Assessing Changes in Bacterial Load and Antibiotic Resistance in the Legon Sewage Treatment Plant between 2018 and 2023 in Accra, Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Setting
2.3. Baseline Study, Dissemination, Recommendations and Follow-Up
2.4. Study Population and Period
2.5. Sample Collection and Laboratory Analysis
2.6. Quality Control Procedures
2.7. Data Variables, Sources of Data, and Validation
2.8. Statistical Analysis
3. Results
3.1. E. coli in Wastewater Samples from the Legon STP, Accra, during the Baseline and Follow up Studies
3.2. Antibiotic Resistance in E. coli from Influent and Effluent Wastewater Samples
3.3. ESBL E. coli Loads in Wastewater Samples from the Legon STP, Accra, March–May 2023
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calvo-Villamañán, A.; San Millán, Á.; Carrilero, L. Tackling AMR from a multidisciplinary perspective: A primer from education and psychology. Int. Microbiol. 2023, 26, 1–9. [Google Scholar] [CrossRef]
- Da Costa, P.M.; Loureiro, L.; Matos, A.J.F. Transfer of multidrug-resistant bacteria between intermingled ecological niches: The interface between humans, animals and the environment. Int. J. Environ. Res. Public Health 2013, 10, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Serwecińska, L. Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Rehman, K.; Kamran, S.H.; Akash, M.S.H. Toxicity of antibiotics. In Antibiotics and Antimicrobial Resistance Genes in the Environment; Advances in Environmental Pollution Research Series; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, pp. 234–252. [Google Scholar]
- Gwenzi, W.; Simbanegavi, T.T.; Rzymski, P. Household disposal of pharmaceuticals in low-income settings: Practices, health hazards, and research needs. Water 2023, 15, 476. [Google Scholar] [CrossRef]
- Adefisoye, M.A.; Okoh, A.I. Identification and antimicrobial resistance prevalence of pathogenic Escherichia coli strains from treated wastewater effluents in Eastern Cape, South Africa. Microbiologyopen 2016, 5, 143–151. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Milakovic, M.; Švecová, H.; Ganjto, M.; Jonsson, V.; Grabic, R.; Udikovic-Kolic, N. Industrial wastewater treatment plant enriches antibiotic resistance genes and alters the structure of microbial communities. Water Res. 2019, 162, 437–445. [Google Scholar] [CrossRef]
- Fouz, N.; Pangesti, K.N.; Yasir, M.; Al-Malki, A.L.; Azhar, E.I.; Hill-Cawthorne, G.A.; Abd El Ghany, M. The contribution of wastewater to the transmission of antimicrobial resistance in the environment: Implications of mass gathering settings. Trop. Med. Infect. Dis. 2020, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.E.M.; Schreier, H.J.; Lanska, L.; Hale, M.S. The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P.J. Antibiotic Resistance Genes in Waste Water. 2017. Available online: http://www.elsevier.com/open-access/userlicense/1.0/ (accessed on 5 June 2023).
- Antwi-Agyei, P.; Dwumfour-Asare, B.; Adjei, K.A.; Kweyu, R.; Simiyu, S. Understanding the barriers and opportunities for effective management of shared sanitation in low-income settlements—The case of Kumasi, Ghana. Int. J. Environ. Res. Public Health 2020, 17, 4528. [Google Scholar] [CrossRef]
- Holbech, L.H.; Cobbinah, C.C. Pollution or protection-what early survey data shows on rapid waterbird utilisation of a newly established sewage treatment plant in urban Ghana, West Africa? Wetlands 2021, 41, 110. [Google Scholar] [CrossRef]
- Sagoe, G.; Danquah, F.S.; Amofa-Sarkodie, E.S.; Appiah-Effah, E.; Ekumah, E.; Mensah, E.K.; Karikari, K.S. GIS-aided optimisation of faecal sludge management in developing countries: The case of the Greater Accra Metropolitan Area, Ghana. Heliyon 2019, 5, e02505. [Google Scholar] [CrossRef]
- Adomako, L.A.B.; Yirenya-Tawiah, D.; Nukpezah, D.; Abrahamya, A.; Labi, A.-K.; Grigoryan, R.; Ahmed, H.; Owusu-Danquah, J.; Annang, T.Y.; Banu, R.A.; et al. Reduced bacterial counts from a sewage treatment plant but increased counts and antibiotic resistance in the recipient stream in Accra, Ghana—A cross-sectional study. Trop. Med. Infect. Dis. 2021, 6, 79. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, D.; Mohammadian, A.; Pearson, J.; Abolfathi, S. Numerical modelling of hydraulic efficiency and pollution transport in waste stabilization ponds. Ecol. Eng. 2022, 182, 106702. [Google Scholar] [CrossRef]
- Urase, T.; Okazaki, M.; Tsutsui, H. Prevalence of ESBL-producing Escherichia coli and carbapenem-resistant enterobacteriaceae in treated wastewater: A comparison with nosocomial infection surveillance. J. Water Health 2020, 18, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.; Egyir, I.S.; Donkor, A.K.; Amoah, P.; Nyarko, S.; Boateng, K.K.; Ziwu, C. Feasibility study for biogas integration into waste treatment plants in Ghana. Egypt. J. Pet. 2017, 26, 695–703. [Google Scholar] [CrossRef]
- ISO 8199:2005; Water Quality—General Guidance on the Enumeration of Micro-Organisms by Culture, p. 38. International Organization for Standardisation: Geneva, Switzerland, 2005. Available online: https://www.iso.org/standard/37011.html (accessed on 22 June 2023).
- Weinstein, M.P. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2023; 282p. [Google Scholar]
- Li, K.; Liu, Q.; Fang, F.; Luo, R.; Lu, Q.; Zhou, W.; Huo, S.; Cheng, P.; Liu, J.; Addy, M.; et al. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 2019, 291, 121934. [Google Scholar] [CrossRef]
- Kraupner, N.; Hutinel, M.; Schumacher, K.; Gray, D.A.; Genheden, M.; Fick, J.; Flach, C.-D.; Larsson, D.J. Evidence for selection of multi-resistant E. coli by hospital effluent. Environ. Int. 2021, 150, 106436. [Google Scholar] [CrossRef]
- Han, Q.F.; Zhao, S.; Zhang, X.R.; Wang, X.L.; Song, C.; Wang, S.G. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environ. Int. 2020, 138, 105551. [Google Scholar] [CrossRef]
- Thapa, S.P.; Shrestha, S.; Anal, A.K. Addressing the antibiotic resistance and improving the food safety in food supply chain (farm-to-fork) in Southeast Asia. Food Control. 2020, 108, 106809. [Google Scholar] [CrossRef]
- Azuma, T.; Uchiyama, T.; Zhang, D.; Usui, M.; Hayashi, T. Distribution and characteristics of carbapenem-resistant and extended-spectrum β-lactamase 1 (ESBL) producing Escherichia coli in hospital effluents, sewage treatment plants, and river 2 water in an urban area of Japan. Sci. Total Environ. 2022, 839, 156232. [Google Scholar] [CrossRef]
- Pazda, M.; Kumirska, J.; Stepnowski, P.; Mulkiewicz, E. Antibiotic resistance genes identified in wastewater treatment plant systems—A review. Sci. Total Environ. 2019, 697, 134023. [Google Scholar] [CrossRef] [PubMed]
- Wellington, E.M.H.; Boxall, A.B.A.; Cross, P.; Feil, E.J.; Gaze, W.H.; Hawkey, P.M.; Johnson-Rollings, A.S.; Jones, D.L.; Lee, N.M.; Otten, W.; et al. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect. Dis. 2013, 13, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Murakami, M.; Kadoya, S.S.; Ando, H.; Kuroita, T.; Katayama, H.; Imoto, S. Association of SARS-CoV-2 load in wastewater with reported COVID-19 cases in the Tokyo 2020 Olympic and paralympic village from July to September 2021. JAMA Netw. Open 2022, 5, e2226822. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 44–349. [Google Scholar] [CrossRef] [PubMed]
- Saleh, I.A.; Zouari, N.; Al-Ghouti, M.A. Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches. Environ. Technol. Innov. 2020, 19, 101026. [Google Scholar] [CrossRef]
- Alvim, C.B.; Moreira, V.R.; Lebron, Y.A.R.; Santos, A.V.; Lange, L.C.; Moreira, R.P.M.; de Souza Santos, L.V.; Amaral, M.C.S. Comparison of UV, UV/H2O2 and ozonation processes for the treatment of membrane distillation concentrate from surface water treatment: PhACs removal and environmental and human health risk assessment. Chem. Eng. J. 2020, 397, 125482. [Google Scholar] [CrossRef]
- Suryawan, I.W.K.; Helmy, Q.; Notodarmojo, S. Laboratory scale ozone-based post-treatment from textile wastewater treatment plant effluent for water reuse. J. Phys. Conf. Ser. 2020, 1456, 012002. [Google Scholar] [CrossRef]
Source | January–June 2018 | March–May 2023 | p-Value * |
---|---|---|---|
E. coli | E. coli | ||
Median (IQR) CFU/100 mL | Median (IQR) CFU/100 mL | ||
Influent | 85 × 106 (70–100 × 106) | 6.09 × 106 (4–16 × 106) | 0.010 * |
Effluent | 380 (100–1300) | 198.50 (106–342) | 0.42 * |
Plant Efficiency = × 100 | 99% | 99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adjei, R.L.; Adomako, L.A.B.; Korang-Labi, A.; Avornyo, F.K.; Timire, C.; Larbi, R.O.; Kubasari, C.; Ackon, S.E.D.; Reid, A. Assessing Changes in Bacterial Load and Antibiotic Resistance in the Legon Sewage Treatment Plant between 2018 and 2023 in Accra, Ghana. Trop. Med. Infect. Dis. 2023, 8, 427. https://doi.org/10.3390/tropicalmed8090427
Adjei RL, Adomako LAB, Korang-Labi A, Avornyo FK, Timire C, Larbi RO, Kubasari C, Ackon SED, Reid A. Assessing Changes in Bacterial Load and Antibiotic Resistance in the Legon Sewage Treatment Plant between 2018 and 2023 in Accra, Ghana. Tropical Medicine and Infectious Disease. 2023; 8(9):427. https://doi.org/10.3390/tropicalmed8090427
Chicago/Turabian StyleAdjei, Raymond Lovelace, Lady Asantewah Boamah Adomako, Appiah Korang-Labi, Franklin Kodzo Avornyo, Collins Timire, Rita Ohene Larbi, Cletus Kubasari, Stephen E. D. Ackon, and Anthony Reid. 2023. "Assessing Changes in Bacterial Load and Antibiotic Resistance in the Legon Sewage Treatment Plant between 2018 and 2023 in Accra, Ghana" Tropical Medicine and Infectious Disease 8, no. 9: 427. https://doi.org/10.3390/tropicalmed8090427
APA StyleAdjei, R. L., Adomako, L. A. B., Korang-Labi, A., Avornyo, F. K., Timire, C., Larbi, R. O., Kubasari, C., Ackon, S. E. D., & Reid, A. (2023). Assessing Changes in Bacterial Load and Antibiotic Resistance in the Legon Sewage Treatment Plant between 2018 and 2023 in Accra, Ghana. Tropical Medicine and Infectious Disease, 8(9), 427. https://doi.org/10.3390/tropicalmed8090427