An Update on the Entomology, Virology, Pathogenesis, and Epidemiology Status of West Nile and Dengue Viruses in Europe (2018–2023)
Abstract
:1. Introduction
2. West Nile Virus and Dengue Virus: Insights into the Vector Competence, Host Range, Transmission, Classification, Genome Organization, Virus Genetics, and Pathogenesis
2.1. Mosquito Vectors of West Nile Virus
2.2. Animal Hosts and Secondary Modes of Transmission of West Nile Virus
2.3. Mosquito Vectors of Dengue Virus
2.4. Animal Hosts and Secondary Modes of Transmission of Dengue Virus
Virus | Vectors Species | Vector Distribution | References |
---|---|---|---|
WNV | Culex pipiens | Europe, Australia, Asia, Africa, North and South America | [73] |
Culex quinquefasciatus | Tropical and sub-tropical regions of Africa, Madagascar, South Asia, North Australia, Mexico, USA, Tropical and sub-tropical South America | [74] | |
Culex univittatus | Egypt | [75] | |
Culex theileri | Turkey, Portugal, Spain and Iran | [76] | |
Culex modestus | Europe, Asia and North Africa | [76] | |
Culex neavei | Tropical regions of Africa | [76] | |
Culex perexiguus | South and East Europe, North, East and West Africa, South and West Asia | [76] | |
DENV | Aedes aegypti | Africa, Northeast America, Middle East, Southeast Asia, the Pacific and Indian Islands North Australia, and the Mediterranean Basin * | [77,78,79] |
Aedes albopictus | Europe, Middle East, South and East Asia, North, Central and South America, Africa | [77,78,80,81] |
2.5. Classification
2.6. Genome and Replicative Cycle of West Nile Virus and Dengue Virus
2.7. Genetic Variability of West Nile Virus
2.8. Genetic Variability of Dengue Virus
2.9. Insight into the Tropism and Pathogenesis of West Nile Virus
2.10. Insight into the Tropism and Pathogenesis of Dengue Virus
Virus | Evidence Supporting WNV and DENV Influence on the Reproductive Tract | References |
---|---|---|
WNV | Viral RNA has been detected in the semen of a male patient almost 20 days after infection | [155] |
Viral RNA has been detected in post-mortem testicular tissue of a patient with neuroinvasive WNV infection | [156] | |
Viral RNA has been detected in the gonadal tissues of crows, ovaries, and testes of deceased parrots | [157,158] | |
WNV was suspected to be sexually transmitted one day before the onset of symptoms | [159] | |
Fatal WNV infections developed after mice inoculation by the vaginal route | [160] | |
DENV | DENV sequences were detected in the semen of male patients | [161,162,163,164,165] |
Persistent shedding of DENV RNA was found in the vaginal secretions of a woman more than two weeks after the onset of illness | [166] | |
DENV was suspected to be sexually transmitted | [167] |
3. A Six-Year Epidemiological Report on West Nile Virus and Dengue Virus in Europe (2018–2023)
3.1. The Number of West Nile Virus Cases in Europe from 2018 to 2023
3.2. The Number of Dengue Virus Cases in Europe from 2018 to 2023: The Emergence of Dengue Virus Autochthonous Cases
3.3. West Nile Virus Circulation in Italy
3.4. Dengue Virus Circulation in Italy
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A Review of the Global Climate Change Impacts, Adaptation, and Sustainable Mitigation Measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef] [PubMed]
- Bellone, R.; Failloux, A.-B. The Role of Temperature in Shaping Mosquito-Borne Viruses Transmission. Front. Microbiol. 2020, 11, 584846. [Google Scholar] [CrossRef] [PubMed]
- Hadfield, J.; Brito, A.F.; Swetnam, D.M.; Vogels, C.B.F.; Tokarz, R.E.; Andersen, K.G.; Smith, R.C.; Bedford, T.; Grubaugh, N.D. Twenty Years of West Nile Virus Spread and Evolution in the Americas Visualized by Nextstrain. PLOS Pathog. 2019, 15, e1008042. [Google Scholar] [CrossRef] [PubMed]
- Bakonyi, T.; Haussig, J.M. West Nile Virus Keeps on Moving up in Europe. Eurosurveillance 2020, 25, 2001938. [Google Scholar] [CrossRef] [PubMed]
- Current Year Data (2024)|West Nile Virus|CDC. Available online: https://www.cdc.gov/west-nile-virus/data-maps/current-year-data.html?CDC_AAref_Val=https://www.cdc.gov/westnile/statsmaps/current-season-data.html (accessed on 16 July 2024).
- Historic Data (1999–2023)|West Nile Virus|CDC. Available online: https://www.cdc.gov/west-nile-virus/data-maps/historic-data.html?CDC_AAref_Val=https://www.cdc.gov/westnile/statsmaps/historic-data.html (accessed on 16 July 2024).
- Epidemiological Update: West Nile Virus Transmission Season in Europe. 2023. Available online: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2023-0#:~:text=During%20the%202023%20West%20Nile (accessed on 23 May 2024).
- Gubler, D.J. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21st Century. Trop. Med. Health 2011, 39, 3–11. [Google Scholar] [CrossRef]
- Dengue Cases January–December 2023. Available online: https://www.ecdc.europa.eu/en/publications-data/dengue-cases-january-december-2023 (accessed on 16 July 2024).
- European Centre for Disease Prevention and Control Dengue Worldwide Overview. Available online: https://www.ecdc.europa.eu/en/dengue-monthly (accessed on 16 July 2024).
- Dengue-Global Situation. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2024-DON518#:~:text=In%202024%2C%20Brazil%20is%20the (accessed on 16 July 2024).
- EpiCentro Febbre Dengue-News. Available online: https://www.epicentro.iss.it/febbre-dengue/aggiornamenti (accessed on 16 July 2024).
- Weatherhead, J.E.; Miller, V.E.; Garcia, M.N.; Hasbun, R.; Salazar, L.; Dimachkie, M.M.; Murray, K.O. Long-Term Neurological Outcomes in West Nile Virus–Infected Patients: An Observational Study. Am. J. Trop. Med. Hyg. 2015, 92, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Kalayanarooj, S. Clinical Manifestations and Management of Dengue/DHF/DSS. Trop. Med. Health 2011, 39, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Paixão, E.S.; Teixeira, M.G.; Rodrigues, L.C. Zika, chikungunya and dengue: The causes and threats of new and re-emerging arboviral diseases. BMJ Glob Health 2018, 3 (Suppl. S1), e000530, Erratum in BMJ Glob Health 2018, 3, e000530corr1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sinigaglia, A.; Peta, E.; Riccetti, S.; Barzon, L. New Avenues for Therapeutic Discovery against West Nile Virus. Expert Opin. Drug Discov. 2020, 15, 333–348. [Google Scholar] [CrossRef]
- Kaiser, J.A.; Barrett, A.D.T. Twenty Years of Progress toward West Nile Virus Vaccine Development. Viruses 2019, 11, 823. [Google Scholar] [CrossRef]
- da Silveira, L.T.C.; Tura, B.; Santos, M. Systematic Review of Dengue Vaccine Efficacy. BMC Infect. Dis. 2019, 19, 750. [Google Scholar] [CrossRef]
- Arroyo, J.; Miller, C.; Catalan, J.; Myers, G.A.; Ratterree, M.S.; Trent, D.W.; Monath, T.P. ChimeriVax-West Nile Virus Live-Attenuated Vaccine: Preclinical Evaluation of Safety, Immunogenicity, and Efficacy. J. Virol. 2004, 78, 12497–12507. [Google Scholar] [CrossRef]
- Tricou, V.; Yu, D.; Reynales, H.; Biswal, S.; Saez-Llorens, X.; Sirivichayakul, C.; Lopez, P.; Borja-Tabora, C.; Bravo, L.; Kosalaraksa, P.; et al. Long-Term Efficacy and Safety of a Tetravalent Dengue Vaccine (TAK-003): 4·5-Year Results from a Phase 3, Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Glob. Health 2024, 12, e257–e270. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.J. Is New Dengue Vaccine Efficacy Data a Relief or Cause for Concern? npj Vaccines 2023, 8, 1265. [Google Scholar] [CrossRef]
- Girard, Y.A.; Klingler, K.A.; Higgs, S. West Nile virus dissemination and tissue tropisms in orally infected Culex pipiens quinquefasciatus. Vector Borne Zoonotic Dis. 2004, 4, 109–122. [Google Scholar] [CrossRef]
- Lewis, J.; Gallichotte, E.N.; Randall, J.; Glass, A.; Foy, B.D.; Ebel, G.D.; Kading, R.C. Intrinsic Factors Driving Mosquito Vector Competence and Viral Evolution: A Review. Front. Cell. Infect. Microbiol. 2023, 13, 1330600. [Google Scholar] [CrossRef]
- Ciota, A.T. West Nile virus and its vectors. Curr. Opin. Insect Sci. 2017, 22, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Andreadis, T.G. The contribution of Culex pipiens complex mosquitoes to transmission and persistence of West Nile virus in North America. J. Am. Mosq. Control Assoc. 2012, 28 (Suppl. S4), 137–151. [Google Scholar] [CrossRef]
- Vogels, C.B.; Göertz, G.P.; Pijlman, G.P.; Koenraadt, C.J. Vector competence of European mosquitoes for West Nile virus. Emerg. Microbes Infect. 2017, 6, e96. [Google Scholar] [CrossRef] [PubMed]
- Paz, S. Effects of Climate Change on Vector-Borne Diseases: An Updated Focus on West Nile Virus in Humans. Emerg. Top. Life Sci. 2019, 3, 143–152. [Google Scholar] [CrossRef]
- Campbell, G.L.; Marfin, A.A.; Lanciotti, R.S.; Gubler, D.J. West Nile Virus. Lancet Infect. Dis. 2002, 2, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Bunning, M.L.; Bowen, R.A.; Cropp, B.C.; Sullivan, K.G.; Davis, B.S.; Komar, N.; Godsey, M.; Baker, D.; Hettler, D.L.; Holmes, D.A.; et al. Experimental Infection of Horses with West Nile Virus. Emerg. Infect. Dis. 2002, 8, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Martín-Acebes, M.A. West Nile Virus: A Re-Emerging Pathogen Revisited. World J. Virol. 2012, 1, 51. [Google Scholar] [CrossRef] [PubMed]
- Austgen, L.E.; Bowen, R.A.; Bunning, M.L.; Davis, B.S.; Mitchell, C.J.; Chang, G.J.J. Experimental Infection of Cats and Dogs with West Nile Virus. Emerg. Infect. Dis. 2004, 10, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Escribano-Romero, E.; Lupulović, D.; Merino-Ramos, T.; Blázquez, A.-B.; Lazić, G.; Lazić, S.; Saiz, J.-C.; Petrović, T. West Nile Virus Serosurveillance in Pigs, Wild Boars, and Roe Deer in Serbia. Vet. Microbiol. 2015, 176, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Rimoldi, G.; Mete, A.; Adaska, J.M.; Anderson, M.L.; Symmes, K.P.; Diab, S. West Nile Virus Infection in Sheep. Vet. Pathol. 2016, 54, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Bowen, R.A.; Nemeth, N.M. Experimental Infections with West Nile Virus. Curr. Opin. Infect. Dis. 2007, 20, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Klenk, K.; Snow, J.; Morgan, K.; Bowen, R.; Stephens, M.; Foster, F.; Gordy, P.; Beckett, S.; Komar, N.; Gubler, D.; et al. Alligators as West Nile Virus Amplifiers. Emerg. Infect. Dis. 2004, 10, 2150–2155. [Google Scholar] [CrossRef] [PubMed]
- Pealer, L.N.; Marfin, A.A.; Petersen, L.R.; Lanciotti, R.S.; Page, P.L.; Stramer, S.L.; Stobierski, M.G.; Signs, K.; Newman, B.; Kapoor, H.; et al. Transmission of West Nile Virus through Blood Transfusion in the United States in 2002. N. Engl. J. Med. 2003, 349, 1236–1245. [Google Scholar] [CrossRef]
- Iwamoto, M.; Jernigan, D.B.; Guasch, A.; Trepka, M.J.; Blackmore, C.G.; Hellinger, W.C.; Pham, S.M.; Zaki, S.; Lanciotti, R.S.; Lance-Parker, S.E.; et al. Transmission of West Nile Virus from an Organ Donor to Four Transplant Recipients. N. Engl. J. Med. 2003, 348, 2196–2203. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Possible West Nile Virus Transmission to an Infant through Breast-Feeding—Michigan, 2002. JAMA J. Am. Med. Assoc. 2002, 288, 1976–1977. [Google Scholar] [CrossRef]
- Anderson, J.F.; Main, A.J.; Delroux, K.; Fikrig, E. Extrinsic Incubation Periods for Horizontal and Vertical Transmission of West Nile Virus by Culex Pipiens Pipiens (Diptera: Culicidae). J. Med. Entomol. 2008, 45, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Baqar, S.; Murphy, J.R.; Watts, D.M.; Hayes, C.G. Vertical Transmission of West Nile Virus by Culex and Aedes Species Mosquitoes. Am. J. Trop. Med. Hyg. 1993, 48, 757–762. [Google Scholar] [CrossRef]
- Dohm, D.J.; Sardelis, M.R.; Turell, M.J. Experimental Vertical Transmission of West Nile Virus by Culex Pipiens (Diptera: Culicidae): Table 1. J. Med. Entomol. 2002, 39, 640–644. [Google Scholar] [CrossRef]
- Nelms, B.M.; Fechter-Leggett, E.; Carroll, B.D.; Macedo, P.; Kluh, S.; Reisen, W.K. Experimental and Natural Vertical Transmission of West Nile Virus by California Culex (Diptera: Culicidae) Mosquitoes. J. Med. Entomol. 2013, 50, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Novelo, M.; Dutra, H.L.C.; Metz, H.C.; Jones, M.; Sigle, L.T.; Frentiu, F.D.; Allen, S.L.; Chenoweth, S.F.; McGraw, E.A. Dengue and Chikungunya Virus Loads in the Mosquito Aedes Are Determined by Distinct Genetic Architectures. PLOS Pathog. 2023, 19, e1011307. [Google Scholar] [CrossRef] [PubMed]
- Rezza, G. Aedes Albopictus and the Reemergence of Dengue. BMC Public Health 2012, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.C.; Barrett, A.D.T. Transmission Cycles, Host Range, Evolution and Emergence of Arboviral Disease. Nat. Rev. Microbiol. 2004, 2, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Briscoe, M.S. Aedes Aegypti the Yellow Fever Mosquito, Its Life History, Bionomics and Structure. J. Natl. Med. Assoc. 1962, 54, 132. [Google Scholar]
- Schaffner, F.; Mathis, A. Dengue and Dengue Vectors in the WHO European Region: Past, Present, and Scenarios for the Future. Lancet Infect. Dis. 2014, 14, 1271–1280. [Google Scholar] [CrossRef]
- Blanchard, R. Le danger du paludisme et de la fièvre jaune en France; moyens de l’éviter. Bull. Acad. Med. 1917, 77, 657–669. [Google Scholar]
- Blanc, G.; Caminopetros, J. Comment les fait épidémiologiques, en Grèce, montrent le rôle exclusif joué par le Stegomyia fasciata (Aedes aegypti) dans la transmission de la dengue. Arch. Inst. Pasteur Hell. 1930, 2, 277–294. [Google Scholar]
- La Face, L.; Raffaele, G. Sulla presenza della Stegomyia fasciata nell’Italia meridionale e in Sicilia. Il Policlin. 1928, 35, 2095. [Google Scholar]
- Marzinowsky, E.I. De l’existence de Stegomyia fasciata (St. calopus) en Russie. Bull. Soc. Pathol. Exot. 1914, 7, 590–593. [Google Scholar]
- Sarmento, M.; França, C. Sur quelques culicides portugais. C R Hebdo Séances Mém. Soc. Biol. 1902, 54, 152–153. [Google Scholar]
- Collado, G. Datos Actuales Sobre La Distribución Geográfica de Los Culicidos Españoles. Eos Rev. Española Entomol. 1930, 6, 329–347. [Google Scholar]
- IuV, I.; Riabova, T.E.; NIa, M.; Bezzhonova, O.V.; Ganushkina, L.A.; Semenov, V.B.; Tarkhov, G.A.; Vasilenko, L.E.; Guzeeva, T.M.; Shevereva, T.V.; et al. First evidence for breeding Aedes aegypti L in the area of Greater Sochi and in some towns of Abkhasia. Med. Parazitol. 2008, 3, 40–43. (In Russian) [Google Scholar]
- Wint, W.; Jones, P.; Kraemer, M.; Alexander, N.; Schaffner, F. Past, Present and Future Distribution of the Yellow Fever Mosquito Aedes Aegypti: The European Paradox. Sci. Total Environ. 2022, 847, 157566. [Google Scholar] [CrossRef]
- Trájer, A.J. Aedes Aegypti in the Mediterranean Container Ports at the Time of Climate Change: A Time Bomb on the Mosquito Vector Map of Europe. Heliyon 2021, 7, e07981. [Google Scholar] [CrossRef]
- Increasing Risk of Mosquito-Borne Diseases in EU/EEA Following Spread of Aedes Species. Available online: https://www.ecdc.europa.eu/en/news-events/increasing-risk-mosquito-borne-diseases-eueea-following-spread-aedes-species (accessed on 16 July 2024).
- Lühken, R.; Brattig, N.W.; Becker, N. Introduction of Invasive Mosquito Species into Europe and Prospects for Arbovirus Transmission and Vector Control in an Era of Globalization. Infect. Dis. Poverty 2023, 12, 109. [Google Scholar] [CrossRef]
- Valentine, M.J.; Murdock, C.C.; Kelly, P.J. Sylvatic Cycles of Arboviruses in Non-Human Primates. Parasites Vectors 2019, 12, 463. [Google Scholar] [CrossRef]
- Vasilakis, N.; Cardosa, J.; Hanley, K.A.; Holmes, E.C.; Weaver, S.C. Fever from the Forest: Prospects for the Continued Emergence of Sylvatic Dengue Virus and Its Impact on Public Health. Nature Reviews. Microbiology 2011, 9, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Althouse, B.M.; Durbin, A.P.; Hanley, K.A.; Halstead, S.B.; Weaver, S.C.; Cummings, D.A.T. Viral Kinetics of Primary Dengue Virus Infection in Non-Human Primates: A Systematic Review and Individual Pooled Analysis. Virology 2014, 452–453, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Gwee, S.X.W.; St John, A.L.; Gray, G.C.; Pang, J. Animals as Potential Reservoirs for Dengue Transmission: A Systematic Review. One Health 2021, 12, 100216. [Google Scholar] [CrossRef] [PubMed]
- Kaul, H.K.; Venkateshan, C.N.; Mishra, A.C.; Modi, G.B.; Ghosh, S.N. Serological Evidence of Arbovirus Activity in Birds and Small Mammals in Japanese Encephalitis Affected Areas of Bankura District, West Bengal. Indian J. Med. Res. 1976, 64, 1535–1539. [Google Scholar]
- Cigarroa-Toledo, N.; Talavera-Aguilar, L.G.; Baak-Baak, C.M.; García-Rejón, J.E.; Hernandez-Betancourt, S.; Blitvich, B.J.; Machain-Williams, C. Serologic Evidence of Flavivirus Infections in Peridomestic Rodents in Merida, Mexico. J. Wildl. Dis. 2016, 52, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Thongyuan, S.; Kittayapong, P. First Evidence of Dengue Infection in Domestic Dogs Living in Different Ecological Settings in Thailand. PLoS ONE 2017, 12, e0180013. [Google Scholar] [CrossRef]
- Rudnick, A. Studies of the Ecology of Dengue in Malaysia: A Preliminary Report. J. Med. Entomol. 1965, 2, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Albanese, M.; Di Cuonzo, G.; Randazzo, G.; Srihongse, S.; Tringali, G. Survey for Arbovirus Antibodies in Domestic Animals of Western Sicily. Ann. Sclavo 1971, 13, 641–647. [Google Scholar]
- Beck, C.; Leparc-Goffart, I.; Desoutter, D.; Debergé, E.; Bichet, H.; Lowenski, S.; Dumarest, M.; Gonzalez, G.; Migné, C.; Vanhomwegen, J.; et al. Serological Evidence of Infection with Dengue and Zika Viruses in Horses on French Pacific Islands. PLoS Neglected Trop. Dis. 2019, 13, e0007162. [Google Scholar] [CrossRef]
- de Thoisy, B.; Lacoste, V.; Germain, A.; Muñoz-Jordán, J.; Colón, C.; Mauffrey, J.-F.; Delaval, M.; Catzeflis, F.; Kazanji, M.; Matheus, S.; et al. Dengue Infection in Neotropical Forest Mammals. Vector Borne Zoonotic Dis. 2009, 9, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Lequime, S.; Paul, R.E.; Lambrechts, L. Determinants of Arbovirus Vertical Transmission in Mosquitoes. PLoS Pathog. 2016, 12, e1005548. [Google Scholar] [CrossRef] [PubMed]
- Rosen, L. Further Observations on the Mechanism of Vertical Transmission of Flaviviruses by Aedes Mosquitoes. Am. J. Trop. Med. Hyg. 1988, 39, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.; Mourya, D.T.; Sharma, R.C. Persistence of Dengue-3 Virus through Transovarial Transmission Passage in Successive Generations of Aedes Aegypti Mosquitoes. Am. J. Trop. Med. Hyg. 2002, 67, 158–161. [Google Scholar] [CrossRef]
- Harbach, R.E. Culex Pipiens: Species versus Species Complex–Taxonomic History and Perspective. J. Am. Mosq. Control Assoc. 2012, 28, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Samy, A.M.; Elaagip, A.H.; Kenawy, M.A.; Ayres, C.F.J.; Peterson, A.T.; Soliman, D.E. Climate Change Influences on the Global Potential Distribution of the Mosquito Culex Quinquefasciatus, Vector of West Nile Virus and Lymphatic Filariasis. PLoS ONE 2016, 11, e0163863. [Google Scholar] [CrossRef] [PubMed]
- Am, G.; el Said, S.; Soliman, B.A.; An, H.; Shoukry, A. Distribution and Bionomics of Egyptian Culex Univittatus (Theobald). J. Egypt. Soc. Parasitol. 1987, 17, 17–31. [Google Scholar]
- Harbach, R.E. The Mosquitoes of the Subgenus Culex in Southwestern Asia and Egypt (Diptera: Culicidae). Contrib. Am. Entomol. Inst. 1988, 24, 1. [Google Scholar]
- Wilkerson, R.C.; Linton, Y.M.; Strickman, D. Mosquitoes of the World; JHU Press: Baltimore, MD, USA, 2021. [Google Scholar]
- Kline, D.L.; Darsie, R.F.; Ward, R.A. Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico. J. Med. Entomol. 2006, 43, 124–125. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control Aedes Aegypti—Factsheet for Experts. Available online: https://www.ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-aegypti (accessed on 16 July 2024).
- Aedes Albopictus—Factsheet for Experts. Available online: https://www.ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-albopictus#:~:text=Aedes%20albopictus%20is%20considered%20to (accessed on 16 July 2024).
- Benedict, M.Q.; Levine, R.S.; Hawley, W.A.; Lounibos, L.P. Spread of the Tiger: Global Risk of Invasion by the Mosquito Aedes Albopictus. Vector-Borne Zoonotic Dis. 2007, 7, 76–85. [Google Scholar] [CrossRef]
- Postler, T.S.; Beer, M.; Blitvich, B.J.; Bukh, J.; De Lamballerie, X.; Drexler, J.F.; Imrie, A.; Kapoor, A.; Karganova, G.G.; Lemey, P.; et al. Renaming of the Genus Flavivirus to Orthoflavivirus and Extension of Binomial Species Names within the Family Flaviviridae. Arch. Virol. 2023, 168, 224. [Google Scholar] [CrossRef] [PubMed]
- Pierson, T.C.; Diamond, M.S. The Continued Threat of Emerging Flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef] [PubMed]
- Grottola, A.; Marcacci, M.; Tagliazucchi, S.; Gennari, W.; Di Gennaro, A.; Orsini, M.; Monaco, F.; Marchegiano, P.; Marini, V.; Meacci, M.; et al. Usutu Virus Infections in Humans: A Retrospective Analysis in the Municipality of Modena, Italy. Clin. Microbiol. Infect. 2017, 23, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Amicizia, D.; Domnich, A.; Panatto, D.; Lai, P.L.; Cristina, M.L.; Avio, U.; Gasparini, R. Epidemiology of Tick-Borne Encephalitis (TBE) in Europe and Its Prevention by Available Vaccines. Hum. Vaccines Immunother. 2013, 9, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Auguste, A.J.; Langsjoen, R.M.; Porier, D.L.; Erasmus, J.H.; Bergren, N.A.; Bolling, B.G.; Luo, H.; Singh, A.; Guzman, H.; Popov, V.L.; et al. Isolation of a Novel Insect-Specific Flavivirus with Immunomodulatory Effects in Vertebrate Systems. Virology 2021, 562, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, X.; Fan, H.; Zhao, Q.; Zuo, S.; Sun, Q.; Pei, G.; Cheng, S.; An, X.; Wang, Y.; et al. Complete Genome Sequence of Menghai Flavivirus, a Novel Insect-Specific flavivirus from China. Arch. Virol. 2017, 162, 1435–1439. [Google Scholar] [CrossRef]
- Huhtamo, E.; Moureau, G.; Cook, S.; Julkunen, O.; Putkuri, N.; Kurkela, S.; Uzcátegui, N.Y.; Harbach, R.E.; Gould, E.A.; Vapalahti, O.; et al. Novel Insect-Specific Flavivirus Isolated from Northern Europe. Virology 2012, 433, 471–478. [Google Scholar] [CrossRef]
- Markoff, L. 5’- and 3’-Noncoding Regions in Flavivirus RNA. Adv. Virus Res. 2003, 59, 177–228. [Google Scholar] [CrossRef]
- Shiryaev, S.A.; Strongin, A.Y. Structural and Functional Parameters of the Flaviviral Protease: A Promising Antiviral Drug Target. Future Virol. 2010, 5, 593–606. [Google Scholar] [CrossRef]
- Lee, E.; Bujalowski, P.J.; Teramoto, T.; Gottipati, K.; Scott, S.D.; Padmanabhan, R.; Choi, K.H. Structures of Flavivirus RNA Promoters Suggest Two Binding Modes with NS5 Polymerase. Nat. Commun. 2021, 12, 2530. [Google Scholar] [CrossRef]
- Renner, M.; Dejnirattisai, W.; Carrique, L.; Martin, I.S.; Karia, D.; Ilca, S.L.; Ho, S.F.; Kotecha, A.; Keown, J.R.; Mongkolsapaya, J.; et al. Flavivirus Maturation Leads to the Formation of an Occupied Lipid Pocket in the Surface Glycoproteins. Nat. Commun. 2021, 12, 1238. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, J.S.; Williams, D.T. The Zoonotic Flaviviruses of Southern, South-Eastern and Eastern Asia, and Australasia: The Potential for Emergent Viruses. Zoonoses Public Health 2009, 56, 338–356. [Google Scholar] [CrossRef] [PubMed]
- Bakonyi, T.; Ivanics, É.; Erdélyi, K.; Ursu, K.; Ferenczi, E.; Weissenböck, H.; Nowotny, N. Lineage 1 and 2 Strains of Encephalitic West Nile Virus. Emerg. Infect. Dis. 2006, 12, 618. [Google Scholar] [CrossRef] [PubMed]
- Mencattelli, G.; Ndione, M.H.D.; Rosà, R.; Marini, G.; Diagne, C.T.; Diagne, M.M.; Fall, G.; Faye, O.; Diallo, M.; Faye, O.; et al. Epidemiology of West Nile Virus in Africa: An Underestimated Threat. PLoS Neglected Trop. Dis. 2022, 16, e0010075. [Google Scholar] [CrossRef] [PubMed]
- Platonov, A.E.; Karan’, L.S.; Shopenskaia, T.A.; Fedorova, M.V.; Koliasnikova, N.M.; Rusakova, N.M.; Shishkina, L.V.; Arshba, T.E.; Zhuravlev, V.I.; Govorukhina, M.V.; et al. Genotyping of West Nile Fever Virus Strains Circulating in Southern Russia as an Epidemiological Investigation Method: Principles and Results. Zhurnal Mikrobiol. Epidemiol. I Immunobiol. 2011, 2, 29–37. [Google Scholar]
- Kolodziejek, J.; Seidel, B.; Jungbauer, C.; Dimmel, K.; Kolodziejek, M.; Rudolf, I.; Hubálek, Z.; Allerberger, F.; Nowotny, N. West Nile Virus Positive Blood Donation and Subsequent Entomological Investigation, Austria, 2014. PLoS ONE 2015, 10, e0126381. [Google Scholar] [CrossRef]
- Wodak, E.; Richter, S.; Zoltán, B.; Revilla-Fernández, S.; Weissenböck, H.; Nowotny, N.; Winter, P. Detection and Molecular Analysis of West Nile Virus Infections in Birds of Prey in the Eastern Part of Austria in 2008 and 2009. Vet. Microbiol. 2011, 149, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Triana, L.M.; Jeffries, C.L.; Mansfield, K.L.; Carnell, G.; Fooks, A.R.; Johnson, N. Emergence of West Nile Virus Lineage 2 in Europe: A Review on the Introduction and Spread of a Mosquito-Borne Disease. Front. Public Health 2014, 2, 271. [Google Scholar] [CrossRef] [PubMed]
- Fall, G.; Diallo, D.; Soumaila, H.; Ndiaye, E.H.; Lagare, A.; Sadio, B.D.; Ndione, M.H.D.; Wiley, M.; Dia, M.; Diop, M.; et al. First Detection of the West Nile Virus Koutango Lineage in Sandflies in Niger. Pathogens 2021, 10, 257. [Google Scholar] [CrossRef]
- Aliota, M.T.; Jones, S.; Dupuis, A.P.; Ciota, A.T.; Hubálek, Z.; Kramer, L.D. Characterization of Rabensburg Virus, a Flavivirus Closely Related to West Nile Virus of the Japanese Encephalitis Antigenic Group. PLoS ONE 2012, 7, e39387. [Google Scholar] [CrossRef]
- Prilipov, A.G.; Kinney, R.M.; Samokhvalov, E.I.; Savage, H.M.; Al’khovskiĭ, S.V.; Tsuchiya, K.R.; Gromashevskiĭ, V.L.; Sadykova, G.K.; Shatalov, A.G.; Vyshemirskiĭ, O.I.; et al. Analysis of New Variants of West Nile Fever Virus. Vopr. Virusol. 2002, 47, 36–41. [Google Scholar] [PubMed]
- Bondre, V.P.; Jadi, R.S.; Mishra, A.C.; Yergolkar, P.N.; Arankalle, V.A. West Nile Virus Isolates from India: Evidence for a Distinct Genetic Lineage. J. Gen. Virol. 2007, 88, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, A.; Sánchez-Seco, M.P.; Ruiz, S.; Molero, F.; Hernández, L.; Moreno, J.; Magallanes, A.; Tejedor, C.G.; Tenorio, A. Putative New Lineage of West Nile Virus, Spain. Emerg. Infect. Dis. 2010, 16, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Rajaiah, P.; Mayilsamy, M.; Kumar, A. West Nile Virus in India: An Update on Its Genetic Lineages. J. Vector Borne Dis. 2023, 60, 225–237. [Google Scholar] [CrossRef]
- Monath, T.P. The Arboviruses; National Institutes of Health: Boca Raton, FL, USA, 2021. [Google Scholar]
- Mustafa, M.S.; Rasotgi, V.; Jain, S.; Gupta, V. Discovery of Fifth Serotype of Dengue Virus (DENV-5): A New Public Health Dilemma in Dengue Control. Med. J. Armed Forces India 2015, 71, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Rico-Hesse, R. Molecular Evolution and Distribution of Dengue Viruses Type 1 and 2 in Nature. Virology 1990, 174, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Vasilakis, N.; Holmes, E.C.; Fokam, E.B.; Faye, O.; Diallo, M.; Sall, A.A.; Weaver, S.C. Evolutionary Processes among Sylvatic Dengue Type 2 Viruses. J. Virol. 2007, 81, 9591–9595. [Google Scholar] [CrossRef] [PubMed]
- Wittke, V.; Robb, T.E.; Thu, H.M.; Nisalak, A.; Nimmannitya, S.; Kalayanrooj, S.; Vaughn, D.W.; Endy, T.P.; Holmes, E.C.; Aaskov, J.G. Extinction and Rapid Emergence of Strains of Dengue 3 Virus during an Interepidemic Period. Virology 2002, 301, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Han, G.Z. Dengue in China: Comprehensive Phylogenetic Evaluation Reveals Evidence of Endemicity and Complex Genetic Diversity. Am. J. Trop. Med. Hyg. 2016, 94, 198–202. [Google Scholar] [CrossRef]
- Davis, C.W.; Nguyen, H.Y.; Hanna, S.L.; Sanchez, M.D.; Doms, R.W.; Pierson, T.C. West Nile Virus Discriminates between DC-SIGN and DC-SIGNR for Cellular Attachment and Infection. J. Virol. 2006, 80, 1290–1301. [Google Scholar] [CrossRef]
- Martina, B.E.E.; Koraka, P.; van den Doel, P.; Rimmelzwaan, G.F.; Haagmans, B.L.; Osterhaus, A.D.M.E. DC-SIGN Enhances Infection of Cells with Glycosylated West Nile Virus in Vitro and Virus Replication in Human Dendritic Cells Induces Production of IFN-α and TNF-α. Virus Res. 2008, 135, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.A.; Diamond, M.S. Alpha/Beta Interferon Protects against Lethal West Nile Virus Infection by Restricting Cellular Tropism and Enhancing Neuronal Survival. J. Virol. 2005, 79, 13350–13361. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Town, T.; Alexopoulou, L.; Anderson, J.F.; Fikrig, E.; Flavell, R.A. Toll-like Receptor 3 Mediates West Nile Virus Entry into the Brain Causing Lethal Encephalitis. Nat. Med. 2004, 10, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
- Quick, E.D.; Leser, J.S.; Clarke, P.; Tyler, K.L. Activation of Intrinsic Immune Responses and Microglial Phagocytosis in an Ex Vivo Spinal Cord Slice Culture Model of West Nile Virus Infection. J. Virol. 2014, 88, 13005–13014. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.; Gottlieb, D.; Diamond, M.P. Infection and Injury of Neurons by West Nile Encephalitis Virus. J. Virol. 2003, 77, 13203–13213. [Google Scholar] [CrossRef] [PubMed]
- Cheeran, M.C.J.; Hu, S.; Sheng, W.S.; Rashid, A.; Peterson, P.K.; Lokensgard, J.R. Differential Responses of Human Brain Cells to West Nile Virus Infection. J. Neurovirol. 2005, 11, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Hunsperger, E.; Roehrig, J. Characterization of West Nile Viral Replication and Maturation in Peripheral Neurons in Culture. J. Neurovirol. 2005, 11, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Arjona, A.; Zhang, Y.; Sultana, H.; Dai, J.; Yang, L.; LeBlanc, P.M.; Doiron, K.; Saleh, M.; Fikrig, E. Caspase-12 Controls West Nile Virus Infection via the Viral RNA Receptor RIG-I. Nat. Immunol. 2010, 11, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.J.H. The Mechanism of Cell Death during West Nile Virus Infection Is Dependent on Initial Infectious Dose. J. Gen. Virol. 2003, 84, 3305–3314. [Google Scholar] [CrossRef] [PubMed]
- Diniz, J.A.P.; Da Rosa, A.P.A.T.; Guzman, H.; Xu, F.; Xiao, S.Y.; Popov, V.L.; Vasconcelos, P.F.C.; Tesh, R.B. West Nile Virus Infection of Primary Mouse Neuronal and Neuroglial Cells: The Role of Astrocytes in Chronic Infection. Am. J. Trop. Med. Hyg. 2006, 75, 691–696. [Google Scholar] [CrossRef]
- Peng, B.H.; Wang, T. West Nile Virus Induced Cell Death in the Central Nervous System. Pathogens 2019, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Pupella, S.; Pisani, G.; Cristiano, K.; Catalano, L.; Grazzini, G. West Nile Virus in the Transfusion Setting with a Special Focus on Italian Preventive Measures Adopted in 2008–2012 and Their Impact on Blood Safety. Blood Transfus. 2013, 11, 463–564. [Google Scholar] [CrossRef]
- Brenner, W.; Storch, G.; Buller, R.; Vij, R.; Devine, S.; DiPersio, J. West Nile Virus Encephalopathy in an Allogeneic Stem Cell Transplant Recipient: Use of Quantitative PCR for Diagnosis and Assessment of Viral Clearance. Bone Marrow Transplant. 2005, 36, 369–370. [Google Scholar] [CrossRef] [PubMed]
- DeBiasi, R.L.; Tyler, K.L. West Nile Virus Meningoencephalitis. Nat. Clin. Pract. Neurol. 2006, 2, 264–275. [Google Scholar] [CrossRef]
- Bai, F.; Thompson, E.A.; Vig, P.J.S.; Leis, A.A. Current Understanding of West Nile Virus Clinical Manifestations, Immune Responses, Neuroinvasion, and Immunotherapeutic Implications. Pathogens 2019, 8, 193. [Google Scholar] [CrossRef] [PubMed]
- Anwar, M.N.; Akhtar, R.; Abid, M.; Khan, S.A.; Rehman, Z.U.; Tayyub, M.; Malik, M.I.; Shahzad, M.K.; Mubeen, H.; Qadir, M.S.; et al. The Interactions of Flaviviruses with Cellular Receptors: Implications for Virus Entry. Virology 2022, 568, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Taguwa, S.; Maringer, K.; Li, X.; Bernal-Rubio, D.; Rauch, J.N.; Gestwicki, J.E.; Andino, R.; Fernandez-Sesma, A.; Frydman, J. Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection. Cell 2015, 163, 1108–1123. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Oliveira, C.; Freire, J.M.; Conceição, T.M.; Higa, L.M.; Castanho, M.A.R.B.; Da Poian, A.T. Receptors and Routes of Dengue Virus Entry into the Host Cells. FEMS Microbiol. Rev. 2015, 39, 155–170. [Google Scholar] [CrossRef]
- Morsy, S.; Hashan, M.R.; Hieu, T.H.; Mohammed, A.A.; Elawady, S.S.; Ghosh, P.; Elgendy, M.A.; Le, H.-H.; Attiah, M.; Iqtadar, S.; et al. The Association between Dengue Viremia Kinetics and Dengue Severity: A Systemic Review and Meta-Analysis. Rev. Med. Virol. 2020, 30, 1–10. [Google Scholar] [CrossRef]
- Chaturvedi, U.C.; Agarwal, R.; Elbishbishi, E.A.; Mustafa, A.S. Cytokine Cascade in Dengue Hemorrhagic Fever: Implications for Pathogenesis. FEMS Immunol. Med. Microbiol. 2000, 28, 183–188. [Google Scholar] [CrossRef]
- Malavige, G.N.; Jeewandara, C.; Ogg, G.S. Dengue and COVID-19: Two Sides of the Same Coin. J. Biomed. Sci. 2022, 29, 48. [Google Scholar] [CrossRef] [PubMed]
- Rothman, A.L. Immunity to Dengue Virus: A Tale of Original Antigenic Sin and Tropical Cytokine Storms. Nat. Rev. Immunol. 2011, 11, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Luplerdlop, N.; Missé, D.; Bray, D.; Deleuze, V.; Gonzalez, J.-P.; Leardkamolkarn, V.; Yssel, H.; Veas, F. Dengue-Virus-Infected Dendritic Cells Trigger Vascular Leakage through Metalloproteinase Overproduction. EMBO Rep. 2006, 7, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Puerta-Guardo, H.; Raya-Sandino, A.; González-Mariscal, L.; Rosales, V.H.; Ayala-Davila, J.; Chávez-Mungía, B.; Martinez-Fong, D.; Medina, F.; Ludert, J.E.; del Angel, R.M. Rosa The Cytokine Response of U937-Derived Macrophages Infected through Antibody-Dependent Enhancement of Dengue Virus Disrupts Cell Apical-Junction Complexes and Increases Vascular Permeability. J. Virol. 2013, 87, 7486–7501. [Google Scholar] [CrossRef] [PubMed]
- St John, A.L.; Rathore, A.P.S.; Raghavan, B.; Ng, M.-L.; Abraham, S.N. Contributions of Mast Cells and Vasoactive Products, Leukotrienes and Chymase, to Dengue Virus-Induced Vascular Leakage. eLife 2013, 2, e00481. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M.A.; Diamond, M.S. Pathogenesis of West Nile Virus Infection: A Balance between Virulence, Innate and Adaptive Immunity, and Viral Evasion. J. Virol. 2006, 80, 9349–9360. [Google Scholar] [CrossRef] [PubMed]
- Martina, B.E.E.; Koraka, P.; Osterhaus, A.D.M.E. Dengue Virus Pathogenesis: An Integrated View. Clin. Microbiol. Rev. 2009, 22, 564–581. [Google Scholar] [CrossRef] [PubMed]
- Steele, K.E.; Linn, M.J.; Schoepp, R.J.; Komar, N.; Geisbert, T.W.; Manduca, R.M.; Calle, P.P.; Raphael, B.L.; Clippinger, T.L.; Larsen, T.; et al. Pathology of Fatal West Nile Virus Infections in Native and Exotic Birds during the 1999 Outbreak in New York City, New York. Vet. Pathol. 2000, 37, 208–224. [Google Scholar] [CrossRef]
- Begum, F.; Das, S.; Mukherjee, D.; Mal, S.; Ray, U. Insight into the Tropism of Dengue Virus in Humans. Viruses 2019, 11, 1136. [Google Scholar] [CrossRef]
- Winkelmann, E.R.; Luo, H.; Wang, T. West Nile Virus Infection in the Central Nervous System. F1000Research 2016, 5, 105. [Google Scholar] [CrossRef]
- Petersen, L.R.; Marfin, A.A. West Nile Virus: A Primer for the Clinician. Ann. Intern. Med. 2002, 137, 173. [Google Scholar] [CrossRef]
- Watson, J.T.; Pertel, P.E.; Jones, R.C.; Siston, A.M.; Paul, W.S.; Austin, C.C.; Gerber, S.I. Clinical Characteristics and Functional Outcomes of West Nile Fever. Ann. Intern. Med. 2004, 141, 360. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Kim, C.Y.; Dean, A.; Kulas, K.E.; St George, K.; Hoang, H.E.; Thakur, K.T. Clinical and Diagnostic Features of West Nile Virus Neuroinvasive Disease in New York City. Pathogens 2024, 13, 382. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, R.R.; Murray, K.O. Risk Factors for West Nile Virus Infection and Disease in Populations and Individuals. Expert Rev. Anti-Infect. Ther. 2015, 13, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Bilal Khan, M.; Yang, Z.S.; Lin, C.C.; Hsu, M.C.; Nayim Urbina, A.; Assavalapsakul, W.; Wang, W.H.; Chen, Y.H.; Wang, S.F. Dengue Overview: An Updated Systemic Review. J. Infect. Public Health 2023, 16, 1625–1642. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, D.R.; Wallqvist, A.; Chaudhury, S. Molecular Simulations Reveal the Role of Antibody Fine Specificity and Viral Maturation State on Antibody-Dependent Enhancement of Infection in Dengue Virus. Front. Cell. Infect. Microbiol. 2019, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Guzman, M.G.; Alvarez, M.; Halstead, S.B. Secondary Infection as a Risk Factor for Dengue Hemorrhagic Fever/Dengue Shock Syndrome: An Historical Perspective and Role of Antibody-Dependent Enhancement of Infection. Arch. Virol. 2013, 158, 1445–1459. [Google Scholar] [CrossRef] [PubMed]
- Dutta, D.; Ghosh, A.C.; Dutta, C.; Soumi, S.; Biswas, S. Cross Reactivity of SARS-CoV-2 with Other Pathogens, Especially Dengue Virus: A Historical Perspective. J. Med. Virol. 2023, 95, e28557. [Google Scholar] [CrossRef] [PubMed]
- Dejnirattisai, W.; Jumnainsong, A.; Onsirisakul, N.; Fitton, P.; Vasanawathana, S.; Limpitikul, W.; Puttikhunt, C.; Edwards, C.; Duangchinda, T.; Supasa, S.; et al. Cross-Reacting Antibodies Enhance Dengue Virus Infection in Humans. Science 2010, 328, 745–748. [Google Scholar] [CrossRef]
- Halstead, S.B. Observations Related to Pathogensis of Dengue Hemorrhagic Fever. VI. Hypotheses and Discussion. Yale J. Biol. Med. 1970, 42, 350–362. [Google Scholar]
- Halstead, S.B. Pathogenesis of Dengue: Dawn of a New Era. F1000Research 2015, 4, F100 Faculty Rev-1353. [Google Scholar] [CrossRef] [PubMed]
- Teo, A.; Tan, H.D.; Loy, T.; Chia, P.Y.; Chua, C.L.L. Understanding Antibody-Dependent Enhancement in Dengue: Are Afucosylated IgG1s a Concern? PLoS Pathog. 2023, 19, e1011223. [Google Scholar] [CrossRef]
- Gorchakov, R.; Gulas-Wroblewski, B.E.; Ronca, S.E.; Ruff, J.C.; Nolan, M.S.; Berry, R.; Alvarado, R.E.; Gunter, S.M.; Murray, K.O. Optimizing PCR Detection of West Nile Virus from Body Fluid Specimens to Delineate Natural History in an Infected Human Cohort. Int. J. Mol. Sci. 2019, 20, 1934. [Google Scholar] [CrossRef] [PubMed]
- Armah, H.B.; Wang, G.; Omalu, B.I.; Tesh, R.B.; Gyure, K.A.; Chute, D.J.; Smith, R.D.; Dulai, P.; Vinters, H.V.; Kleinschmidt-DeMasters, B.K.; et al. Systemic Distribution of West Nile Virus Infection: Postmortem Immunohistochemical Study of Six Cases. Brain Pathol. 2007, 17, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, T.; Sidhu, D.; Dhillon, M. Antigenic Distribution of West Nile Virus in Various Organs of Wildly Infected American Crows (Corvus Brachyrhynchos). J. Glob. Infect. Dis. 2011, 3, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, C.; Franca, M.; Uzal, F.; Anderson, M.; Barr, B.; Woods, L.; Moore, J.; Woolcock, P.; Shivaprasad, H.L. Pathology and Immunohistochemical Findings of West Nile Virus Infection in Psittaciformes. Vet. Pathol. 2010, 48, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Kelley, R.E.; Berger, J.R.; Kelley, B.P. WEST NILE VIRUS MENINGO-ENCEPHALITIS: POSSIBLE SEXUAL TRANSMISSION. J. La. State Med. Soc. Off. Organ La. State Med. Soc. 2016, 168, 21–22. [Google Scholar]
- Blitvich, B.J.; Magalhaes, T.; Laredo-Tiscareño, S.V.; Foy, B.D. Sexual Transmission of Arboviruses: A Systematic Review. Viruses 2020, 12, 933. [Google Scholar] [CrossRef] [PubMed]
- Liew, C.H. The First Case of Sexual Transmission of Dengue in Spain. J. Travel Med. 2019, 27, taz087. [Google Scholar] [CrossRef]
- Le Tortorec, A.; Matusali, G.; Mahé, D.; Aubry, F.; Mazaud-Guittot, S.; Houzet, L.; Dejucq-Rainsford, N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol. Rev. 2020, 100, 1349–1414. [Google Scholar] [CrossRef]
- Lalle, E.; Colavita, F.; Iannetta, M.; Gebremeskel Teklè, S.; Carletti, F.; Scorzolini, L.; Bordi, L.; Vincenti, D.; Castilletti, C.; Ippolito, G.; et al. Prolonged Detection of Dengue Virus RNA in the Semen of a Man Returning from Thailand to Italy, January 2018. Eurosurveillance 2018, 23, 18–00197. [Google Scholar] [CrossRef] [PubMed]
- Mons, J.; Mahé-Poiron, D.; Mansuy, J.-M.; Lheureux, H.; Nigon, D.; Moinard, N.; Hamdi, S.; Pasquier, C.; Dejucq-Rainsford, N.; Bujan, L. Effects of Acute Dengue Infection on Sperm and Virus Clearance in Body Fluids of Men. Emerg. Infect. Dis. 2022, 28, 1146. [Google Scholar] [CrossRef] [PubMed]
- Dengue Fever –Spain. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2019-DON214 (accessed on 22 June 2024).
- Iannetta, M.; Lalle, E.; Musso, M.; Carletti, F.; Scorzolini, L.; D’Abramo, A.; Chinello, P.; Castilletti, C.; Ippolito, G.; Capobianchi, M.R.; et al. Persistent Detection of Dengue Virus RNA in Vaginal Secretion of a Woman Returning from Sri Lanka to Italy, April 2017. Eurosurveillance 2017, 22, 30600. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Lee, H. Probable Female to Male Sexual Transmission of Dengue Virus Infection. Infect. Dis. 2018, 51, 150–152. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control West Nile Virus Infection-Annual Epidemiological Report for 2018. Available online: https://www.ecdc.europa.eu/en/publications-data/west-nile-virus-infection-annual-epidemiological-report-2018 (accessed on 16 July 2024).
- European Centre for Disease Prevention and Control West Nile Virus Infection-Annual Epidemiological Report for 2019. Available online: https://www.ecdc.europa.eu/en/publications-data/west-nile-virus-infection-annual-epidemiological-report-2019 (accessed on 16 July 2024).
- European Centre for Disease Prevention and Control Epidemiological Update: West Nile Virus Transmission Season in Europe. 2020. Available online: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2020 (accessed on 10 August 2023).
- European Centre for Disease Prevention and Control Epidemiological Update: West Nile Virus Transmission Season in Europe. 2021. Available online: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2021 (accessed on 16 July 2024).
- Epidemiological Update: West Nile Virus Transmission Season in Europe. 2022. Available online: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2022 (accessed on 16 July 2024).
- Weekly Updates: 2023 West Nile Virus Transmission Season. Available online: https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/disease-data-ecdc (accessed on 16 July 2024).
- European Centre for Disease Prevention and Control Dengue-Annual Epidemiological Report for 2018. Available online: https://www.ecdc.europa.eu/en/publications-data/dengue-annual-epidemiological-report-2018 (accessed on 30 December 2023).
- European Centre for Disease Prevention and Control Dengue-Annual Epidemiological Report for 2019. Available online: https://www.ecdc.europa.eu/en/publications-data/dengue-annual-epidemiological-report-2019 (accessed on 30 December 2023).
- European Centre for Disease Prevention and Control Dengue-Annual Epidemiological Report for 2020. Available online: https://www.ecdc.europa.eu/en/publications-data/dengue-annual-epidemiological-report-2020 (accessed on 30 December 2023).
- European Centre for Disease Prevention and Control Dengue-Annual Epidemiological Report for 2021. Available online: https://www.ecdc.europa.eu/en/publications-data/dengue-annual-epidemiological-report-2021 (accessed on 30 December 2023).
- Dengue-Annual Epidemiological Report for 2022. Available online: https://www.ecdc.europa.eu/en/publications-data/dengue-annual-epidemiological-report-2022 (accessed on 12 July 2024).
- Autochthonous Transmission of Dengue Virus in Mainland EU/EEA, 2010-Present. Available online: https://www.ecdc.europa.eu/en/all-topics-z/dengue/surveillance-and-disease-data/autochthonous-transmission-dengue-virus-eueea (accessed on 16 July 2024).
- EpiCentro Arbovirosi • Bollettini Periodici Arbovirosi. Available online: https://www.epicentro.iss.it/arbovirosi/bollettini (accessed on 16 July 2024).
- Michel, F.; Sieg, M.; Fischer, D.; Keller, M.; Eiden, M.; Reuschel, M.; Schmidt, V.; Schwehn, R.; Rinder, M.; Urbaniak, S.; et al. Evidence for West Nile Virus and Usutu Virus Infections in Wild and Resident Birds in Germany, 2017 and 2018. Viruses 2019, 11, 674. [Google Scholar] [CrossRef] [PubMed]
- Ruscher, C.; Patzina-Mehling, C.; Melchert, J.; Graff, S.L.; McFarland, S.E.; Hieke, C.; Kopp, A.; Prasser, A.; Tonn, T.; Schmidt, M.; et al. Ecological and Clinical Evidence of the Establishment of West Nile Virus in a Large Urban Area in Europe, Berlin, Germany, 2021 to 2022. Eurosurveillance 2023, 28, 2300258. [Google Scholar] [CrossRef] [PubMed]
- Department for Environment, Food and Rural Affairs Animal and Plant Health Agency Advice Services—International Disease Monitoring 1 Updated Outbreak Assessment West Nile Virus in Germany and Southern Europe Disease Report. 2018. Available online: https://assets.publishing.service.gov.uk/media/61606cecd3bf7f55fe946bc2/300921-oa-wnv-germany.pdf (accessed on 16 July 2024).
- Lu, L.; Zhang, F.; Oude Munnink, B.B.; Munger, E.; Sikkema, R.S.; Pappa, S.; Tsioka, K.; Sinigaglia, A.; Dal Molin, E.; Shih, B.B.; et al. West Nile Virus Spread in Europe: Phylogeographic Pattern Analysis and Key Drivers. PLoS Pathog. 2024, 20, e1011880. [Google Scholar] [CrossRef] [PubMed]
- Mamun, M.A.; Misti, J.M.; Griffiths, M.D.; Gozal, D. The Dengue Epidemic in Bangladesh: Risk Factors and Actionable Items. Lancet 2019, 394, 2149–2150. [Google Scholar] [CrossRef]
- Pandey, B.D.; Costello, A. The Dengue Epidemic and Climate Change in Nepal. Lancet 2019, 394, 2150–2151. [Google Scholar] [CrossRef]
- Zambrano, L.I.; Rodriguez, E.; Espinoza-Salvado, I.A.; Fuentes-Barahona, I.C.; Lyra de Oliveira, T.; Luciano da Veiga, G.; Cláudio da Silva, J.; Valle-Reconco, J.A.; Rodríguez-Morales, A.J. Spatial Distribution of Dengue in Honduras during 2016–2019 Using a Geographic Information Systems (GIS)–Dengue Epidemic Implications for Public Health and Travel Medicine. Travel Med. Infect. Dis. 2019, 32, 101517. [Google Scholar] [CrossRef]
- La Ruche, G.; Souarès, Y.; Armengaud, A.; Peloux-Petiot, F.; Delaunay, P.; Desprès, P.; Lenglet, A.; Jourdain, F.; Leparc-Goffart, I.; Charlet, F.; et al. First Two Autochthonous Dengue Virus Infections in Metropolitan France, September 2010. Eurosurveillance 2010, 15, 19676. [Google Scholar] [CrossRef]
- Gjenero-Margan, I.; Aleraj, B.; Krajcar, D.; Lesnikar, V.; Klobučar, A.; Pem-Novosel, I.; Kurečić-Filipović, S.; Komparak, S.; Martić, R.; Đuričić, S.; et al. Autochthonous Dengue Fever in Croatia, August–September 2010. Eurosurveillance 2011, 16, 19805. [Google Scholar] [CrossRef] [PubMed]
- Franke, F.; Giron, S.; Cochet, A.; Jeannin, C.; Leparc-Goffart, I.; de Valk, H.; Jourdain, F.; de Lamballerie, X.; L’Ambert, G.; Paty, M.C. Autochthonous Chikungunya and Dengue Fever Outbreak in Mainland France, 2010-2018. European Journal of Public Health 2019, 29. [Google Scholar] [CrossRef]
- Marchand, E.; Prat, C.; Jeannin, C.; Lafont, E.; Bergmann, T.; Flusin, O.; Rizzi, J.; Roux, N.; Busso, V.; Deniau, J.; et al. Autochthonous Case of Dengue in France, October 2013. Eurosurveillance 2013, 18, 20661. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control Main Conclusions and Options for Response Main Conclusions. 2018. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/08-10-2018-RRA-Dengue-France.pdf (accessed on 16 July 2024).
- Monge, S.; García-Ortúzar, V.; López Hernández, B.; Lopaz Pérez, M.; Delacour-Estrella, S.; Sánchez-Seco, M.; Fernández Martinez, B.; García San Miguel, L.; García-Fulgueiras, A.; Sierra Moros, M. Characterization of the First Autochthonous Dengue Outbreak in Spain (August–September 2018). Acta Trop. 2020, 205, 105402. [Google Scholar] [CrossRef]
- Cochet, A.; Calba, C.; Jourdain, F.; Grard, G.; Durand, G.A.; Guinard, A.; Noël, H.; Paty, M.-C.; Franke, F. Autochthonous Dengue in Mainland France, 2022: Geographical Extension and Incidence Increase. Eurosurveillance 2022, 27, 2200818. [Google Scholar] [CrossRef] [PubMed]
- Virus Dengue, Identificato in Provincia Di Lodi Primo Caso Lombardo. Available online: https://www.lombardianotizie.online/virus-dengue-lodi/ (accessed on 30 December 2023).
- Virus Dengue, a Castiglione d’Adda (Lodi) Individuati Altri 2 Casi. Available online: https://www.lombardianotizie.online/virus-dengue/ (accessed on 30 December 2023).
- EpiCentro Arbovirosi • Riepilogo 2023. Available online: https://www.epicentro.iss.it/arbovirosi/dashboard-2023 (accessed on 16 July 2024).
- De Carli, G.; Carletti, F.; Spaziante, M.; Maria, E.; Rueca, M.; Spezia, P.G.; Vantaggio, V.; Barca, A.; De Liberato, C.; Romiti, F.; et al. Outbreaks of Autochthonous Dengue in Lazio Region, Italy, August to September 2023: Preliminary Investigation. Eurosurveillance 2023, 28, 2300552. [Google Scholar] [CrossRef] [PubMed]
- Sante Publique France Chikungunya, Dengue et Zika-Chikungunya, Dengue et Zika-Données de La Surveillance Renforcée En France Métropolitaine En 2022. Available online: https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-a-transmission-vectorielle/chikungunya/articles/donnees-en-france-metropolitaine/chikungunya-dengue-et-zika-donnees-de-la-surveillance-renforcee-en-france-metropolitaine-en-2022#block-452632 (accessed on 16 July 2024).
- Barzon, L.; Montarsi, F.; Quaranta, E.; Monne, I.; Pacenti, M.; Michelutti, A.; Toniolo, F.; Danesi, P.; Marchetti, G.; Gobbo, F.; et al. Early Start of Seasonal Transmission and Co-Circulation of West Nile Virus Lineage 2 and a Newly Introduced Lineage 1 Strain, Northern Italy, June 2022. Eurosurveillance 2022, 27, 2200548. [Google Scholar] [CrossRef]
- EpiCentro La Sorveglianza Dei Casi Umani Di Infezione Da West Nile Virus. Available online: https://www.epicentro.iss.it/westnile/bollettino (accessed on 30 December 2023).
- Barzon, L.; Gobbi, F.; Capelli, G.; Montarsi, F.; Martini, S.; Riccetti, S.; Sinigaglia, A.; Pacenti, M.; Pavan, G.; Rassu, M.; et al. Autochthonous Dengue Outbreak in Italy 2020: Clinical, Virological and Entomological Findings. J. Travel Med. 2021, 28, taab130. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Bugallo, G.; Boullis, A.; Martinez, Y.; Hery, L.; Rodríguez, M.; Bisset, J.A.; Vega-Rúa, A. Vector Competence of Aedes Aegypti from Havana, Cuba, for Dengue Virus Type 1, Chikungunya, and Zika Viruses. PLoS Neglected Trop. Dis. 2020, 14, e0008941. [Google Scholar] [CrossRef]
- Mutoh, Y.; Moriya, A.; Yasui, Y.; Saito, N.; Takasaki, T.; Hiramatsu, S.; Izuchi, T.; Umemura, T.; Ichihara, T. Two Cases of Dengue Virus Type 2 (DENV-2) Infection in a Japanese Couple Returning from the Maldives during the 2018 Dengue Outbreak. Jpn. J. Infect. Dis. 2020, 73, 58–60. [Google Scholar] [CrossRef] [PubMed]
- Thisyakorn, U.; Saokaew, S.; Gallagher, E.; Kastner, R.; Sruamsiri, R.; Oliver, L.; Hanley, R. Epidemiology and Costs of Dengue in Thailand: A Systematic Literature Review. PLoS Neglected Trop. Dis. 2022, 16, e0010966. [Google Scholar] [CrossRef] [PubMed]
- Cassaniti, I.; Ferrari, G.; Senatore, S.; Rossetti, E.; Defilippo, F.; Maffeo, M.; Vezzosi, L.; Campanini, G.; Sarasini, A.; Paolucci, S.; et al. Preliminary Results on an Autochthonous Dengue Outbreak in Lombardy Region, Italy, August 2023. Eurosurveillance 2023, 28, 2300471. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frasca, F.; Sorrentino, L.; Fracella, M.; D’Auria, A.; Coratti, E.; Maddaloni, L.; Bugani, G.; Gentile, M.; Pierangeli, A.; d’Ettorre, G.; et al. An Update on the Entomology, Virology, Pathogenesis, and Epidemiology Status of West Nile and Dengue Viruses in Europe (2018–2023). Trop. Med. Infect. Dis. 2024, 9, 166. https://doi.org/10.3390/tropicalmed9070166
Frasca F, Sorrentino L, Fracella M, D’Auria A, Coratti E, Maddaloni L, Bugani G, Gentile M, Pierangeli A, d’Ettorre G, et al. An Update on the Entomology, Virology, Pathogenesis, and Epidemiology Status of West Nile and Dengue Viruses in Europe (2018–2023). Tropical Medicine and Infectious Disease. 2024; 9(7):166. https://doi.org/10.3390/tropicalmed9070166
Chicago/Turabian StyleFrasca, Federica, Leonardo Sorrentino, Matteo Fracella, Alessandra D’Auria, Eleonora Coratti, Luca Maddaloni, Ginevra Bugani, Massimo Gentile, Alessandra Pierangeli, Gabriella d’Ettorre, and et al. 2024. "An Update on the Entomology, Virology, Pathogenesis, and Epidemiology Status of West Nile and Dengue Viruses in Europe (2018–2023)" Tropical Medicine and Infectious Disease 9, no. 7: 166. https://doi.org/10.3390/tropicalmed9070166
APA StyleFrasca, F., Sorrentino, L., Fracella, M., D’Auria, A., Coratti, E., Maddaloni, L., Bugani, G., Gentile, M., Pierangeli, A., d’Ettorre, G., & Scagnolari, C. (2024). An Update on the Entomology, Virology, Pathogenesis, and Epidemiology Status of West Nile and Dengue Viruses in Europe (2018–2023). Tropical Medicine and Infectious Disease, 9(7), 166. https://doi.org/10.3390/tropicalmed9070166