Potential Way to Develop Dengue Virus Detection in Aedes Larvae as an Alternative for Dengue Active Surveillance: A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Selection Criteria
2.3. Data Extraction
3. Results
3.1. Overview
3.2. Mosquito Stage and Population
3.3. Virus Detection Assay
4. Discussion
4.1. Larvae Surveillance
4.2. Detecting Dengue Virus in Larvae
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.; Brownstein, J.; Hoen, A.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Zheng, J.X.; Guo, Z.Y.; Li, L.H.; Xia, S.; Lv, S.; Zhou, X. Dengue Incidence Trends and Its Burden in Major Endemic Regions from 1990 to 2019. Trop. Med. Infect. Dis. 2022, 7, 180. [Google Scholar] [CrossRef] [PubMed]
- WHO. Dengue and Severe Dengue; WHO: Geneva, Switzerland, 2023; Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 1 August 2023).
- Lu, X.; Bambrick, H.; Pongsumpun, P.; Dhewantara, P.W.; Toan, D.T.T.; Hu, W. Dengue outbreaks in the covid-19 era: Alarm raised for Asia. PLoS Negl. Trop. Dis. 2021, 15, e0009778. [Google Scholar] [CrossRef] [PubMed]
- Manna, S.; Satapathy, P.; Bora, I.; Padhi, B.K. Dengue outbreaks in South Asia amid COVID-19: Epidemiology, transmission, and mitigation strategies. Front. Public Health 2022, 10, 1060043. Available online: https://www.frontiersin.org/articles/10.3389/fpubh.2022.1060043/full (accessed on 17 August 2023). [CrossRef] [PubMed]
- Harapan, H.; Ryan, M.; Yohan, B.; Abidin, R.S.; Nainu, F.; Rakib, A.; Jalan, I.; Emran, T.; Ullah, I.; Panta, K.; et al. COVID-19 and dengue: Double punches for dengue-endemic countries in Asia. Rev. Med. Virol. 2021, 31, e2161. Available online: https://onlinelibrary.wiley.com/doi/10.1002/rmv.2161 (accessed on 7 August 2023). [CrossRef]
- Harapan, H.; Michie, A.; Yohan, B.; Shu, P.Y.; Mudatsir, M.; Sasmono, R.T.; Imrie, A. Dengue viruses circulating in Indonesia: A systematic review and phylogenetic analysis of data from five decades. Rev. Med. Virol. 2019, 29, e2037. [Google Scholar] [CrossRef] [PubMed]
- Kementerian Kesehatan Republik Indonesia. Masuk Peralihan Musim, Kemenkes Minta Dinkes Waspadai Lonjakan Dbd. 2022. Available online: https://www.kemkes.go.id/article/view/22092300006/masuk-peralihan-musim-kemenkes-minta-dinkes-waspadai-lonjakan-dbd.html (accessed on 7 August 2023).
- Srisawat, N.; Gubler, D.J.; Pangestu, T.; Thisyakorn, U.; Ismail, Z.; Goh, D.; Capeding, M.R.; Bravo, L.; Yoksan, S.; Tantawichien, T.; et al. Proceedings of the 5th Asia Dengue Summit. Trop. Med. Infect. Dis. 2023, 8, 231. [Google Scholar] [CrossRef]
- Wang, W.H.; Urbina, A.N.; Chang, M.R.; Assavalapsakul, W.; Lu, P.L.; Chen, Y.H.; Wang, S. Dengue hemorrhagic fever—A systemic literature review of current perspectives on pathogenesis, prevention and control. J. Microbiol. Immunol. Infect. 2020, 53, 963–978. [Google Scholar] [CrossRef]
- Jasamai, M.; Boon, Y.W.; Sakulpanich, A.; Jaleel, A. Current Prevention and Potential Treatment Options for Dengue Infection. J. Pharm. Pharm. Sci. 2019, 22, 440–456. [Google Scholar] [CrossRef]
- Chung, Y.K.; Lam-Phua, S.G.; Lee, K.M.; Yong, R.; Lim, L.K.; Chow, V.T.; Tan, B.; Chan, Y. Monitoring of dengue viruses in field-caught Aedes aegypti and Aedes albopictus mosquitoes by a type-specific polymerase chain reaction and cycle sequencing. Am. J. Trop. Med. Hyg. 1998, 58, 578–586. [Google Scholar] [CrossRef]
- Watts, D.M.; Harrison, B.A.; Pantuwatana, S.; Klein, T.A.; Burke, D.S. Failure to Detect Natural Transovarial Transmission of Dengue Viruses by Aedes Aegypti and Aedes Albopictus (Diptera: Culicidae)1. J. Med. Entomol. 1985, 22, 261–265. Available online: https://academic.oup.com/jme/article-lookup/doi/10.1093/jmedent/22.3.261 (accessed on 14 September 2023). [CrossRef] [PubMed]
- de Castro, M.G.; Nogueira, R.M.R.; Schatzmayr, H.G.; Miagostovich, M.P.; Lourenço-de-Oliveira, R. Dengue virus detection by using reverse transcription-polymerase chain reaction in saliva and progeny of experimentally infected Aedes Albopictus from Brazil. Mem. Inst. Oswaldo Cruz 2004, 99, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, A.S.; Costa, D.M.P.; Branco, M.S.D.; Sousa, D.M.C.; Monteiro, J.D.; Galväo, S.P.M.; Azedevo, P.; Fernandes, J.; Jeronimo, S.; Araujo, J. Dengue virus in Aedes aegypti and Aedes albopictus in urban areas in the state of Rio Grande do Norte, Brazil: Importance of virological and entomological surveillance. PLoS ONE 2018, 13, e0194108. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Khan, I.; Ali, I.; Iqbal, A.; Salman, M. The role of vertical transmission of dengue virus among field-captured Aedes aegypti and Aedes albopictus mosquitoes in Peshawar, Khyber Pakhtunkhwa, Pakistan. Pak. J. Zool. 2017, 49, 777–784. [Google Scholar] [CrossRef]
- Lee, H.L.; Rohani, A. Transovarial Transmission of Dengue Virus in Aedes Aegypti and Aedes Albopictus in Relation to Dengue Outbreak in an Urban Area in Malaysia. Dengue Bull. 2005, 29, 106–111. [Google Scholar]
- Teixeira, A.F.; de Brito, B.B.; Correia, T.M.L.; Viana, A.I.S.; Carvalho, J.C.; da Silva, F.A.F.; Santos, M.L.C.; da Silveira, E.A.; Neto, H.P.G.; da Silva, N.M.P.; et al. Simultaneous circulation of zakat, dengue, and chikungunya viruses and their vertical co-transmission among Aedes Aegypti. Acta Trop. 2021, 215, 105819. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, C.F.; Dos Passos, R.A.; Lima, J.B.P.; Roque, R.A.; De Souza Sampaio, V.; Campolina, T.B.; Secundino, N.; Pimenta, P. Transovarial transmission of DENV in Aedes Aegypti in the Amazon basin: A local model of xenomonitoring. Parasites Vectors 2017, 10, 249. [Google Scholar] [CrossRef]
- Andrade, E.H.P.; Figueiredo, L.B.; Vilela, A.P.P.; Rosa, J.C.C.; Zibaoui, H.M.; Kroon, E.G. Virological Surveillance of Aedes Aegypti Vectors Identifies All Four Dengue Serotypes in a Hyperendemic Region. Ecohealth 2022, 19, 75–84. [Google Scholar] [CrossRef]
- Mulyatno, K.C.; Yamanaka, A.; Yotopranoto, S.; Konishi, E. Vertical transmission of dengue virus in Aedes aegypti collected in Surabaya, Indonesia, during 2008-2011. Jpn. J. Infect. Dis. 2012, 65, 274–276. Available online: http://www.ncbi.nlm.nih.gov/pubmed/22627316 (accessed on 14 September 2023). [CrossRef]
- Wijesinghe, C.; Gunatilake, J.; Kusumawathie, P.H.D.; Sirisena, P.D.N.N.; Daulagala, S.W.P.L.; Iqbal, B.N.; Noordeen, F. Circulating dengue virus serotypes and vertical transmission in Aedes larvae during outbreak and inter-outbreak seasons in a high dengue risk area of Sri Lanka. Parasites Vectors 2021, 14, 614. [Google Scholar] [CrossRef]
- Vilela, A.P.P.; Figueiredo, L.B.; dos Santos, J.R.; Eiras, Á.E.; Bonjardim, C.A.; Ferreira, P.C.P.; Kroon, E. Dengue virus 3 genotype I in Aedes Aegypti mosquitoes and eggs, Brazil, 2005–2006. Emerg. Infect. Dis. 2010, 16, 989–992. [Google Scholar] [CrossRef]
- Cecílio, S.G.; Júnior, W.F.S.; Tótola, A.H.; de Brito Magalhães, C.L.; Ferreira, J.M.S.; de Magalhães, J.C. Dengue virus detection in Aedes Aegypti larvae from southeastern Brazil. J. Vector Ecol. 2015, 40, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, V.C.; Tadei, W.P.; Barros, P.M.; Vasconcelos, P.F.; Cruz, A.C.R. Detection of dengue virus serotype 3 by reverse transcription-polymerase chain reaction in Aedes Aegypti (Diptera, Culicidae) captured in Manaus, Amazonas. Mem. Inst. Oswaldo Cruz 2005, 100, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Teo, C.H.J.; Lim, P.K.C.; Voon, K.; Mak, J.W. Detection of dengue viruses and Wolbachia in Aedes Aegypti and Aedes Albopictus larvae from four urban localities in Kuala Lumpur, Malaysia. Trop. Biomed. 2017, 34, 583–597. Available online: http://www.ncbi.nlm.nih.gov/pubmed/33592927 (accessed on 14 September 2023). [PubMed]
- Rohani, A.; Aidil Azahary, A.R.; Malinda, M.; Zurainee, M.N.; Rozilawati, H.; Wan Najdah, W.M.A.; Lee, H. Eco-virological survey of Aedes mosquito larvae in selected dengue outbreak areas in Malaysia. J. Vector Borne Dis. 2014, 51, 327–332. Available online: http://www.ncbi.nlm.nih.gov/pubmed/25540966 (accessed on 14 September 2023). [PubMed]
- Sithiprasasna, R.; Strickman, D.; Innis, B.L.; Linthicum, K.J. ELISA for detecting dengue and Japanese encephalitis viral antigen in mosquitoes. Ann. Trop. Med. Parasitol. 1994, 88, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Bugallo, G.; Rodriguez-Roche, R.; Díaz, G.; Vázquez, A.A.; Alvarez, M.; Rodríguez, M.; Bisset, J.; Guzman, M. First record of natural vertical transmission of dengue virus in Aedes Aegypti from Cuba. Acta Trop. 2017, 174, 146–148. [Google Scholar] [CrossRef]
- Mantilla-Granados, J.S.; Sarmiento-Senior, D.; Manzano, J.; Calderón-Peláez, M.A.; Velandia-Romero, M.L.; Buitrago, L.S.; Castellanos, J.; Olano, V. Multidisciplinary approach for surveillance and risk identification of yellow fever and other arboviruses in Colombia. One Health 2022, 15, 100438. [Google Scholar] [CrossRef]
- Sánchez-Vargas, I.; Harrington, L.C.; Doty, J.B.; Black, W.C.; Olson, K.E. Demonstration of efficient vertical and venereal transmission of dengue virus type-2 in a genetically diverse laboratory strain of Aedes aegypti. PLoS Negl. Trop. Dis. 2018, 12, e0006754. [Google Scholar] [CrossRef]
- Gutiérrez-Bugallo, G.; Rodríguez-Roche, R.; Díaz, G.; Pérez, M.; Mendizábal, M.E.; Peraza, I.; Vazquez, A.; Alvarez, M.; Rodriguez, M.; Bisset, J.; et al. Spatio-temporal distribution of vertically transmitted dengue viruses by Aedes Aegypti (Diptera: Culicidae) from Arroyo Naranjo, Havana, Cuba. Trop. Med. Int. Health 2018, 23, 1342–1349. [Google Scholar] [CrossRef]
- Rohani, A.; Zamree, I.; Lee, H.L.; Mustafakamal, I.; Norjaiza, M.J.; Kamilan, D. Detection of transovarial dengue virus from field-caught Aedes Aegypti and Ae. albopictus larvae using C6/36 cell culture and reverse transcriptase-polymerase chain reaction (RT-PCR) techniques. Dengue Bull. 2007, 31, 47–57. [Google Scholar]
- Pessanha, J.E.M.; Caiaffa, W.T.; Cecilio, A.B.; de Iani, F.C.M.; Araujo, S.C.; Nascimento, J.C.; Kroon, E.; Proietti, F.; Arias, J. Cocirculation of two dengue virus serotypes in individual and pooled samples of Aedes Aegypti and Aedes Albopictus larvae. Rev. Soc. Bras. Med. Trop. 2011, 44, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Johari, N.A.; Voon, K.; Toh, S.Y.; Sulaiman, L.H.; Yap, I.K.S.; Lim, P.K.C. Sylvatic dengue virus type 4 in Aedes Aegypti and Aedes Albopictus mosquitoes in an urban setting in Peninsular Malaysia. PLoS Negl. Trop. Dis. 2019, 13, e0007889. [Google Scholar] [CrossRef] [PubMed]
- Piedra, L.A.; Martinez, L.C.; Ruiz, A.; Vazquez, J.R.; Guzman, M.G.; Rey, J.; Bisset, J. First Record of Natural Transovarial Transmission of Dengue Virus in Aedes Albopictus from Cuba. Am. J. Trop. Med. Hyg. 2021, 106, 582–584. [Google Scholar] [CrossRef] [PubMed]
- de Figueiredo, M.L.; de Gomes, A.C.; Amarilla, A.A.; de S Leandro, A.; de S Orrico, A.S.; de Araujo, R.F.; do SM Castro, J.; Durigon, E.; Aquino, V.; Figueiredo, L. Mosquitoes infected with dengue viruses in Brazil. Virol. J. 2010, 7, 152. [Google Scholar] [CrossRef] [PubMed]
- Serufo, J.C.; Oca, H.M.; de Tavares, V.A.; Souza, A.M.; Rosa, R.V.; Jamal, M.C.; Lemos, J.; Oliveira, M.; Nogueira, R.; Schatzmayr, H. Isolation of dengue virus type 1 from larvae of Aedes albopictus in Campos Altos city, State of Minas Gerais, Brazil. Mem. Inst. Oswaldo Cruz 1993, 88, 503–504. [Google Scholar] [CrossRef] [PubMed]
- Sivan, A.; Shriram, A.N.; Sugunan, A.P.; Anwesh, M.; Muruganandam, N.; Kartik, C.; Vijayachari, P. Natural transmission of dengue virus serotype 3 by Aedes Albopictus (Skuse) during an outbreak in Havelock Island: Entomological characteristics. Acta Trop. 2016, 156, 122–129. [Google Scholar] [CrossRef]
- Günther, J.; Martínez-Muñoz, J.P.; Pérez-Ishiwara, D.G.; Salas-Benito, J. Evidence of vertical transmission of dengue virus in two endemic localities in the state of Oaxaca, Mexico. Intervirology 2007, 50, 347–352. [Google Scholar] [CrossRef]
- Dias Zeidler, J.; Oscar, P.; Acosta, A.; Pereira Barrêto, P.; Da, J.; Cordeiro, S. Dengue virus in Aedes Aegypti larvae and infestation dynamics in Roraima, Brazil. Rev. Saude Publica 2008, 42, 986–991. [Google Scholar] [CrossRef]
- Kao, J.H.; Chen, C.D.; Tiger Li, Z.R.; Chan, T.C.; Tung, T.H.; Chu, Y.H.; Cheng, H.; Liu, J.; Shih, F.; Shu, P.; et al. The critical role of early dengue surveillance and limitations of clinical reporting—Implications for non-endemic countries. PLoS ONE 2016, 11, e0160230. [Google Scholar] [CrossRef]
- Sulistyawati, S.; Yuliansyah, H.; Sukesi, T.W.; Khusna, A.N.; Mulasari, S.A.; Tentama, F.; Sudarsono, B.; Ghozali, F. Rapid Appraisals of the Transformation Strategy Required to Sustain Dengue Vector Control During and After the COVID-19 Pandemic in Indonesia. Risk Manag. Healthc. Policy 2023, 16, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Sasmita, H.I.; Neoh, K.B.; Yusmalinar, S.; Anggraeni, T.; Chang, N.T.; Bong, L.J.; Putra, R.; Sebayang, A.; SIlalahi, C.; Ahmad, I. Ovitrap surveillance of dengue vector mosquitoes in bandung city, west java province, Indonesia. PLoS Negl. Trop. Dis. 2021, 15, e0009896. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.M.; Gong, Z.Y.; Wang, Z. A Review of the Surveillance Techniques for Aedes albopictus. Am. J. Trop. Med. Hyg. 2023, 108, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Sudomo, M.; Boewono, D.T.; Suharjono, Y.R.; Satoto, T.B.; Wibawa, T.; Mk, S.; Ma’ruf, C.; Dewi, D.R.; Rusmiarto, S.; Widiarti, M.K.; et al. Pedoman Koleksi Spesimen dan Data di Lapangan Tim Penyusun. 2017. Available online: https://www.researchgate.net/publication/322300627_PEDOMAN_PENGUMPULAN_DATA_VEKTOR_NYAMUK_DI_LAPANGAN (accessed on 10 August 2023).
- Wijayanti, S.P.M.; Sunaryo, S.; Suprihatin, S.; McFarlane, M.; Rainey, S.M.; Dietrich, I.; Schnettler, E.; Biek, R.; Kohl, A. Dengue in Java, Indonesia: Relevance of Mosquito Indices as Risk Predictors. PLoS Negl. Trop. Dis. 2016, 10, e0004500. [Google Scholar] [CrossRef]
- Marques Pessanha, J.E.; Tecles Brandão, S.; Mattos Almeida, M.C.; Da Consolação De Magalhães Cunha, M.; Vieira Sonoda, I.; Sales Bessa, A.M.; Nascimento, J. Ovitrap surveillance as dengue epidemic predictor in Belo Horizonte City, Brazil. J. Health Biol. Sci. 2014, 2, 51–56. [Google Scholar] [CrossRef]
- Garjito, T.A.; Susanti, L.; Mujiyono, M.; Prihatin, M.T.; Susilo, D.; Nugroho, S.S.; Mujiyanto, M.; Wigati, R.; Satoto, T.; Manguin, S.; et al. Assessment of Mosquito Collection Methods for Dengue Surveillance. Front. Med. 2021, 8, 685926. [Google Scholar] [CrossRef] [PubMed]
- de Melo, D.P.O.; Scherrer, L.R.; Eiras, Á.E. Dengue fever occurrence and vector detection by larval survey, ovitrap and mosquiTRAP: A space-time clusters analysis. PLoS ONE 2012, 7, e42125. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Raihan, M.E.; Hossain, M.S.; Syeed, M.M.M.; Rashid, H.; Reza, M.S. Aedes Larva Detection Using Ensemble Learning to Prevent Dengue Endemic. BioMedInformatics 2022, 2, 405–423. [Google Scholar] [CrossRef]
- Focks, D.A. A Review of Entomological Sampling Methods and Indicators for Dengue Vectors; WHO: Geneva, Switzerland, 2004; Available online: https://apps.who.int/iris/handle/10665/68575 (accessed on 12 August 2023).
- Yalwala, S.; Clark, J.; Oullo, D.; Ngonga, D.; Abuom, D.; Wanja, E.; Bast, J. Comparative efficacy of existing surveillance tools for Aedes aegypti in Western Kenya. J. Vector Ecol. 2015, 40, 301–307. [Google Scholar] [CrossRef]
- Manica, M.; Rosà, R.; della Torre, A.; Caputo, B. From eggs to bites: Do ovitrap data provide reliable estimates of Aedes albopictus biting females? PeerJ 2017, 2017, e2998. [Google Scholar] [CrossRef]
- De, L.A.; Llagas, L.; Tyagi, B.K.; Grace, L.; Bersales, S. Review Aedes Dengue Vector Ovitrap Surveillance System: A Framework for Mosquito Density Prediction. 2016. Available online: https://www.proquest.com/scholarly-journals/aedes-dengue-vector-ovitrap-surveillance-system/docview/1824200610/se-2 (accessed on 10 August 2023).
- Mohiddin, A.; Jaal, Z.; Lasim, A.M.; Dieng, H.; Zuharah, W.F. Assessing dengue outbreak areas using vector surveillance in north east district, Penang Island, Malaysia. Asian Pac. J. Trop. Dis. 2015, 5, 869–876. [Google Scholar] [CrossRef]
- Norzahira, R.; Hidayatulfathi, O.; Wong, H.M.; Cheryl, A.; Firdaus, R.; Chew, H.S.; Lim, K.; Sing, K.; Mahathavan, M.; Nazni, W.; et al. Ovitrap surveillance of the dengue vectors, Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus Skuse in selected areas in Bentong, Pahang, Malaysia. Trop. Biomed. 2011, 28, 48–54. Available online: http://www.ncbi.nlm.nih.gov/pubmed/21602768 (accessed on 21 August 2023). [PubMed]
- Mohd Arif, A.K.; Nazni, W.A.; Lee, H.L. Ovitrap Surveillance of Aedes aegypti and Aedes albopictus in Dengue Endemic Areas in Keramat and Shah Alam, Selangor in 2016. IIUM Med. J. Malays. 2020, 17, 3. [Google Scholar] [CrossRef]
- Chan, T.C.; Hsu, Y.F.; Huang, S.C.; Chen, R.C. Rapidly containing the first indigenous outbreak of chikungunya in taiwan—Lessons learned. Trop. Med. Infect. Dis. 2021, 6, 165. [Google Scholar] [CrossRef]
- Wu, H.H.; Wang, C.Y.; Teng, H.J.; Lin, C.; Lu, L.C.; Jian, S.W.; Chang, N.; Wen, T.; Wu, J.; Liu, D.; et al. A dengue vector surveillance by humrn population-stratified ovitrap survey for aedes (Diptera: Culicidae) adult and egollections in high dengue-risk areas of Taiwan. J. Med. Entomol. 2013, 50, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Schultes, O.L.; Morais, M.H.F.; da Cunha, M.C.M.; Sobral, A.; Caiaffa, W.T. Spatial analysis of dengue incidence and Aedes aegypti ovitrap surveillance in Belo Horizonte, Brazil. Trop. Med. Int. Health 2021, 26, 237–255. [Google Scholar] [CrossRef] [PubMed]
- Noleto, J.V.O.; do Nascimento Moraes, H.L.M.; de Moura Lima, T.; Rodrigues, J.G.M.; Cardoso, D.T.; Lima, K.C.; de Souza Melo, R.; Miranda, G. Use of ovitraps for the seasonal and spatial monitoring of Aedes spp. In an area endemic for arboviruses in Northeast Brazil. J. Infect. Dev. Ctries. 2020, 14, 387–393. [Google Scholar] [CrossRef]
- Nirmani, M.D.; Perera, K.L.N.S.; Galhena, G.H. Use of ovitrap surveillance to assess dengue outbreak risks in selected dengue endemic areas in Sri Lanka. Sri Lankan J. Biol. 2019, 4, 32–46. [Google Scholar] [CrossRef]
- Selvarajoo, S.; Liew, J.W.K.; Chua, T.H.; Tan, W.; Zaki, R.A.; Ngui, R.; Sulaiman, W.; Ong, P.; Vythilingam, I. Dengue surveillance using gravid oviposition sticky (GOS) trap and dengue non-structural 1 (NS1) antigen test in Malaysia: Randomized controlled trial. Sci. Rep. 2022, 12, 571. [Google Scholar] [CrossRef]
- Liew, J.W.K.; Selvarajoo, S.; Phang, W.K.; Mah Hassan, M.; Redzuan, M.S.; Selva Kumar, S.; de Silva, J.; Lau, Y.; Vythilingam, I. Improved Aedes/dengue field surveillance using Gravid Oviposition Sticky trap and dengue NS1 tests: Epidemiological, entomological outcomes and community acceptance. Acta Trop. 2021, 216, 105829. [Google Scholar] [CrossRef]
- Tan, W.; Liew, J.W.K.; Selvarajoo, S.; Lim, X.Y.; Foo, C.J.; Refai, W.F.; Robson, N.; Othman, S.; Hadi, H.; Mydin, F.; et al. Inapparent dengue in a community living among dengue-positive Aedes mosquitoes and in a hospital in Klang Valley, Malaysia. Acta Trop. 2020, 204, 105330. [Google Scholar] [CrossRef] [PubMed]
- Schwab, S.R.; Stone, C.M.; Fonseca, D.M.; Fefferman, N.H. The importance of being urgent: The impact of surveillance target and scale on mosquito-borne disease control. Epidemics 2018, 23, 55–63. [Google Scholar] [CrossRef]
- Rohani, A.; Zamree, I.; Joseph, R.T.; Lee, H.L. Persistency of transovarial dengue virus in Aedes aegypti (Linn.). Southeast Asian J. Trop. Med. Public Health 2008, 39, 813–816. [Google Scholar] [PubMed]
- Adams, B.; Boots, M. How important is vertical transmission in mosquitoes for the persistence of dengue? Insights from a mathematical model. Epidemics 2010, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Thongrungkiat, S.; Maneekan, P.; Wasinpiyamongkol, L.; Prummongkol, S. Prospective field study of transovarial dengue-virus transmission by two different forms of Aedes aegypti in an urban area of Bangkok, Thailand. J. Vector Ecol. 2011, 36, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Dash, P.K.; Singh, A.K.; Sharma, S.; Gopalan, N.; Rao, P.V.L.; Parida, M.; Reiter, P. Evidence of Experimental Vertical Transmission of Emerging Novel ECSA Genotype of Chikungunya Virus in Aedes Aegypti. PLoS Negl. Trop. Dis. 2014, 8, e2990. [Google Scholar] [CrossRef] [PubMed]
- Lanciotti, R.S.; Calisher, C.H.; Gubler, D.J.; Chang, G.J.; Vorndamt, A.V. Rapid Detection and Typing of Dengue Viruses from Clinical Samples by Using Reverse Transcriptase-Polymerase Chain Reaction. J. Clin. Microbiol. 1992, 30, 545–551. [Google Scholar] [CrossRef]
- Abraham, P.R.; Bharathy, R.; Pradeep Kumar, N.; Kumar, A. Dengue NS1 antigen kit shows high sensitivity for detection of recombinant dengue virus-2 NS1 antigen spiked with Aedes Aegypti mosquitoes. Sci. Rep. 2021, 11, 23699. [Google Scholar] [CrossRef]
- Abraham, P.R.; Sankari, T.; Kumar, N.P.; Kumar, A. Detection of recombinant dengue virus 2 NS1 protein in Aedes Aegypti mosquitoes using commercial Dengue NS1 ELISA kit. J. Vector Borne Dis. 2022, 59, 98–101. [Google Scholar] [CrossRef]
- Sylvestre, G.; Gandini, M.; De Araújo, J.M.; Kubelka, C.F.; Lourenço-De-Oliveira, R.; MacIel-De-Freitas, R. Preliminary evaluation on the efficiency of the kit Platelia Dengue NS1 Ag-ELISA to detect dengue virus in dried Aedes Aegypti: A potential tool to improve dengue surveillance. Parasites Vectors 2014, 7, 155. [Google Scholar] [CrossRef]
- Heath, C.J.; Grossi-Soyster, E.N.; Ndenga, B.A.; Mutuku, F.M.; Sahoo, M.K.; Ngugi, H.N.; Mbakaya, J.; Siema, P.; Kitron, U.; Zahiri, N.; et al. Evidence of transovarial transmission of chikungunya and dengue viruses in fieldcaught mosquitoes in Kenya. PLoS Negl. Trop. Dis. 2020, 14, e0008362. [Google Scholar] [CrossRef] [PubMed]
- Tingström, O.; Wesula Lwande, O.; Näslund, J.; Spyckerelle, I.; Engdahl, C.; Von Schoenberg, P.; Ahlm, C.; Evander, M.; Bicht, G. Detection of Sindbis and Inkoo Virus RNA in Genetically Typed Mosquito Larvae Sampled in Northern Sweden. Vector Borne Zoonotic Dis. 2016, 16, 461–467. [Google Scholar] [CrossRef]
- Maniero, V.C.; Rangel, P.S.C.; Coelho, L.M.C.; Silva, C.S.B.; Aguiar, R.S.; Lamas, C.C.; Cardozo, S. Identification of Zika virus in immature phases of Aedes Aegypti and Aedes Albopictus: A surveillance strategy for outbreak anticipation. Braz. J. Med. Biol. Res. 2019, 52, e8339. [Google Scholar] [CrossRef] [PubMed]
- Sambado, S.; Salomon, J.; Crews, A.; Swei, A. Mixed transmission modes promote persistence of an emerging tick-borne pathogen. Ecosphere 2020, 11, e03171. [Google Scholar] [CrossRef]
- Lien, J.C.; Lu, L.C.; Shroyer, D.A.; Baker, R.H.; Rosen, L. Experimental Vertical Transmission of Japanese Encephalitis Virus by Culex Tritaeniorhynchus and other Mosquitoes. Am. J. Trop. Med. Hyg. 1989, 40, 548–556. [Google Scholar] [CrossRef]
- Flores, F.S.; Diaz, L.A.; Batallán, G.P.; Almirón, W.R.; Contigiani, M.S. Vertical Transmission of St. Louis Encephalitis Virus in Culex quinquefasciatus (Diptera: Culicidae) in Córdoba, Argentina. Vector Borne Zoonotic Dis. 2010, 10, 999–1002. [Google Scholar] [CrossRef]
- Murillo, D.; Murillo, A.; Lee, S. The Role of Vertical Transmission in the Control of Dengue Fever. Int. J. Environ. Res. Public Health 2019, 16, 803. [Google Scholar] [CrossRef]
Population | Aedes Sp. Larvae |
---|---|
Intervention/Exposure | Any methods used for virus detection, such as PCR, ELISA, or immunofluorescence assay |
Control | - |
Outcome | DENV infection |
No | Author (Year) | Place of Study | Method of Assay | Positivity Rate (Positive Pools/Total Pools ×100) | DENV | Source of Infection | Pool/Individual | Larval Age | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Watts DM., et al. (1985) | Thailand | DFA | 0 | NA | Nature | Pool of 25 or less | 3rd and 4th instar | [13] |
2 | Castro MG. et al. (2004) | Brazil | Nested RT-PCR from cell culture | 32.4% (n = 12) | 2 | Lab | 4 to 23/pool | 4th instar | [14] |
3 | Medeiros AS., et al. (2018) | Brazil | Nested RT-PCR | 8.7% (n = 4) | 1, 2, 4 | Nature | Pool of 40 or less | NA | [15] |
4 | Khan J., et al. (2017) | Pakistan | Nested RT-PCR | 20% (n = 2) | 2, 3 | Nature | 30/pool | NA | [16] |
5 | Lee HL., et al. (2005) | Malaysia | PAP staining from cell culture | 2% (n = 3) | NA | Nature | 25/pool | 3rd instar | [17] |
6 | Teixeira AF., et al. (2021) | Brazil | qRT-PCR | 13.3% (n = 4) | NA | Nature | 15/pool | NA | [18] |
7 | Da Costa CF., et al.(2017) | Amazona (Brazil) | qRT-PCR | 47.9% (n = 70) | 1, 2, 4 | Nature | Pool of 30 or less | 3rd and 4th instar | [19] |
8 | Andrade, EHP., et al. (2022) | Brazil | qRT-PCR | 32.1% (n = 9) | 1, 2, 3, 4 | Nature | Pool of 10 or less | 3rd and 4th instar | [20] |
9 | Mulyatno KC., et al. (2012) | Indonesia | RT- PCR | 10.7 (n = 3) | 1, 2 | Nature | 20/pool | NA | [21] |
10 | Wijesinghe (2021) | Sri Lanka | RT-PCR | 9.8% (n = 12) | 1, 2, 3, 4 | Nature | Pool of 6 to 70 | 3rd and 4th instar | [22] |
11 | Vilela AP., et al. (2006) | Brazil | RT-PCR | 0.9% (n = 1) | 3 | Nature | Pool of 50 or less | NA | [23] |
12 | Cecilio SG., et al. (2015) | Brazil | RT-PCR | 7.4% (n = 4) | NA | Nature | Pool of 40 or less | 4th instar | [24] |
13 | Pinheiro VCS., et al. (2005) | Brazil | RT-PCR | 11.86% (n = 7) | 3 | Nature | 4 to 49/pool | NA | [25] |
14 | Teo CHJ, et al. (2017) | Malaysia | RT-PCR | 25% (n = 4) | 2, 3, 4 | Nature | Individual | NA | [26] |
15 | Rohani A, et al. (2014) | Malaysia | RT-PCR | 5 pools | 2, 3 | Nature | 15 to 20/pool | NA | [27] |
16 | Sithiprasasna R., et al. (1994)) | Thailand | ELISA | DEN 1 = 63% (n = 29); DEN 2 = 51% (n = 21); DEN 3 = 69% (n = 24); DEN 4 = 83% (n = 35) | 1, 2, 3, 4 | Lab | 1 to 100/pool | 4th instar | [28] |
17 | Gutierrez-Bugallo G., et al. (2018) | Cuba | RT-PCR | 33.3% (n = 3) | 3 | Nature | 30/pool | NA | [29] |
18 | Granados JSM., et al. (2022) | Colombia | RT-PCR | 31.25% (n = 5) | 1, 2, 3 | Nature | 20/pool | NA | [30] |
19 | Sanchez-Vargas I. et al. (2018) | Mexico | IFA and RT-N-PCR from cell culture | E2-7d PCR/IFA = 26%/19.3%; E2-10d PCR/IFA = 55%/55%; E2-21d PCR/IFA = 97.3%/68.6% | 2 | Lab | 20/pool | 4th instar | [31] |
20 | Gutierrez-Bugallo G., et al. (2017) | Cuba | RT-PCR | 33.3% (n = 37) | 1, 2, 3, 4 | Nature | 30 to 55/pool | NA | [32] |
21 | Rohani A., et al. (2007) | Malaysia | RT-PCR and PAP staining from cell culture | RT-PCR = 5% (n = 19); PAP staining from cell culture = 8.7% (n = 33) | 1, 3 | Nature | 10/pool | 3rd and 4th instar | [33] |
22 | Pessanha JEM. et al. (2011) | Brazil | RT-PCR | Individual = 37.5% (n = 110); pool = 37.3% (n = 53) | 1, 2, 3 | Nature | Individual and 2 to 10/pool | NA | [34] |
23 | Johari NA., et al. (2019) | Malaysia | Nested RT-PCR | 2.47% (n = 9) | 1, 2, 3, 4 | Nature | Individual | NA | [35] |
24 | Sivan A., et al. (2016) | India | RT-PCR | 0 | 3 | Nature | 20/pool | NA | [39] |
25 | Gunther J., et al. (2007) | Mexico | RT-PCR | 0 | 2, 3, 4 | Nature | 20/pool | NA | [40] |
26 | Zeidler JD., et al. (2007) | Brazil | RT-PCR | 0 | NA | Nature | Pool of 30 or less | 3rd and 4th instar | [41] |
No | Author (Year) | Place of Study | Method of Assay | Positivity Rate (Positive Pools/Total Pools ×100) | DENV | Source of Infection | Pool/Individual | Larval Age | Ref. |
---|---|---|---|---|---|---|---|---|---|
1 | Castro MG. et al. (2004) | Brazil | Nested RT-PCR from cell culture | 46.2% (n = 18) | 2 | Lab | 4 to 23/pool | 4th instar | [14] |
2 | Medeiros AS., et al. (2018) | Brazil | Nested RT-PCR | 0% (n = 0) | 1, 2, 4 | Nature | Pool of 40 or less | NA | [15] |
3 | Khan J., et al. (2017) | Pakistan | Nested RT-PCR | 14.29% (n = 1) | 2, 3 | Nature | 30/pool | NA | [16] |
4 | Lee HL., et al. (2005) | Malaysia | PAP staining from cell culture | 0.9% (n = 7) | NA | Nature | 25/pool | 3rd instar | [17] |
5 | Wijesinghe (2021) | Sri Lanka | RT-PCR | 8.1% (n = 4) | 1, 2, 3, 4 | Nature | Pool of 6 to 70 | 3rd and 4th instar | [22] |
6 | Teo CHJ, et al. (2017) | Malaysia | RT-PCR | 25.7% (n = 73); | 2, 3, 4 | Nature | Individual | NA | [26] |
7 | Rohani A, et al. (2014) | Malaysia | RT-PCR | 18 pools | 2, 3, | Nature | 15 to 20/pool | NA | [27] |
8 | Rohani A., et al. (2007) | Malaysia | RT-PCR and PAP staining from cell culture | RT-PCR = 1.1% (n = 6); PAP staining from cell culture = 3.1% (n = 17) | 1, 3 | Nature | 10/pool | 3rd and 4th instar | [33] |
9 | Pessanha JEM. et al. (2007) | Brazil | RT-PCR | Individual = 50% (n = 4); pool = 50% (n = 1) | 1, 2, 3 | Nature | Individual and 2 to 10/pool | NA | [34] |
10 | Johari NA., et al. (2019) | Malaysia | Nested RT-PCR | 2.05% (n = 21) | 1, 2, 3, 4 | Nature | Individual | NA | [35] |
11 | Piedra LA., et al. (2022) | Cuba | RT-PCR | 26.67% (n = 4) | 3 | Nature | 30/pool | NA | [36] |
12 | De Figueiredo ML., et al. (2010) | Brazil | RT-PCR | 11.5% (n = 3) | 1, 2, 3 | Nature | 10/pool | NA | [37] |
13 | Serufo JC., et al. (1993) | Brazil | IFA AND PCR | (n = 2) | 1 | Nature | Pool of 30 or less | NA | [38] |
14 | Sivan A., et al. (2016) | India | RT-PCR | 0 | 3 | Nature | 20/pool | NA | [39] |
Larval Index | Dengue Transmission Risk |
---|---|
BI < 5 | Low risk of dengue transmission |
BI ≥ 5 | Risk of transmission |
BI ≥ 10 | Risk of outbreak |
BI ≥ 20 | Risk of regional transmission |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rachmawati, Y.; Ekawardhani, S.; Fauziah, N.; Faridah, L.; Watanabe, K. Potential Way to Develop Dengue Virus Detection in Aedes Larvae as an Alternative for Dengue Active Surveillance: A Literature Review. Trop. Med. Infect. Dis. 2024, 9, 60. https://doi.org/10.3390/tropicalmed9030060
Rachmawati Y, Ekawardhani S, Fauziah N, Faridah L, Watanabe K. Potential Way to Develop Dengue Virus Detection in Aedes Larvae as an Alternative for Dengue Active Surveillance: A Literature Review. Tropical Medicine and Infectious Disease. 2024; 9(3):60. https://doi.org/10.3390/tropicalmed9030060
Chicago/Turabian StyleRachmawati, Yenny, Savira Ekawardhani, Nisa Fauziah, Lia Faridah, and Kozo Watanabe. 2024. "Potential Way to Develop Dengue Virus Detection in Aedes Larvae as an Alternative for Dengue Active Surveillance: A Literature Review" Tropical Medicine and Infectious Disease 9, no. 3: 60. https://doi.org/10.3390/tropicalmed9030060
APA StyleRachmawati, Y., Ekawardhani, S., Fauziah, N., Faridah, L., & Watanabe, K. (2024). Potential Way to Develop Dengue Virus Detection in Aedes Larvae as an Alternative for Dengue Active Surveillance: A Literature Review. Tropical Medicine and Infectious Disease, 9(3), 60. https://doi.org/10.3390/tropicalmed9030060