Occurrence of Free-Living Amoebae in Non-Human Primate Gut
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Culture and Morphological Analyses
2.3. Molecular Identification of Free-Living Amoeba DNA Sequencing
2.4. Assessment of Viability
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berrilli, F.; Di Cave, D.; Cavallero, S.; D’Amelio, S. Interactions between parasites and microbial communities in the human gut. Front. Cell. Infect. Microbiol. 2012, 2, 141. [Google Scholar] [CrossRef] [PubMed]
- Rastelli, M.; Cani, P.D.; Knauf, C. The Gut Microbiome Influences Host Endocrine Functions. Endocr. Rev. 2019, 40, 1271–1284. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.M.; Segata, N. Multiple levels of the unknown in microbiome research. BMC Biol. 2019, 17, 48. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.; Mitchell, A.L.; Boland, M.; Forster, S.C.; Gloor, G.B.; Tarkowska, A.; Lawley, T.D.; Finn, R.D. A new genomic blueprint of the human gut microbiota. Nature 2019, 568, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Hooks, K.B.; O’Malley, M.A. Contrasting Strategies: Human Eukaryotic Versus Bacterial Microbiome Research. J. Eukaryot. Microbiol. 2020, 67, 279–295. [Google Scholar] [CrossRef] [PubMed]
- Lind, A.L.; Pollard, K.S. Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing. Microbiome 2021, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- Breitwieser, F.P.; Lu, J.; Salzberg, S.L. A review of methods and databases for metagenomic classification and assembly. Brief. Bioinform. 2019, 20, 1125–1136. [Google Scholar] [CrossRef]
- Manara, S.; Asnicar, F.; Beghini, F.; Bazzani, D.; Cumbo, F.; Zolfo, M.; Nigro, E.; Karcher, N.; Manghi, P.; Metzger, M.I.; et al. Microbial genomes from non-human primate gut metagenomes expand the primate-associated bacterial tree of life with over 1000 novel species. Genome Biol. 2019, 20, 299. [Google Scholar] [CrossRef]
- Ashford, R.W.; Reid, G.D.F.; Butynski, T.M. The intestinal faunas of man and mountain gorillas in a shared habitat. Ann. Trop. Med. Parasitol. 1990, 84, 337–340. [Google Scholar] [CrossRef]
- Muriuki, S.M.K.; Murugu, R.K.; Munene, E.; Karere, G.M.; Chai, D.C. Some gastro-intestinal parasites of zoonotic (public health) importance commonly observed in old world non-human primates in Kenya. Acta Trop. 1998, 71, 73–82. [Google Scholar] [CrossRef]
- Gómez, J.M.; Nunn, C.L.; Verdú, M. Centrality in primate-parasite networks reveals the potential for the transmission of emerging infectious diseases to humans. Proc. Natl. Acad. Sci. USA 2013, 110, 7738–7741. [Google Scholar] [CrossRef]
- Gogarten, J.F.; Calvignac-Spencer, S.; Nunn, C.L.; Ulrich, M.; Saiepour, N.; Nielsen, H.V.; Deschner, T.; Fichtel, C.; Kappeler, P.M.; Knauf, S.; et al. Metabarcoding of eukaryotic parasite communities describes diverse parasite assemblages spanning the primate phylogeny. Mol. Ecol. Resour. 2020, 20, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.P.; Guirges, S.Y. Acute amoebic dysentery due to free-living amoebae treated with methronidazole. J. Trop. Med. Hyg. 1979, 82, 134–136. [Google Scholar] [PubMed]
- De Moura, H.; Salazar, H.C.; Fernandes, O.; Lisboa, D.C.; de Carvalho, F.G. Free-living amoeba in the human intestine. Evidences of parasitism. Rev. Inst. Med. Trop. Sao Paulo 1985, 27, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, R.S. Free-living amoebae recovered from human stool samples in Strongyloides agar culture. J. Clin. Microbiol. 2014, 52, 699–700. [Google Scholar] [CrossRef] [PubMed]
- Chavatte, N.; Lambrecht, E.; Van Damme, I.; Sabbe, K.; Houf, K. Free-living protozoa in the gastrointestinal tract and feces of pigs: Exploration of an unknown world and towards a protocol for the recovery of free-living protozoa. Vet. Parasitol. 2016, 225, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Mulec, J.; Dietersdorfer, E.; Ustunturk-Onan, M.; Walochnik, J. Acanthamoeba and other free-living amoebae in bat guano, an extreme habitat. Parasitol. Res. 2016, 115, 1375–1383. [Google Scholar] [CrossRef]
- Angelici, M.C.; Walochnik, J.; Calderaro, A.; Saxinger, L.; Dacks, J.B. Free-living amoebae and other neglected protistan pathogens: Health emergency signals? Eur. J. Protistol. 2021, 77, 125760. [Google Scholar] [CrossRef]
- Visvesvara, G.S.; Moura, H.; Schuster, F.L. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol. Med. Microbiol. 2007, 50, 1–26. [Google Scholar] [CrossRef]
- Carlesso, A.M.; Simonetti, A.B.; Artuso, G.L.; Rott, M.B. Isolation and identification of potentially pathogenic free-living amoebae in samples from environments in a public hospital in the city of Porto Alegre, Rio Grande do Sul. Rev. Soc. Bras. Med. Trop. 2007, 40, 316–320. [Google Scholar] [CrossRef]
- Schuster, F.L.; Visvesvara, G.S. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int. J. Parasitol. 2004, 34, 1001–1027. [Google Scholar] [CrossRef]
- Pimentel, L.A.; Dantas, A.F.; Uzal, F.; Riet-Correa, F. Meningoencephalitis caused by Naegleria fowleri in cattle of northeast Brazil. Res. Vet. Sci. 2012, 93, 811–812. [Google Scholar] [CrossRef] [PubMed]
- Henker, L.C.; Lorenzett, M.P.; dos Santos, D.L.; Virginio, V.G.; Driemeier, D.; Rott, M.B.; Pavarini, S.P. Naegleria fowleri-associated meningoencephalitis in a cow in Southern Brazil-first molecular detection of N. fowleri in Brazil. Parasitol. Res. 2021, 120, 2873–2879. [Google Scholar] [CrossRef]
- Madrigal Sesma, M.J.; Santillana Lopez, I. Isolation of free-living amoebas from samples of respiratory origin. Rev. Sanid. Hig. Publica 1989, 63, 63–72. [Google Scholar] [PubMed]
- Rivera, F.; Medina, F.; Ramirez, P.; Alcocer, J.; Vilaclara, G.; Robles, E. Pathogenic and free-living protozoa cultured from the nasopharyngeal and oral regions of dental patients. Environ. Res. 1984, 33, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.C.; Oliveira, M.S.; Lobo, R.D.; Higashino, H.R.; Costa, S.F.; van der Heijden, I.M.; Giudice, M.C.; Silva, A.R.; Levin, A.S. Acanthamoeba spp. in urine of critically ill patients. Emerg. Infect. Dis. 2009, 15, 1144–1146. [Google Scholar] [CrossRef] [PubMed]
- Parija, S.C.; Dinoop, K.; Venugopal, H. Management of granulomatous amebic encephalitis: Laboratory diagnosis and treatment. Trop. Parasitol. 2015, 5, 23–28. [Google Scholar] [CrossRef]
- Arab-Mazar, Z.; Niyyati, M.; Lasjerdi, Z.; Spotin, A.; Alavi Darzam, I.; Gachkar, L. Isolation, identification, and phylogenetic analysis of potentially pathogenic free-living amoebae isolated from nasal and oral mucosa of HIV/AIDS patients in Iran. Parasitol. Res. 2019, 118, 3061–3066. [Google Scholar] [CrossRef]
- Kot, K.; Lanocha-Arendarczyk, N.; Kosik-Bogacka, D. Immunopathogenicity of Acanthamoeba spp. in the Brain and Lungs. Int. J. Mol. Sci. 2021, 22, 1261. [Google Scholar] [CrossRef]
- Van Der Henst, C.; Vanhove, A.S.; Dorr, D.; Stutzmann, S.; Stoudmann, C.; Clerc, S.; Scrignari, T.; MacLachlan, C.; Knott, G.; Blokesch, M. Molecular insights into Vibrio cholerae’s intra-amoebal host-pathogen interactions. Nat. Commun. 2018, 9, 3460. [Google Scholar] [CrossRef]
- Goni, P.; Fernandez, M.T.; Rubio, E. Identifying endosymbiont bacteria associated with free-living amoebae. Environ. Microbiol. 2014, 16, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Barker, J.; Brown, M.R. Trojan horses of the microbial world: Protozoa and the survival of bacterial pathogens in the environment. Microbiology 1994, 140 Pt 6, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Balczun, C.; Scheid, P.L. Free-Living Amoebae as Hosts for and Vectors of Intracellular Microorganisms with Public Health Significance. Viruses 2017, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Coulon, C.; Collignon, A.; McDonnell, G.; Thomas, V. Resistance of Acanthamoeba cysts to disinfection treatments used in health care settings. J. Clin. Microbiol. 2010, 48, 2689–2697. [Google Scholar] [CrossRef] [PubMed]
- Dey, R.; Rieger, A.M.; Stephens, C.; Ashbolt, N.J. Interactions of Pseudomonas aeruginosa with Acanthamoeba polyphaga Observed by Imaging Flow Cytometry. Cytom. A 2019, 95, 555–564. [Google Scholar] [CrossRef]
- Rowbotham, T.J. Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J. Clin. Pathol. 1980, 33, 1179–1183. [Google Scholar] [CrossRef]
- Dey, R.; Rieger, A.; Banting, G.; Ashbolt, N.J. Role of amoebae for survival and recovery of ‘non-culturable’ Helicobacter pylori cells in aquatic environments. FEMS Microbiol. Ecol. 2020, 96, fiaa182. [Google Scholar]
- De Carli, G.A. Diagnóstico Laboratorial das Parasitoses Humanas—Métodos e Técnicas, 2nd ed.; Atheneu: São Paulo, Brazil, 2007. [Google Scholar]
- Liu, W. A simplified cytologic staining technic. Am. J. Clin. Pathol. 1970, 54, 767–768. [Google Scholar] [CrossRef]
- Gatti, S.; Rama, P.; Matuska, S.; Berrilli, F.; Cavallero, A.; Carletti, S.; Bruno, A.; Maserati, R.; Di Cave, D. Isolation and genotyping of Acanthamoeba strains from corneal infections in Italy. J. Med. Microbiol. 2010, 59, 1324–1330. [Google Scholar] [CrossRef]
- Nazar, M.; Haghighi, A.; Taghipour, N.; Ortega-Rivas, A.; Tahvildar-Biderouni, F.; Mojarad, E.N.; Eftekhar, M. Molecular identification of Hartmannella vermiformis and Vannella persistens from man-made recreational water environments, Tehran, Iran. Parasitol. Res. 2012, 111, 835–839. [Google Scholar] [CrossRef]
- Siddiqui, R.; Khan, N.A. Biology and pathogenesis of Acanthamoeba. Parasit. Vectors 2012, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cheng, X. Various brain-eating amoebae: The protozoa, the pathogenesis, and the disease. Front. Med. 2021, 15, 842–866. [Google Scholar] [CrossRef] [PubMed]
- Westmoreland, S.V.; Rosen, J.; MacKey, J.; Romsey, C.; Xia, D.-L.; Visvesvera, G.S.; Mansfield, K.G. Necrotizing meningoencephalitis and pneumonitis in a simian immunodeficiency virus-infected rhesus macaque due to Acanthamoeba. Vet. Pathol. 2004, 41, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Visvesvara, G.S.; Martinez, A.J.; Schuster, F.L.; Leitch, G.J.; Wallace, S.V.; Sawyer, T.K.; Anderson, M. Leptomyxid ameba, a new agent of amebic meningoencephalitis in humans and animals. J. Clin. Microbiol. 1990, 28, 2750–2756. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.P.; Oosterhuis, J.E.; Kennedy, S.; Benirschke, K. Pneumonia and meningoencephalitis due to amoeba in a lowland gorilla. J. Zoo. Anim. Med. 1976, 17, 87–91. [Google Scholar] [CrossRef]
- Canfield, P.J.; Vogelnest, L.; Cunningham, M.I.; Visvesvara, G.S. Amoebic meningoencephalitis caused by Balamuthia mandrillaris in an orangutan. Aust. Vet. J. 1997, 75, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Rideout, B.A.; Gardiner, C.H.; Stalis, I.H.; Zuba, J.R.; Hadfield, T.; Visvesvara, G.S. Fatal infections with Balamuthia mandrillaris (a free-living amoeba) in gorillas and other Old World primates. Vet. Pathol. 1997, 34, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Vellosa, S.A.G.; Mangini, A.C.S.; Nunes, L.R.; Schlodtmann, A.G. Frequência de amebas de vida livre em fezes de indivíduos de uma creche da cidade de Säo Paulo / Frequency free-living amebas in the feces of persons from a nursery in São Paulo city. Rev. Inst. Adolfo Lutz 1984, 44, 61–65. [Google Scholar]
- Zaman, V. Acanthamoeba in human faeces from Karachi. Ann. Trop. Med. Parasitol. 1999, 93, 189–191. [Google Scholar] [CrossRef]
- Michel, R.; Schmid, E.N.; Böker, T.; Hager, D.G.; Müller, K.-D.; Hoffmann, R.; Seitz, H.M. Vannella sp. harboring Microsporidia-like organisms isolated from the contact lens and inflamed eye of a female keratitis patient. Parasitol. Res. 2000, 86, 514–520. [Google Scholar] [CrossRef]
- Montalbano Di Filippo, M.; Novelletto, A.; Di Cave, D.; Berrilli, F. Identification and phylogenetic position of Naegleria spp. from geothermal springs in Italy. Exp. Parasitol. 2017, 183, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Esboei, B.R.; Fakhar, M.; Saberi, R.; Barati, M.; Moslemi, M.; Hassannia, H.; Dadimoghadam, Y.; Jalallou, N. Genotyping and phylogenic study of Acanthamoeba isolates from human keratitis and swimming pool water samples in Iran. Parasite Epidemiol. Control 2020, 11, e00164. [Google Scholar] [CrossRef] [PubMed]
- Fuerst, P.A.; Booton, G.C. Species, Sequence Types and Alleles: Dissecting Genetic Variation in Acanthamoeba. Pathogens 2020, 9, 534. [Google Scholar] [CrossRef] [PubMed]
- Memari, F.; Niyyati, M.; Lorenzo-Morales, J.; Jonaydi, Z. Isolation and molecular characterization of Acanthamoeba strains isolated from the oral cavity of immunosuppressed individuals in Tehran, Iran. Acta Parasitol. 2016, 61, 451–455. [Google Scholar] [CrossRef]
- Niyyati, M.; Arab-Mazar, Z.; Lasjerdi, Z.; Lorenzo-Morales, J.; Espotin, A.; Yadegarynia, D.; Gachkar, L.; Roodsari, S.R. Molecular characterization of Acanthamoeba strains isolated from the oral cavity of hemodialysis patients in Iran. Parasitol. Res. 2017, 116, 2965–2969. [Google Scholar] [CrossRef]
- Rothschild, D.; Weissbrod, O.; Barkan, E.; Kurilshikov, A.; Korem, T.; Zeevi, D.; Costea, P.I.; Godneva, A.; Kalka, I.N.; Bar, N.; et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018, 555, 210–215. [Google Scholar] [CrossRef]
- Martin, M.E.; Bhatnagar, S.; George, M.D.; Paster, B.J.; Canfield, D.R.; Eisen, J.A. The Impact of Helicobacter pylori Infection on the Gastric Microbiota of the Rhesus Macaque. PLoS ONE 2013, 8, e76375. [Google Scholar] [CrossRef]
- Lam, C.; He, L.; Marciano-Cabral, F. The Effect of Different Environmental Conditions on the Viability of Naegleria fowleri Amoebae. J. Eukaryot. Microbiol. 2019, 66, 752–756. [Google Scholar] [CrossRef]
- Sriram, R.; Shoff, M.; Booton, G.; Fuerst, P.; Visvesvara, G.S. Survival of Acanthamoeba cysts after desiccation for more than 20 years. J. Clin. Microbiol. 2008, 46, 4045–4048. [Google Scholar] [CrossRef]
- Ansari, S.; Yamaoka, Y. Survival of Helicobacter pylori in gastric acidic territory. Helicobacter 2017, 22, e12386. [Google Scholar] [CrossRef]
- Aqeel, Y.; Siddiqui, R.; Iftikhar, H.; Khan, N.A. The effect of different environmental conditions on the encystation of Acanthamoeba castellanii belonging to the T4 genotype. Exp. Parasitol. 2013, 135, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Michel, R.; Rohl, R.; Schneider, H. Isolation of free-living amoebae from nasal mucosa of healthy individuals. Zentralbl. Bakteriol. Mikrobiol. Hyg. 1982, 176, 155–159. [Google Scholar]
- Lares-Jiménez, L.F.; Borquez-Román, M.A.; Alfaro-Sifuentes, R.; Meza-Montenegro, M.M.; Casillas-Hernández, R.; Lares-Villa, F. Detection of serum antibodies in children and adolescents against Balamuthia mandrillaris, Naegleria fowleri and Acanthamoeba T4. Exp. Parasitol. 2018, 189, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, H.; He, Y.; McCulley, J.P.; Ma, D.; Stewart, G.L.; Via, M.B.; Haehling, E.; Niederkorn, J.Y. Successful immunization against Acanthamoeba keratitis in a pig model. Cornea 1995, 14, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Leher, H.; Zaragoza, F.; Taherzadeh, S.; Alizadeh, H.; Niederkorn, J.Y. Monoclonal IgA antibodies protect against Acanthamoeba keratitis. Exp. Eye Res. 1999, 69, 75–84. [Google Scholar] [CrossRef]
- Garate, M.; Alizadeh, H.; Neelam, S.; Niederkorn, J.Y.; Panjwani, N. Oral immunization with Acanthamoeba castellanii mannose-binding protein ameliorates amoebic keratitis. Infect. Immun. 2006, 74, 7032–7034. [Google Scholar] [CrossRef]
- Kollars, T.M., Jr.; Wilhelm, W.E. The Occurrence of Antibodies to Naegleria Species in Wild Mammals. J. Parasitol. 1996, 82, 73–77. [Google Scholar] [CrossRef]
- Pietrzak, B.; Tomela, K.; Olejnik-Schmidt, A.; Mackiewicz, A.; Schmidt, M. Secretory IgA in Intestinal Mucosal Secretions as an Adaptive Barrier against Microbial Cells. Int. J. Mol. Sci. 2020, 21, 9254. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, I.R.; de Lima, C.S.; dos Reis, R.B.; Pinto, A.C.A.; Pissinatti, T.; Kugelmeier, T.; Neto, S.F.d.C.; da Silva, F.A.; Santos, H.L.C. Occurrence of Free-Living Amoebae in Non-Human Primate Gut. Trop. Med. Infect. Dis. 2024, 9, 108. https://doi.org/10.3390/tropicalmed9050108
Cardoso IR, de Lima CS, dos Reis RB, Pinto ACA, Pissinatti T, Kugelmeier T, Neto SFdC, da Silva FA, Santos HLC. Occurrence of Free-Living Amoebae in Non-Human Primate Gut. Tropical Medicine and Infectious Disease. 2024; 9(5):108. https://doi.org/10.3390/tropicalmed9050108
Chicago/Turabian StyleCardoso, Igor Rodrigues, Clezia Siqueira de Lima, Rhagner Bonono dos Reis, Ana Cristina Araujo Pinto, Thalita Pissinatti, Tatiana Kugelmeier, Sócrates Fraga da Costa Neto, Fabio Alves da Silva, and Helena Lúcia Carneiro Santos. 2024. "Occurrence of Free-Living Amoebae in Non-Human Primate Gut" Tropical Medicine and Infectious Disease 9, no. 5: 108. https://doi.org/10.3390/tropicalmed9050108
APA StyleCardoso, I. R., de Lima, C. S., dos Reis, R. B., Pinto, A. C. A., Pissinatti, T., Kugelmeier, T., Neto, S. F. d. C., da Silva, F. A., & Santos, H. L. C. (2024). Occurrence of Free-Living Amoebae in Non-Human Primate Gut. Tropical Medicine and Infectious Disease, 9(5), 108. https://doi.org/10.3390/tropicalmed9050108