Operational Differences between Product Development Partnership, Pharmaceutical Industry, and Investigator Initiated Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting
2.2. Study Design
2.2.1. Direct Observations
2.2.2. Document Review
2.2.3. Interviews
2.2.4. Online Survey
2.3. Data Collection and Analysis
2.4. Researchers Characteristics, Trustworthiness, and Reflexivity
3. Results
3.1. Trial Start-Up Differences
3.1.1. Sponsor’s Governance and Management Structure
3.1.2. Site Selection
3.1.3. Planning
3.2. Study Complexity
3.2.1. Study Design
3.2.2. Protocol Complexity
3.3. Sites Structural and Organisational Differences
3.4. Study Conduct
3.4.1. Differences in SOPs
3.4.2. Quality of Clinical Trials
3.4.3. Competitive Recruitment
3.4.4. Logistics
3.4.5. Differences in Monitoring Approaches
3.5. Contribution to Site Capacity Strengthening
3.6. Collaboration
4. Discussion
4.1. Planning: The Voice of the Site Investigators Is Critical
4.2. Improving Site and Team Organisation
4.3. Strategies for Collaboration Improvement
4.4. Towards More Equitable Site Selection
4.5. Optimal Quality Approaches
4.6. Capacity Strengthening
4.7. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vischer, N.; Pfeiffer, C.; Burri, C. Improving efficiency and quality in clinical trials in Sub-Saharan Africa. BMJ Glob. Health 2017, 2, A56. [Google Scholar] [CrossRef]
- Vischer, N.; Pfeiffer, C.; Limacher, M.; Burri, C. “You can save time if…”—A qualitative study on internal factors slowing down clinical trials in Sub-Saharan Africa. PLoS ONE 2017, 12, e0173796. [Google Scholar] [CrossRef]
- Choe, S.C. Clinical development and trial operations in COVID-19 era. Transl. Clin. Pharmacol. 2021, 29, 181–185. [Google Scholar] [CrossRef]
- Kelly, D.; Spreafico, A.; Siu, L.L. Increasing operational and scientific efficiency in clinical trials. Br. J. Cancer 2020, 123, 1207–1208. [Google Scholar] [CrossRef]
- STCO. Guidelines for Risk-based monitoring. Available online: https://www.sctoplatforms.ch/en/publications/guidelines-and-reports/guidelines-for-risk-based-monitoring-61.html (accessed on 13 October 2023).
- Jones, H.M.M.-J.; Curtis, F.; Law, G.; Bridle, C.; Boyle, D.; Ahmed, T. Evaluating follow-up and complexity in cancer clinical trials (EFACCT): An eDelphi study of research professionals’ perspectives. BMJ Open 2020, 10, e034269. [Google Scholar] [CrossRef]
- Calvin-Lamas, M.; Pita-Fernandez, S.; Pertega-Diaz, S.; Rabunal-Alvarez, M.T.; Martín-Herranz, I. A complexity scale for clinical trials from the perspective of a pharmacy service. Eur. J. Hosp. Pharm. 2018, 25, 251–256. [Google Scholar] [CrossRef]
- Lendrem, D.W.; Lendrem, B.C. The development speed paradox: Can increasing development speed reduce R&D productivity? Drug Discov. Today 2014, 19, 209–214. [Google Scholar] [CrossRef]
- Pallmann, P.; Bedding, A.W.; Choodari-Oskooei, B.; Dimairo, M.; Flight, L.; Hampson, L.V.; Holmes, J.; Mander, A.P.; Odondi, L.; Sydes, M.R.; et al. Adaptive designs in clinical trials: Why use them, and how to run and report them. BMC Med. 2018, 16, 29. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, N.; Upadhyay, R.P.; Chowdhury, R.; Taneja, S. Challenges of adopting new trial designs in LMICs. Lancet Glob. Health 2021, 9, e575–e576. [Google Scholar] [CrossRef] [PubMed]
- Carmona, L. Reducing bureaucracy in clinical trials, now is the time! RMD Open 2022, 8, e002202. [Google Scholar] [CrossRef] [PubMed]
- Croft, S.L. Public-private partnership: From there to here. Trans. R. Soc. Trop. Med. Hyg. 2005, 99 (Suppl. S1), S9–S14. [Google Scholar] [CrossRef] [PubMed]
- Utzinger, J.; Mäser, P. Swiss TPH: 30 Years of R&D Towards new drugs for tropical diseases. Chimia 2023, 77, 570–571. [Google Scholar] [PubMed]
- Hooft van Huijsduijnen, R.; Wells, T.; Tanner, M.; Wittlin, S. Two successful decades of Swiss collaborations to develop new anti-malarials. Malar. J. 2019, 18, 94. [Google Scholar] [CrossRef] [PubMed]
- Lipton, S.A.; Nordstedt, C. Partnering with big Pharma-What academics need to know. Cell 2016, 165, 512–515. [Google Scholar] [CrossRef]
- Farrell, B.; Kenyon, S.; Shakur, H. Managing clinical trials. Trials 2010, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Georgias, C.; Grunow, A.; Olderog, M.; May, A.; Paulus, U. Academic investigator-initiated trials and the challenge of sponsor responsibility: The Cologne Sponsor Model. Clin. Trials 2012, 9, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Shafiq, N.; Pandhi, P.; Malhotra, S. Investigator-initiated pragmatic trials in developing countries—Much needed but much ignored. Br. J. Clin. Pharmacol. 2009, 67, 141–142. [Google Scholar] [CrossRef]
- Madeira, C.; Santos, F.; Kubiak, C.; Demotes, J.; Monteiro, E.C. Transparency and accuracy in funding investigator-initiated clinical trials: A systematic search in clinical trials databases. BMJ Open 2019, 9, e023394. [Google Scholar] [CrossRef]
- Von Niederhausern, B.; Fabbro, T.; Pauli-Magnus, C. The role of clinical trial units in investigator- and industry-initiated research projects. Swiss. Med. Wkly. 2015, 145, w14161. [Google Scholar] [CrossRef]
- Droppert, H.; Bennett, S. Corporate social responsibility in global health: An exploratory study of multinational pharmaceutical firms. Glob. Health 2015, 11, 15. [Google Scholar] [CrossRef]
- Mahoney, R.T. Product development partnerships: Case studies of a new mechanism for health technology innovation. Health Res. Policy Syst. 2011, 9, 33. [Google Scholar] [CrossRef]
- Maxmen, A. Busting the billion-dollar myth: How to slash the cost of drug development. Nature 2016, 536, 388–390. [Google Scholar] [CrossRef]
- Abu-Shaheen, A.; Al Badr, A.; Al Fayyad, I.; Al Qutub, A.; Faqeih, E.A.; Al-Tannir, M. Streamlining and cycle time reduction of the startup phase of clinical trials. Trials 2020, 21, 115. [Google Scholar] [CrossRef]
- Moran, M.; Guzman, J.; Ropars, A.L.; Illmer, A. The role of product development partnerships in research and development for neglected diseases. Int. Health 2010, 2, 114–122. [Google Scholar] [CrossRef]
- DNDi. 15 Years of Needs-Driven Innovation for Access. Key Lessons, Challenges, and Opportunities for the Future; DNDi: Geneva, Switzerland, 2019. [Google Scholar]
- Widdus, R. Public-private partnerships: An overview. Trans. R. Soc. Trop. Med. Hyg. 2005, 99 (Suppl. S1), S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Nebie, E.I.; Sawadogo, H.N.; van Eeuwijk, P.; Signorell, A.; Reus, E.; Utzinger, J.; Burri, C. Opportunities and challenges for decentralised clinical trials in sub-Saharan Africa: A qualitative study. BMJ Open 2023, 13, e075903. [Google Scholar] [CrossRef] [PubMed]
- O’Cathain, A.; Murphy, E.; Nicholl, J. The quality of mixed methods studies in health services research. J. Health Serv. Res. Policy 2008, 13, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Mora, V.; Colantuono, S.; Fanali, C.; Leonetti, A.; Wlderk, G.; Pirro, M.A.; Cala Palmarino, F.M.; Savini, R.; Ianiro, G.; Gasbarrini, A.; et al. Clinical research coordinators: Key components of an efficient clinical trial unit. Contemp. Clin. Trials Commun. 2023, 32, 101057. [Google Scholar] [CrossRef] [PubMed]
- Freel, S.A.; Snyder, D.C.; Bastarache, K.; Jones, C.T.; Marchant, M.B.; Rowley, L.A.; Sonstein, S.A.; Lipworth, K.M.; Landis, S.P. Now is the time to fix the clinical research workforce crisis. Clin. Trials 2023, 20, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Morin, D.J. Harmonizing protocol complexity with resource management and capacity planning at clinical research sites. Ther. Innov. Regul. Sci. 2020, 54, 978–987. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, C.; Furlong, E.; Coughlan, B.; Fox, P.; Darley, A. Building research capacity and culture: Exploring nurses’ experience of implementing a nurse-led clinical trial. J. Nurs. Manag. 2022, 30, 1002–1010. [Google Scholar] [CrossRef]
- Parker, M.; Kingori, P. Good and bad research collaborations: Researchers’ views on science and ethics in global health research. PLoS ONE 2016, 11, e0163579. [Google Scholar] [CrossRef]
- Hurtado-Chong, A.; Joeris, A.; Hess, D.; Blauth, M. Improving site selection in clinical studies: A standardised, objective, multistep method and first experience results. BMJ Open 2017, 7, e014796. [Google Scholar] [CrossRef]
- Dombernowsky, T.; Haedersdal, M.; Lassen, U.; Thomsen, S.F. Criteria for site selection in industry-sponsored clinical trials: A survey among decision-makers in biopharmaceutical companies and clinical research organizations. Trials 2019, 20, 708. [Google Scholar] [CrossRef]
- Tew, M.; Catchpool, M.; Furler, J.; De La Rue, K.; Clarke, P.; Manski-Nankervis, J.A.; Dalziel, K. Site-specific factors associated with clinical trial recruitment efficiency in general practice settings: A comparative descriptive analysis. Trials 2023, 24, 164. [Google Scholar] [CrossRef]
- Sprenger, K.; Nickerson, D.; Meeker-O’Connell, A.; Morrison, B.W. Quality by design in clinical trials: A collaborative pilot with FDA. Ther. Innov. Regul. Sci. 2013, 47, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Moradi, H.; Schneider, M.; Streja, E.; Cooper, D. Feasibility and acceptability of a structured quality by design approach to enhancing the rigor of clinical studies at an academic health center. J. Clin. Transl. Sci. 2021, 5, e175. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, R.; Bojarski, L.; Chevalier, S.; Gortz, D.R.; Le Meignen, S.; Makowski, M.; Nadolny, P.; Pillwein, M.; Suprin, M.; Turri, S. Quality tolerance limits: Framework for successful implementation in clinical development. Ther. Innov. Regul. Sci. 2021, 55, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Pratt, B.; Loff, B. Linking research to global health equity: The contribution of product development partnerships to access to medicines and research capacity building. Am. J. Public Health 2013, 103, 1968–1978. [Google Scholar] [CrossRef] [PubMed]
Institution | Investigator Initiated Trial (IIT) | Product Development Partnership (PDP) | Pharmaceutical Industry Sponsored Trial (Pharma) | ||||||
---|---|---|---|---|---|---|---|---|---|
Number of Studies | Phase | Status | Number of Studies | Phase | Status | Number of Studies | Phase | Status | |
MRTC | 1 | IIIb-IV | C | 1 | III | C | 1 | II | O |
URCN | 1 | IV | C | 1 | II | C | 1 | II | O |
USB | 3 | II (2) I/II (1) | 2 (O) 1 (C) | Not applicable | - | - | 3 | II (2) I (1) * | 2 (C) 1 (O) |
5 | 2 | 5 |
Participants’ Characteristics | N (%) |
---|---|
Age in years | |
20–40 | 34 (46.0) |
41–50 | 30 (40.5) |
>50 | 10 (13.5) |
Sex | |
Male | 58 (78.4) |
Female | 16 (21.6) |
Eligibility * | |
Eligible | 74 (91.8) |
Non eligible | 6 (8.2) |
Number of years working in clinical trials | |
1–5 | 17 (23.0) |
6–10 | 24 (32.4) |
11–15 | 20 (27.0) |
>15 | 13 (17.6) |
Experience with sponsors ** | |
Academia | 57 (48.7) |
Pharma | 32 (27.4) |
PDP | 28 (23.9) |
Sponsor Type | Experience (in Years) | p-Value * | |||
---|---|---|---|---|---|
1–5 | 6–10 | 11–15 | >15 | ||
Pharma sponsored trials | 6 (18.8) | 14 (43.8) | 7 (21.9) | 5 (15.6) | 0.999 |
PDP sponsored trials | 3 (10.7) | 6 (21.4) | 12 (42.9) | 7 (25.0) | 0.050 |
Academia sponsored trials | 15 (26.3) | 16 (28.1) | 18 (31.6) | 8 (14.0) | 0.290 |
Sponsor Type | N (%) |
---|---|
Academia | 1 (2.2) |
PDP | 2 (4.4) |
Pharma/PDP | 17 (37.0) |
Pharma | 26 (56.5) |
Total * | 46 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nebie, E.I.; van Eeuwijk, P.; Sawadogo, H.N.; Reus, E.; Utzinger, J.; Burri, C. Operational Differences between Product Development Partnership, Pharmaceutical Industry, and Investigator Initiated Clinical Trials. Trop. Med. Infect. Dis. 2024, 9, 56. https://doi.org/10.3390/tropicalmed9030056
Nebie EI, van Eeuwijk P, Sawadogo HN, Reus E, Utzinger J, Burri C. Operational Differences between Product Development Partnership, Pharmaceutical Industry, and Investigator Initiated Clinical Trials. Tropical Medicine and Infectious Disease. 2024; 9(3):56. https://doi.org/10.3390/tropicalmed9030056
Chicago/Turabian StyleNebie, Eric I, Peter van Eeuwijk, Hélène N. Sawadogo, Elisabeth Reus, Jürg Utzinger, and Christian Burri. 2024. "Operational Differences between Product Development Partnership, Pharmaceutical Industry, and Investigator Initiated Clinical Trials" Tropical Medicine and Infectious Disease 9, no. 3: 56. https://doi.org/10.3390/tropicalmed9030056
APA StyleNebie, E. I., van Eeuwijk, P., Sawadogo, H. N., Reus, E., Utzinger, J., & Burri, C. (2024). Operational Differences between Product Development Partnership, Pharmaceutical Industry, and Investigator Initiated Clinical Trials. Tropical Medicine and Infectious Disease, 9(3), 56. https://doi.org/10.3390/tropicalmed9030056