||||
Alkaline Phosphatase | 84 | 58 | U/L (30–120) | ||||||||
GGT | 15.4 | U/L (8.0–51.0) | |||||||||
Total Bilirubin | 3 ꜜ | umol/L (6.5–27.0) | |||||||||
Direct Bilirubin | 1.21 | umol/L (0.00–6.24) | |||||||||
Renal Function Tests | |||||||||||
Blood Urea Nitrogen | 2.6 | mmol/L (0.0–8.3) | |||||||||
Creatinine | 57.6 ꜜ | umol/L (60.0–112.0) | |||||||||
HIV Test | Negative | ||||||||||
COVID-19 Tests | |||||||||||
RT-PCR | Positive | ||||||||||
Antigen | Positive | ||||||||||
RT-PCR | Positive | ||||||||||
RT-PCR | Negative | ||||||||||
PTB Test | |||||||||||
Sputum Gene X-pert | Positive | ||||||||||
Pregnancy Test | |||||||||||
Urine | Negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Njekwa, K.; Muyoyeta, M.; Mulenga, B.; Chisenga, C.C.; Simuyandi, M.; Chilengi, R. Superimposed Pulmonary Tuberculosis (PTB) in a 26-Year-Old Female with No Underlying Co-Morbidities Recovering from COVID-19—Case Report. Trop. Med. Infect. Dis. 2023, 8, 268. https://doi.org/10.3390/tropicalmed8050268
Njekwa K, Muyoyeta M, Mulenga B, Chisenga CC, Simuyandi M, Chilengi R. Superimposed Pulmonary Tuberculosis (PTB) in a 26-Year-Old Female with No Underlying Co-Morbidities Recovering from COVID-19—Case Report. Tropical Medicine and Infectious Disease. 2023; 8(5):268. https://doi.org/10.3390/tropicalmed8050268
Chicago/Turabian StyleNjekwa, Katanekwa, Monde Muyoyeta, Bavin Mulenga, Caroline Cleopatra Chisenga, Michelo Simuyandi, and Roma Chilengi. 2023. "Superimposed Pulmonary Tuberculosis (PTB) in a 26-Year-Old Female with No Underlying Co-Morbidities Recovering from COVID-19—Case Report" Tropical Medicine and Infectious Disease 8, no. 5: 268. https://doi.org/10.3390/tropicalmed8050268
APA StyleNjekwa, K., Muyoyeta, M., Mulenga, B., Chisenga, C. C., Simuyandi, M., & Chilengi, R. (2023). Superimposed Pulmonary Tuberculosis (PTB) in a 26-Year-Old Female with No Underlying Co-Morbidities Recovering from COVID-19—Case Report. Tropical Medicine and Infectious Disease, 8(5), 268. https://doi.org/10.3390/tropicalmed8050268