Micronutrient Biomarkers and Their Association with Malaria Infection in Children in Buea Health District, Cameroon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Site
2.3. Study Population
2.4. Inclusion Criteria
- ✔
- Children diagnosed with and without malaria.
- ✔
- Children whose parents agreed that their child could take part in the study.
- ✔
- Children aged between 0 and 5 years.
2.5. Exclusion Criteria
- ✔
- Children with severe health issues.
- ✔
- Children on malaria medication.
2.6. Sample Collection
2.7. Measurement of Micronutrient Biomarkers
2.8. Assay Procedure
2.9. Data Analysis
2.10. Ethical and Administrative Approval
3. Results
3.1. Sociodemographic Characteristics of Study Participants
3.2. Association Between Clinical Variables and Malaria Infection
3.3. Comparing Micronutrient Biomarkers Levels Between Malaria Infected and Healthy Children
3.4. Categorization of Micronutrient Biomarkers into Low and Normal Levels Amongst Malaria Infected Children
3.5. Logistic Regressions Analysis of the Effects of the Study Biomarkers on Malaria Infection Outcome
3.6. Correlation Heatmap of the Study Micronutrient Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguiffo-Nguete, D.; Nkemngo, F.N.; Ndo, C.; Agbor, J.-P.; Boussougou-Sambe, S.T.; Djogbénou, L.S.; Ntoumi, F.; Adegnika, A.A.; Borrmann, S.; Wondji, C.S. Plasmodium malariae contributes to high levels of malaria transmission in a forest-savannah transition area in Cameroon. Parasites Vectors 2023, 16, 31. [Google Scholar] [CrossRef]
- World Health Organization. World Malaria Report 2023; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Nureye, D.; Assefa, S. Old and Recent Advances in Life Cycle, Pathogenesis, Diagnosis, Prevention, and Treatment of Malaria Including Perspectives in Ethiopia. Sci. World J. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- National Institute of Allergy and Infectious Diseases (U.S.). Understanding Malaria: Fighting an Ancient Scourge; U.S. Department of Health and Human Services, National Institutes of Health, National Institute of Allergy and Infectious Diseases: Bethesda, MD, USA, 2007.
- Bailey, R.L.; West Jr, K.P.; Black, R.E. The Epidemiology of Global Micronutrient Deficiencies. Ann. Nutr. Metab. 2015, 66 (Suppl. S2), 22–33. [Google Scholar] [CrossRef]
- Shankar, A.H.; West, K.P.; Rare, L.; Bannon, D.; Adiguma, T.; Tielsch, J.M.; Wu, L.; Baisor, M.; Tamja, S.; Paino, J.; et al. The influence of zinc supplementation on morbidity due to Plasmodium falciparum: A randomized trial in preschool children in Papua New Guinea. Am. J. Trop. Med. Hyg. 2000, 62, 663–669. [Google Scholar] [CrossRef]
- Wander, K.; Shell-Duncan, B.; McDade, T.W. Evaluation of iron deficiency as a nutritional adaptation to infectious disease: An evolutionary medicine perspective. Am. J. Hum. Biol. Off. J. Hum. Biol. Counc. 2009, 21, 172–179. [Google Scholar] [CrossRef]
- Hommel, M. Morphology, biology and life cycle of Plasmodium parasites. Bull. Acad. Natl. Med. 2007, 191, 1235–1245; discussion 1245–1246. [Google Scholar]
- Tuffrey, V. A perspective on the development and sustainability of nutrition surveillance in low-income countries. BMC Nutr. 2016, 2, 15. [Google Scholar] [CrossRef]
- Brindle, E.; Lillis, L.; Barney, R.; Hess, S.Y.; Wessells, K.R.; Ouédraogo, C.T.; Stinca, S.; Kalnoky, M.; Peck, R.; Tyler, A.; et al. Simultaneous assessment of iodine, iron, vitamin A, malarial antigenemia, and inflammation status biomarkers via a multiplex immunoassay method on a population of pregnant women from Niger. PLoS ONE 2017, 12, e0185868. [Google Scholar] [CrossRef]
- Madhavan, M.; Sumodan, P.K.; Dhanya, C.R.; Mary, A.S.; Mustafa, S. Antimicrobial Peptides (AMPs): Current State and Future Prospects for the Treatment of Human Parasitic Diseases. In Natural Product Based Drug Discovery Against Human Parasites: Opportunities and Challenges; Singh, A., Rathi, B., Verma, A.K., Singh, I.K., Eds.; Springer Nature: Singapore, 2023; pp. 203–228. [Google Scholar] [CrossRef]
- Steinhoff, J.S.; Lass, A.; Schupp, M. Retinoid Homeostasis and Beyond: How Retinol Binding Protein 4 Contributes to Health and Disease. Nutrients 2022, 14, 1236. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C. Vitamin A and retinoic acid in T cell–related immunity. Am. J. Clin. Nutr. 2012, 96, 1166S–1172S. [Google Scholar] [CrossRef] [PubMed]
- Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients 2020, 12, 236. [Google Scholar] [CrossRef] [PubMed]
- Winstanley, P.; Ward, S.; Snow, R.; Breckenridge, A. Therapy of Falciparum Malaria in Sub-Saharan Africa: From Molecule to Policy. Clin. Microbiol. Rev. 2004, 17, 612–637. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T. Systemic Iron Homeostasis. Physiol. Rev. 2013, 93, 1721–1741. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.R.; Fujioka, H.; Williams, P.S.; Chalmers, J.J.; Grimberg, B.; Zimmerman, P.A.; Zborowski, M. Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis. FASEB J. 2006, 20, 747–749. [Google Scholar] [CrossRef]
- Clark, M.A.; Goheen, M.M.; Cerami, C. Influence of host iron status on Plasmodium falciparum infection. Front. Pharmacol. 2014, 5, 84. [Google Scholar] [CrossRef] [PubMed]
- Nussey, S.; Whitehead, S. Endocrinology: An Integrated Approach; BIOS Scientific Publishers: Oxford, UK, 2001. Available online: http://www.ncbi.nlm.nih.gov/books/NBK22/ (accessed on 4 December 2024).
- Eastman, C.; Zimmermann, M. The Iodine Deficiency Disorders; MDText.com, Inc.: South Dartmouth, MA, USA, 2018. Available online: https://www.ncbi.nlm.nih.gov/books/NBK285556/ (accessed on 4 December 2024).
- Ullrich, S.; Leidescher, S.; Feodorova, Y.; Thanisch, K.; Fini, J.-B.; Kaspers, B.; Weber, F.; Markova, B.; Führer, D.; Romitti, M.; et al. The highly and perpetually upregulated thyroglobulin gene is a hallmark of functional thyrocytes. Front. Cell Dev. Biol. 2023, 11, 1265407. [Google Scholar] [CrossRef]
- Das, A.; Suar, M.; Reddy, K.S. Hormones in Malaria Infection: Influence on Disease Severity, Host Physiology, and Therapeutic Opportunities. Biosci. Rep. 2024, 44, BSR20240482. [Google Scholar] [CrossRef]
- Antonio-Nkondjio, C.; Ndo, C.; Njiokou, F.; Bigoga, J.D.; Awono-Ambene, P.; Etang, J.; Ekobo, A.S.; Wondji, C.S. Review of malaria situation in Cameroon: Technical viewpoint on challenges and prospects for disease elimination. Parasites Vectors 2019, 12, 501. [Google Scholar] [CrossRef] [PubMed]
- Quansys Biosciences Inc. Q-Plex Human Micronutrient v2 (7-Plex). 2024. Available online: https://www.quansysbio.com/products-and-services/multiplex-assays/human-micronutrient-v2-7-plex/ (accessed on 4 December 2024).
- Touhy, P.C.; Albertini, L.W.; Thompson, L.A. What Parents Should Know About Iron-Deficiency Anemia in Children. JAMA Pediatr. 2023, 177, 651. [Google Scholar] [CrossRef]
- Sombié, O.O.; Zeba, A.N.; Somé, J.W.; Kazienga, A.; Grahn, M.; Tanumihardjo, S.A.; De Henauw, S.; Abbeddou, S. A comparative study on indicators of vitamin A status and risk factors for sensitivity and specificity of the methods to detect vitamin A deficiency. Nutr. Metab. 2023, 20, 49. [Google Scholar] [CrossRef]
- Syed, M.H.; Mark, B.; Doe, C.Q. Steroid hormone induction of temporal gene expression in Drosophila brain neuroblasts generates neuronal and glial diversity. eLife 2017, 6, e26287. [Google Scholar] [CrossRef] [PubMed]
- Benzecry, S.G.; Alexandre, M.A.; Vítor-Silva, S.; Salinas, J.L.; De Melo, G.C.; Marinho, H.A.; Paes, Â.T.; de Siqueira, A.M.; Monteiro, W.M.; Lacerda, M.V.G.; et al. Micronutrient Deficiencies and Plasmodium vivax Malaria among Children in the Brazilian Amazon. Snounou G, editor. PLoS ONE 2016, 11, e0151019. [Google Scholar] [CrossRef] [PubMed]
- Al-Naseem, A.; Sallam, A.; Choudhury, S.; Thachil, J. Iron deficiency without anaemia: A diagnosis that matters. Clin. Med. 2021, 21, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Barffour, M.A.; Schulze, K.J.; Coles, C.L.; Chileshe, J.; Kalungwana, N.; Siamusantu, W.; Arguello, M.; Moss, W.J.; West, K.P.; Palmer, A.C. Malaria exacerbates inflammation-associated elevation in ferritin and soluble transferrin receptor with only modest effects on iron deficiency and iron deficiency anaemia among rural Zambian children. Trop. Med. Int. Health 2018, 23, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Syed, S.; Kugathasan, S.; Kumar, A.; Prince, J.; Schoen, B.T.; McCracken, C.; Ziegler, T.R.; Suchdev, P.S. Use of Reticulocyte Hemoglobin Content in the Assessment of Iron Deficiency in Children With Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 713–720. [Google Scholar] [CrossRef]
- Das, B.S.; Thurnham, D.; Das, D.B. Plasma alpha-tocopherol, retinol, and carotenoids in children with falciparum malaria. Am. J. Clin. Nutr. 1996, 64, 94–100. [Google Scholar] [CrossRef]
- Pankoui Mfonkeu, J.B.; Gouado, I.; Fotso Kuaté, H.; Zambou, O.; Combes, V.; Raymond Grau, G.E.; Grau, G.E.; Zollo, P.H. Biochemical markers of nutritional status and childhood malaria severity in Cameroon. Br. J. Nutr. 2010, 104, 886–892. [Google Scholar] [CrossRef]
Malaria Status | ||||
---|---|---|---|---|
Variable | Category | Negative (%) | Positive (%) | p-Value |
Fever | No | 37 (46.3) | 0 (0) | <0.001 |
Yes | 0 (0) | 43 (53.8) | ||
Total | 37 (46.3) | 43 (53.7) | ||
Hemoglobin level | Anemic | 16 (20) | 27 (33.7) | 0.053 |
Non-Anemic | 21 (26.3) | 16 (20) | ||
Total | 37 (46.3) | 43 (53.7) |
Biomarker | Malaria | Mean | SD | t | p-Value | Mean Difference | 95%CI | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
RBP4 (µmol/L) | Negative | 0.83 | 0.08 | 0.51 | 0.673 | 0.01 | −0.038 | 0.064 |
Positive | 0.82 | 0.14 | ||||||
Ferritin (µg/L) | Negative | 19.07 | 3.87 | −3.182 | 0.002 | −4.47 | −7.27 | −1.67 |
Positive | 23.53 | 7.75 | ||||||
Tg (µg/L) | Negative | 20.91 | 2.49 | 1.309 | 0.194 | 0.93 | −0.49 | 2.35 |
Positive | 19.98 | 3.64 | ||||||
sTfR (mg/L) | Negative | 3.08 | 0.64 | −2.003 | 0.049 | −0.66 | −1.32 | −0.004 |
Positive | 3.74 | 1.92 |
Variable | Odds Ratio | 95% Confidence Interval | p-Value | Beta Coefficient | Effect |
---|---|---|---|---|---|
Male vs. Female | 1.123 | [0.465, 2.709] | 0.796 | 0.1160 | Positive |
Age | 1.037 | [1.005, 1.069] | 0.022 | 0.0362 | Positive |
Hemoglobin | 0.766 | [0.555, 1.057] | 0.104 | −0.2672 | Negative |
Ferritin | 1.02 | [0.972, 1.069] | 0.422 | 0.0194 | Positive |
Tg | 0.893 | [0.770, 1.036] | 0.136 | −0.1127 | Negative |
RBP4 | 0.878 | [0.495, 1.558] | 0.656 | −0.1302 | Negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinga, J.N.; Anu, E.F.; Feumba, R.D.; Qin, H.; Ayah, F.; Ayiseh, R.B.; Shey, R.A.; Gamua, S.D.; Tufon, A.K.; Manyam, R.; et al. Micronutrient Biomarkers and Their Association with Malaria Infection in Children in Buea Health District, Cameroon. Trop. Med. Infect. Dis. 2024, 9, 303. https://doi.org/10.3390/tropicalmed9120303
Dinga JN, Anu EF, Feumba RD, Qin H, Ayah F, Ayiseh RB, Shey RA, Gamua SD, Tufon AK, Manyam R, et al. Micronutrient Biomarkers and Their Association with Malaria Infection in Children in Buea Health District, Cameroon. Tropical Medicine and Infectious Disease. 2024; 9(12):303. https://doi.org/10.3390/tropicalmed9120303
Chicago/Turabian StyleDinga, Jerome Nyhalah, Emmanuel Fondungallah Anu, Romelle Dibanda Feumba, Haowen Qin, Flora Ayah, Rene Bilingwe Ayiseh, Robert Adamu Shey, Stanley Dobgima Gamua, Anthony Kukwah Tufon, Rameshbabu Manyam, and et al. 2024. "Micronutrient Biomarkers and Their Association with Malaria Infection in Children in Buea Health District, Cameroon" Tropical Medicine and Infectious Disease 9, no. 12: 303. https://doi.org/10.3390/tropicalmed9120303
APA StyleDinga, J. N., Anu, E. F., Feumba, R. D., Qin, H., Ayah, F., Ayiseh, R. B., Shey, R. A., Gamua, S. D., Tufon, A. K., Manyam, R., & Titanji, V. P. K. (2024). Micronutrient Biomarkers and Their Association with Malaria Infection in Children in Buea Health District, Cameroon. Tropical Medicine and Infectious Disease, 9(12), 303. https://doi.org/10.3390/tropicalmed9120303