Molecular Testing of Environmental Samples as a Potential Source to Estimate Parasite Infection
Abstract
:1. Introduction
2. Soil as a Reservoir for Parasite Infections
3. Soil and Stool Sampling
4. A Robust and High Throughput Molecular Assay for the Detection of Parasites in Soil, Dust, and Water
5. Soil and Water Assays across Field Sites in Latin America
6. The Assays Have Wide Potential Applicability
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Disease, G.B.D.; Injury, I.; Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Gabain, I.L.; Ramsteijn, A.S.; Webster, J.P. Parasites and childhood stunting—A mechanistic interplay with nutrition, anaemia, gut health, microbiota, and epigenetics. Trends Parasitol. 2023, 39, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Salami, A.; Fakih, H.; Chakkour, M.; Salloum, L.; Bahmad, H.F.; Ghssein, G. Prevalence, risk factors and seasonal variations of different Enteropathogens in Lebanese hospitalized children with acute gastroenteritis. BMC Pediatr. 2019, 19, 137. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M.L.; McAtee, S.; Bryan, P.E.; Jeun, R.; Ward, T.; Kraus, J.; Bottazzi, M.E.; Hotez, P.J.; Flowers, C.C.; Mejia, R. Human Intestinal Parasite Burden and Poor Sanitation in Rural Alabama. Am. J. Trop. Med. Hyg. 2017, 97, 1623–1628. [Google Scholar] [CrossRef]
- Herrick, J.A.; Nordstrom, M.; Maloney, P.; Rodriguez, M.; Naceanceno, K.; Gallo, G.; Mejia, R.; Hershow, R. Parasitic infections represent a significant health threat among recent immigrants in Chicago. Parasitol. Res. 2020, 119, 1139–1148. [Google Scholar] [CrossRef]
- Singer, R.; Xu, T.H.; Herrera, L.N.S.; Villar, M.J.; Faust, K.M.; Hotez, P.J.; Aiken, A.R.A.; Mejia, R. Prevalence of Intestinal Parasites in a Low-Income Texas Community. Am. J. Trop. Med. Hyg. 2020, 102, 1386–1395. [Google Scholar] [CrossRef]
- Mejia, R.; Vicuna, Y.; Broncano, N.; Sandoval, C.; Vaca, M.; Chico, M.; Cooper, P.J.; Nutman, T.B. A novel, multi-parallel, real-time polymerase chain reaction approach for eight gastrointestinal parasites provides improved diagnostic capabilities to resource-limited at-risk populations. Am. J. Trop. Med. Hyg. 2013, 88, 1041–1047. [Google Scholar] [CrossRef]
- Cimino, R.O.; Jeun, R.; Juarez, M.; Cajal, P.S.; Vargas, P.; Echazu, A.; Bryan, P.E.; Nasser, J.; Krolewiecki, A.; Mejia, R. Identification of human intestinal parasites affecting an asymptomatic peri-urban Argentinian population using multi-parallel quantitative real-time polymerase chain reaction. Parasit. Vectors 2015, 8, 380. [Google Scholar] [CrossRef]
- Naceanceno, K.S.; Matamoros, G.; Gabrie, J.A.; Bottazzi, M.E.; Sanchez, A.; Mejia, R. Use of Multi-Parallel Real-Time Quantitative PCR to Determine Blastocystis Prevalence and Association with Other Gastrointestinal Parasite Infection in a Rural Honduran Location. Am. J. Trop. Med. Hyg. 2020, 102, 1373–1375. [Google Scholar] [CrossRef]
- Bryan, P.E.; Romero, M.; Sanchez, M.; Torres, G.; Gomez, W.; Restrepo, M.; Restrepo, A.; Mejia, R. Urban versus Rural Prevalence of Intestinal Parasites Using Multi-Parallel qPCR in Colombia. Am. J. Trop. Med. Hyg. 2020, 104, 907–909. [Google Scholar] [CrossRef]
- Nolan, M.S.; Murray, K.O.; Mejia, R.; Hotez, P.J.; Villar Mondragon, M.J.; Rodriguez, S.; Palacios, J.R.; Murcia Contreras, W.E.; Lynn, M.K.; Torres, M.E.; et al. Elevated Pediatric Chagas Disease Burden Complicated by Concomitant Intestinal Parasites and Malnutrition in El Salvador. Trop. Med. Infect. Dis. 2021, 6, 72. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, S.; Acosta, C.P.; Vasquez, A.L.; Patino, L.H.; Mejia, R.; Ramirez, J.D. Molecular detection of intestinal parasites in a rural community of Colombia: A one health approach to explore potential environmental-zoonotic transmission. Zoonoses Public Health 2024, 71, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Morawski, B.M.; Yunus, M.; Kerukadho, E.; Turyasingura, G.; Barbra, L.; Ojok, A.M.; DiNardo, A.R.; Sowinski, S.; Boulware, D.R.; Mejia, R. Hookworm infection is associated with decreased CD4+ T cell counts in HIV-infected adult Ugandans. PLoS Negl. Trop. Dis. 2017, 11, e0005634. [Google Scholar] [CrossRef] [PubMed]
- Grau-Pujol, B.; Cuamba, I.; Jairoce, C.; Cossa, A.; Da Silva, J.; Sacoor, C.; Dobano, C.; Nhabomba, A.; Mejia, R.; Munoz, J. Molecular Detection of Soil-Transmitted Helminths and Enteric Protozoa Infection in Children and Its Association with Household Water and Sanitation in Manhica District, Southern Mozambique. Pathogens 2021, 10, 838. [Google Scholar] [CrossRef]
- Tyungu, D.L.; McCormick, D.; Lau, C.L.; Chang, M.; Murphy, J.R.; Hotez, P.J.; Mejia, R.; Pollack, H. Toxocara species environmental contamination of public spaces in New York City. PLoS Negl. Trop. Dis. 2020, 14, e0008249. [Google Scholar] [CrossRef]
- McKim, S.; Kopystynsky, K.; Wolf, N.; Akbar, F.A.; Bottazzi, M.E.; Hotez, P.J.; Mejia, R. Environmental Detection of Parasites in the Marginalized Paiute Reservations Compared to a Nearby Area. Am. J. Trop. Med. Hyg. 2024, 110, 457–459. [Google Scholar] [CrossRef]
- Crudo Blackburn, C.; Yan, S.M.; McCormick, D.; Herrera, L.N.; Iordanov, R.B.; Bailey, M.D.; Bottazzi, M.E.; Hotez, P.J.; Mejia, R. Parasitic Contamination of Soil in the Southern United States. Am. J. Trop. Med. Hyg. 2024, 111, 506. [Google Scholar] [CrossRef]
- Mejia, R.; Seco-Hidalgo, V.; Garcia-Ramon, D.; Calderon, E.; Lopez, A.; Cooper, P.J. Detection of enteric parasite DNA in household and bed dust samples: Potential for infection transmission. Parasit. Vectors 2020, 13, 141. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, P.; Ahmed, W.; Sidhu, J.P.; Nery, S.V.; Clements, A.C.; Traub, R.; McCarthy, J.S.; Llewellyn, S.; Jagals, P.; Toze, S. Quantitative detection of viable helminth ova from raw wastewater, human feces, and environmental soil samples using novel PMA-qPCR methods. Environ. Sci. Pollut. Res. Int. 2016, 23, 18639–18648. [Google Scholar] [CrossRef]
- Amoah, I.D.; Singh, G.; Stenstrom, T.A.; Reddy, P. Detection and quantification of soil-transmitted helminths in environmental samples: A review of current state-of-the-art and future perspectives. Acta Trop. 2017, 169, 187–201. [Google Scholar] [CrossRef]
- Asbjornsdottir, K.H.; Means, A.R.; Werkman, M.; Walson, J.L. Prospects for elimination of soil-transmitted helminths. Curr. Opin. Infect. Dis. 2017, 30, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Guevara, A.; Lovato, R.; Proano, R.; Rodriguez-Perez, M.A.; Unnasch, T.; Cooper, P.J.; Guderian, R.H. Elimination of onchocerciasis in Ecuador: Findings of post-treatment surveillance. Parasit. Vectors 2018, 11, 265. [Google Scholar] [CrossRef] [PubMed]
- Kotze, A.C.; Hunt, P.W.; Skuce, P.; von Samson-Himmelstjerna, G.; Martin, R.J.; Sager, H.; Krucken, J.; Hodgkinson, J.; Lespine, A.; Jex, A.R.; et al. Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions. Int. J. Parasitol. Drugs Drug Resist. 2014, 4, 164–184. [Google Scholar] [CrossRef] [PubMed]
Potential Application | Sample | Indication | Sampling Sites | Parasites |
---|---|---|---|---|
STH control/elimination programs | Soil | Initial community mapping; monitoring for transmission interruption; post-treatment and post-certification surveillance; surveillance for drug resistance markers. Question: can environmental parameters be used to define transmission ‘break-points’ and will these breakpoints differ for distinct STH parasites? | Community centers/schools; households: transmission monitoring could be carried out in sentinel communities (either in community centers or in high-transmission households) | STH |
Control programs for other enteric parasites/WASH strategies | Soil | Surveillance for key enteric parasites; surveillance for emergence of genetic resistance markers to common antiparasitic drugs | Community centers, schools, and households | STH and pathogenic protozoa. |
Environmental monitoring | Soil | Animal husbandry | Farms and animal pens | STH |
Clinical and epidemiological studies | Soil | Detection of low-level transmission where changes in prevalence may affect clinical disease (e.g., A. lumbricoides and respiratory disease; T. trichiura and rectal prolapse; etc.) | Households or schools | STH |
Epidemiological studies | Soil | Detection of environmental contamination with zoonotic infections; One Health | Households; play areas; parks; schools; community centres; etc. | Toxocara spp.; G. intestinalis and Cryptosporidium spp.); zoonotic hookworms |
Intervention studies | Soil | Measuring the impact of WASH or environmental decontamination to kill parasite stages in the environment using chemicals or biological agents; One Health interventions | Households; schools; communal areas | A wide variety of parasites, including zoonotic infections |
Environmental monitoring | Wastewater/sludge/water sources/food sources | Outbreak investigations in non-endemic settings; analysis of sludge, biosolids, and compost as fertilizers or soil conditioners, etc; analysis of food/vegetables | Reservoirs, sewage plants, fresh water, market food | Pathogenic protozoa (i.e., G. intestinalis and Cryptosporidium spp.) and STH |
Epidemiological studies | Soil/dust/water | Detection of sources of transmission of enteric and non-enteric parasites in household samples | Different areas outside (porch/play area, front door, latrine, etc.) and inside the house (entrance, bed, food preparation area, etc.) | A wide variety of parasites with an environmental reservoir |
Climate change | Soil/dust/water | Longitudinal detection of parasites around and inside built environments to determine impact of climate change on parasite contamination | Households; schools; communal areas | A wide variety of parasites with an environmental reservoir |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejia, R.; Slatko, B.; Almazan, C.; Cimino, R.; Krolewiecki, A.; Duran, N.M.; Valera Aspetty, J.E.; Vargas, P.A.; Oliveira Amorim, C.C.; Geiger, S.M.; et al. Molecular Testing of Environmental Samples as a Potential Source to Estimate Parasite Infection. Trop. Med. Infect. Dis. 2024, 9, 226. https://doi.org/10.3390/tropicalmed9100226
Mejia R, Slatko B, Almazan C, Cimino R, Krolewiecki A, Duran NM, Valera Aspetty JE, Vargas PA, Oliveira Amorim CC, Geiger SM, et al. Molecular Testing of Environmental Samples as a Potential Source to Estimate Parasite Infection. Tropical Medicine and Infectious Disease. 2024; 9(10):226. https://doi.org/10.3390/tropicalmed9100226
Chicago/Turabian StyleMejia, Rojelio, Barton Slatko, Cristina Almazan, Ruben Cimino, Alejandro Krolewiecki, Natalia Montellano Duran, Jacob Edwin Valera Aspetty, Paola Andrea Vargas, Chiara Cássia Oliveira Amorim, Stefan Michael Geiger, and et al. 2024. "Molecular Testing of Environmental Samples as a Potential Source to Estimate Parasite Infection" Tropical Medicine and Infectious Disease 9, no. 10: 226. https://doi.org/10.3390/tropicalmed9100226
APA StyleMejia, R., Slatko, B., Almazan, C., Cimino, R., Krolewiecki, A., Duran, N. M., Valera Aspetty, J. E., Vargas, P. A., Oliveira Amorim, C. C., Geiger, S. M., Fujiwara, R. T., Ramirez, J. D., Llangarí-Arizo, L. M., Guadalupe, I., Villanueva-Lizama, L. E., Cruz-Chan, J. V., Ojeda, M. L., Aranda, E. M., Benedetti, S. O., ... Cooper, P. J. (2024). Molecular Testing of Environmental Samples as a Potential Source to Estimate Parasite Infection. Tropical Medicine and Infectious Disease, 9(10), 226. https://doi.org/10.3390/tropicalmed9100226