16S rDNA Sequencing for Bacterial Identification in Preterm Infants with Suspected Early-Onset Neonatal Sepsis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Culture Samples
2.2. Blood Samples & Clinical Data
2.3. Statistical Analysis
2.4. DNA Extraction
2.5. Sanger Sequencing
3. Results
3.1. DNA Extraction
3.2. Sanger Sequencing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Popescu, C.R.; Cavanagh, M.M.M.; Tembo, B.; Chiume, M.; Lufesi, N.; Goldfarb, D.M.; Kissoon, N.; Lavoie, P.M. Neonatal sepsis in low-income countries: Epidemiology, diagnosis and prevention. Expert Rev. Anti-Infect. Ther. 2020, 18, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Shane, A.L.; Sánchez, P.J.; Stoll, B.J. Neonatal sepsis. Lancet 2017, 390, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Milton, R.; Gillespie, D.; Dyer, C.; Taiyari, K.; Carvalho, M.J.; Thomson, K.; Sands, K.; Portal, E.A.R.; Hood, K.; Ferreira, A.; et al. Neonatal sepsis and mortality in low-income and middle-income countries from a facility-based birth cohort: An international multisite prospective observational study. Lancet Glob. Health 2022, 10, e661–e672. [Google Scholar] [CrossRef] [PubMed]
- Sola, A.; Mir, R.; Lemus, L.; Fariña, D.; Ortiz, J.; Golombek, S. Suspected Neonatal Sepsis: Tenth Clinical Consensus of the Ibero-American Society of Neonatology (SIBEN). Neoreviews 2020, 21, e505–e534. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, S.; Puopolo, K.M. Clinical and Microbiologic Characteristics of Early-onset Sepsis among Very Low Birth Weight Infants. Pediatr. Infect. Dis. J. 2017, 36, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Bedford Russell, A.R.; Kumar, R. Early onset neonatal sepsis: Diagnostic dilemmas and practical management. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F350–F354. [Google Scholar] [CrossRef] [PubMed]
- Letouzey, M.; Lorthe, E.; Marchand-Martin, L.; Kayem, G.; Charlier, C.; Butin, M.; Mitha, A.; Kaminski, M.; Benhammou, V.; Ancel, P.-Y.; et al. Early Antibiotic Exposure and Adverse Outcomes in Very Preterm Infants at Low Risk of Early-Onset Sepsis: The EPIPAGE-2 Cohort Study. J. Pediatr. 2022, 243, 91–98.e4. [Google Scholar] [CrossRef]
- Fleiss, N.; Schwabenbauer, K.; Randis, T.M.; Polin, R.A. What’s new in the management of neonatal early-onset sepsis? Arch. Dis. Child. Fetal Neonatal Ed. 2023, 108, 10–14. [Google Scholar] [CrossRef]
- Meyers, J.M.; Tulloch, J.; Brown, K.; Caserta, M.T.; D’Angio, C.T. A Quality Improvement Initiative to Optimize Antibiotic Use in a Level 4 NICU. Pediatrics 2020, 146. [Google Scholar] [CrossRef]
- Oladokun, R.E.; Alao, M.A.; Ogunbosi, B.O.; Bello, O.E.; Ude, I.; Obasi, A.; Ayede, A.I.; Tongo, O.O. Trends in Identification, Etiology, and Resistance Profiles of Bacterial Isolates and Appropriate Therapy for Neonatal Sepsis in Low- and Middle-Income Countries: A Narrative Review. Curr. Pediatr. Rep. 2023, 11, 214–221. [Google Scholar] [CrossRef]
- Cantey, J.B.; Lee, J.H. Biomarkers for the Diagnosis of Neonatal Sepsis. Clin. Perinatol. 2021, 48, 215–227. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Yao, Y.; Yang, L.; Zhao, D.; Liu, S. The Accuracy of 16S rRNA Polymerase Chain Reaction for the Diagnosis of Neonatal Sepsis: A Meta-Analysis. BioMed Res. Int. 2021, 2021, 5550387. [Google Scholar] [CrossRef] [PubMed]
- Hassan, R.M.; El Enany, M.G.; Rizk, H.H. Evaluation of broad-range 16S rRNA PCR for the diagnosis of bloodstream infections: Two years of experience. J. Infect. Dev. Ctries. 2014, 8, 1252–1258. [Google Scholar] [CrossRef]
- Mishra, D.; Satpathy, G.; Wig, N.; Fazal, F.; Ahmed, N.H.; Panda, S.K. Evaluation of 16S rRNA broad range PCR assay for microbial detection in serum specimens in sepsis patients. J. Infect. Public Health 2020, 13, 998–1002. [Google Scholar] [CrossRef] [PubMed]
- Bertolo, A.; Valido, E.; Stoyanov, J. Optimized bacterial community characterization through full-length 16S rRNA gene sequencing utilizing MinION nanopore technology. BMC Microbiol. 2024, 24, 58. [Google Scholar] [CrossRef]
- Yang, M.-Q.; Wang, Z.-J.; Zhai, C.-B.; Chen, L.-Q. Research progress on the application of 16S rRNA gene sequencing and machine learning in forensic microbiome individual identification. Front. Microbiol. 2024, 15, 1360457. [Google Scholar] [CrossRef] [PubMed]
- Katiraei, S.; Anvar, Y.; Hoving, L.; Berbée, J.F.P.; Van Harmelen, V.; Willems Van Dijk, K. Evaluation of Full-Length versus V4-Region 16S rRNA Sequencing for Phylogenetic Analysis of Mouse Intestinal Microbiota after a Dietary Intervention. Curr. Microbiol. 2022, 79, 276. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glöckner, F.O. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- García-Gudiño, I.; Yllescas-Medrano, E.; Maida-Claros, R.; Soriano-Becerril, D.; Díaz, N.F.; García-López, G.; Molina-Hernández, A.; Flores-Herrera, O.; de la Serna, F.J.Z.-D.; Peralta-Pérez, M.d.R.; et al. Microbiological comparison of blood culture and amplification of 16S rDNA methods in combination with DGGE for detection of neonatal sepsis in blood samples. Eur. J. Pediatr. 2018, 177, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Reier-Nilsen, T.; Farstad, T.; Nakstad, B.; Lauvrak, V.; Steinbakk, M. Comparison of broad range 16S rDNA PCR and conventional blood culture for diagnosis of sepsis in the newborn: A case control study. BMC Pediatr. 2009, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Esparcia, O.; Montemayor, M.; Ginovart, G.; Pomar, V.; Soriano, G.; Pericas, R.; Gurgui, M.; Sulleiro, E.; Prats, G.; Navarro, F.; et al. Diagnostic accuracy of a 16S ribosomal DNA gene-based molecular technique (RT-PCR, microarray, and sequencing) for bacterial meningitis, early-onset neonatal sepsis, and spontaneous bacterial peritonitis. Diagn. Microbiol. Infect. Dis. 2011, 69, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Oeser, C.; Pond, M.; Butcher, P.; Bedford Russell, A.; Henneke, P.; Laing, K.; Planche, T.; Heath, P.T.; Harris, K. PCR for the detection of pathogens in neonatal early onset sepsis. PLoS ONE 2020, 15, e0226817. [Google Scholar] [CrossRef] [PubMed]
- Farrell, J.J.; Hujer, A.M.; Sampath, R.; Bonomo, R.A. Salvage microbiology: Opportunities and challenges in the detection of bacterial pathogens following initiation of antimicrobial treatment. Expert Rev. Mol. Diagn. 2015, 15, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Celik, I.H.; Hanna, M.; Canpolat, F.E.; Pammi, M. Diagnosis of neonatal sepsis: The past, present and future. Pediatr. Res. 2022, 91, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Sune, D.; Rydberg, H.; Augustinsson, Å.N.; Serrander, L.; Jungeström, M.B. Optimization of 16S rRNA gene analysis for use in the diagnostic clinical microbiology service. J. Microbiol. Methods 2020, 170, 105854. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, P.; Vougiouklakis, G. A Systematic Review of Human Infections by Pseudomonas mendocina. Trop. Med. Infect. Dis. 2020, 5, 71. [Google Scholar] [CrossRef] [PubMed]
- Bouallègue, O. Outbreak of Pseudomonas putida bacteraemia in a neonatal intensive care unit. J. Hosp. Infect. 2004, 57, 88–91. [Google Scholar] [CrossRef]
- Manickam, N.; Ghosh, A.; Jain, R.K.; Mayilraj, S. Description of a novel indole-oxidizing bacterium Pseudomonas indoloxydans sp. nov., isolated from a pesticide-contaminated site. Syst. Appl. Microbiol. 2008, 31, 101–107. [Google Scholar] [CrossRef]
- Wang, X.; Buhimschi, C.S.; Temoin, S.; Bhandari, V.; Han, Y.W.; Buhimschi, I.A. Comparative Microbial Analysis of Paired Amniotic Fluid and Cord Blood from Pregnancies Complicated by Preterm Birth and Early-Onset Neonatal Sepsis. PLoS ONE 2013, 8, e56131. [Google Scholar] [CrossRef] [PubMed]
- Oliphant, K.; Ali, M.; D’Souza, M.; Hughes, P.D.; Sulakhe, D.; Wang, A.Z.; Xie, B.; Yeasin, R.; Msall, M.E.; Andrews, B.; et al. Bacteroidota and Lachnospiraceae integration into the gut microbiome at key time points in early life are linked to infant neurodevelopment. Gut Microbes 2021, 13, 1997560. [Google Scholar] [CrossRef] [PubMed]
- Simner, P.J.; Miller, S.; Carroll, K.C. Understanding the Promises and Hurdles of Metagenomic Next-Generation Sequencing as a Diagnostic Tool for Infectious Diseases. Clin. Infect. Dis. 2018, 66, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Zautner, A.E.; Groß, U.; Emele, M.F.; Hagen, R.M.; Frickmann, H. More Pathogenicity or Just More Pathogens?—On the Interpretation Problem of Multiple Pathogen Detections with Diagnostic Multiplex Assays. Front. Microbiol. 2017, 8, 1210. [Google Scholar] [CrossRef] [PubMed]
- Jervis-Bardy, J.; Leong, L.E.X.; Marri, S.; Smith, R.J.; Choo, J.M.; Smith-Vaughan, H.C.; Nosworthy, E.; Morris, P.S.; O’Leary, S.; Rogers, G.B.; et al. Deriving accurate microbiota profiles from human samples with low bacterial content through post-sequencing processing of Illumina MiSeq data. Microbiome 2015, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Paul, F.; Otte, J.; Schmitt, I.; Dal Grande, F. Comparing Sanger sequencing and high-throughput metabarcoding for inferring photobiont diversity in lichens. Sci. Rep. 2018, 8, 8624. [Google Scholar] [CrossRef]
Category | Criteria |
---|---|
Risk Factors for Infection | One or more of the following criteria: -Prolonged rupture of ovulation membranes (PROM) > 18 h. -Chorioamnionitis: fever >38 °C, abdominal tenderness, and paraclinical evidence of systemic inflammatory response. -Preterm birth due to unexplained preterm labor. -In cases of multiple gestations, infection in the other baby. |
Early Neonatal Infection: Clinical Sepsis | One or more of the following criteria are present within the first 72 h of life: -Thermal instability: temperature ≤36 °C and/or ≥38 °C. -Heart rate instability with a tendency to tachycardia in the last 24 h: heart rate >180 bpm. -Altered consciousness and/or seizure. -Signs of hemodynamic instability: hypotension (two standard deviations below normal for age), capillary filling > 3 s, cold, mottled, or reticulated skin. -Signs of respiratory instability: tachypnea (respiratory rate > 60 bpm), apnea, increased requirement of inspired fraction of oxygen (FiO2) and/or increased requirements for invasive or non-invasive ventilatory support. -Gastrointestinal symptoms due to oral intolerance, abdominal distention. -Laboratory test results: blood count with leukocytes ≥ 22,000 and/or ≤ 4000, platelets ≤ 100,000; immature/total ratio ≥ 0.25; C-reactive protein > 10 mg/dL; and procalcitonin > 10 mg/dL. |
Proven early-onset sepsis | Blood cultures identify a microorganism. |
Group 1 n = 6 | Group 2 n = 12 | Group 3 n = 10 | |
---|---|---|---|
Antenatal steroids–n (%) | |||
Yes | 5 (83.3) | 9 (75) | 8 (80.0) |
No | 1 (16.7) | 3 (25) | 2 (20.0) |
Birth–n (%) | |||
Caesarean section | 6 (100) | 10 (83,33) | 9 (90.0) |
Vaginal | 0 (0) | 2 (16.67) | 1 (10.0) |
Gestational age–weeks (Ballard) median (IQR1) | 31 (1.5) | 30.5 (2.5) | 29 (3.8) |
Sex–n (%) | |||
Male | 2 (33.3) | 8 (66.67) | 8 (80.0) |
Female | 4 (66.7) | 4 (33.33) | 2 (20.0) |
Birth weight (g) median (IQR) | 1440 (411.25) | 1220 (327.5) | 1120 (686.3) |
Leukocyte count (mg/dL) median (IQR) | 8990 (2325) | 10215 (6948) | 7215 (8370) |
Absolute neutrophils (mg/dL) median (IQR) | 5902.5 (2143.25) | 6117 (5352) | 5286 (4932.8) |
Platelet count (mg/dL) median (IQR) | 207,500 (38.500) | 224,500 (109.500) | 194,000 (64,750) |
CRP (mg/dL) median (IQR) | 0.7 (0.56) | 0.4 (0.225) | 0.4 (0.0) |
Antibiotic duration (days) median (IQR) | 0 | 5 (2) | 7 (4.9) |
Group | ID Patient | BLAST | SILVA | ||
---|---|---|---|---|---|
Description/Accessions | Identity (%) | LCA* Taxonomy SILVA | Identity (%) | ||
Group 1 | 2 | Uncultured Lachnospiraceae bacterium/KX460604.1 | 95.83 | Clostridia | 94.91 |
3 | Uncultured bacterium/FJ162329.1 | 90.73 | Lachnospiraceae | 89.15 | |
4 | Pseudomonas stutzeri/ON514627.1 | 98.16 | Pseudomonas | 98.62 | |
5 | Uncultured bacterium/MK494335.1 | 80.91 | Lachnospiraceae | 81.99 | |
6 | Uncultured bacterium/MF005955.1 | 86.88 | Unclassified | 68.13 | |
Group 2 | 9 | Uncultured bacterium/KC541299.1 | 90.20 | Pseudomonas | 95.45 |
11 | Pseudomonas mendocina/MN276034.1 | 97.21 | Pseudomonas | 97.77 | |
12 | Uncultured bacterium/LC683652.1 | 85.37 | Unclassified | 75 | |
13 | Gamma proteobacterium/GQ466449.1 | 96.95 | Pseudomonas | 97.57 | |
14 | Uncultured bacterium/MH312886.1 | 96.83 | Pseudomonas | 94.3 | |
15 | Pseudomonas sp./OR394601.1 | 99.33 | Pseudomonas | 100 | |
16 | Pseudomonas sp./MN736123.1 | 98.38 | Pseudomonas | 98.92 | |
18 | Pseudomonas indoloxydans/MT435025.1 | 95.37 | Pseudomonas | 93.47 | |
Group 3 | 19 | Uncultured bacterium/AM404477.2 | 94.97 | Lachnospiraceae | 84.98 |
22 | Pseudomonas mendocina/MN866768.1 | 96.14 | Pseudomonas | 93.96 | |
23 | Uncultured bacterium/KC164827.1 | 94.24 | Pseudomonas | 85.34 | |
24 | Pseudomonas indoloxydans/MT435025.1 | 92.74 | Pseudomonas | 96.09 | |
25 | Pseudomonas putida/JQ830029.1 | 100 | Pseudomonas | 98.83 | |
26 | Pseudomonas sp./CP059139.1 | 92.83 | Pseudomonas | 77.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agudelo-Pérez, S.; Moreno, A.M.; Martínez-Garro, J.; Salazar, J.; Lopez, R.; Perdigón, M.; Peláez, R. 16S rDNA Sequencing for Bacterial Identification in Preterm Infants with Suspected Early-Onset Neonatal Sepsis. Trop. Med. Infect. Dis. 2024, 9, 152. https://doi.org/10.3390/tropicalmed9070152
Agudelo-Pérez S, Moreno AM, Martínez-Garro J, Salazar J, Lopez R, Perdigón M, Peláez R. 16S rDNA Sequencing for Bacterial Identification in Preterm Infants with Suspected Early-Onset Neonatal Sepsis. Tropical Medicine and Infectious Disease. 2024; 9(7):152. https://doi.org/10.3390/tropicalmed9070152
Chicago/Turabian StyleAgudelo-Pérez, Sergio, A. Melissa Moreno, Juliana Martínez-Garro, Jorge Salazar, Ruth Lopez, Mateo Perdigón, and Ronald Peláez. 2024. "16S rDNA Sequencing for Bacterial Identification in Preterm Infants with Suspected Early-Onset Neonatal Sepsis" Tropical Medicine and Infectious Disease 9, no. 7: 152. https://doi.org/10.3390/tropicalmed9070152
APA StyleAgudelo-Pérez, S., Moreno, A. M., Martínez-Garro, J., Salazar, J., Lopez, R., Perdigón, M., & Peláez, R. (2024). 16S rDNA Sequencing for Bacterial Identification in Preterm Infants with Suspected Early-Onset Neonatal Sepsis. Tropical Medicine and Infectious Disease, 9(7), 152. https://doi.org/10.3390/tropicalmed9070152