Best Practices in the Management of Clostridioides difficile Infection in Developing Nations
Abstract
:1. Introduction
2. CDI in Developing Nations: Under-Recognized, Under-Measured
2.1. Current Epidemiology
2.1.1. Africa
2.1.2. Asia
2.1.3. Latin America
2.1.4. Europe
2.2. Limited Awareness
2.3. A High-Risk Environment: Aging Population, Inadequate Antibiotic Stewardship
3. Limited Diagnostic Capabilities
3.1. State of the Art in CDI Diagnostics
3.2. A Paucity of Clinical Microbiology Infrastructure
3.3. Unexpected Opportunities
4. Challenges of Treatment
4.1. Metronidazole, Always Available but No Longer SOC
4.2. Oral Vancomycin: Creative Solutions
4.3. Challenges to Fecal Microbiota Transplantation
4.4. Challenges to Introducing Newer Therapeutics: Monoclonal Antibodies, Newer Antibiotics, Bacteriophage
4.5. Opportunity: Enhanced Antimicrobial Stewardship
5. Key Facts
Author Contributions
Funding
Conflicts of Interest
Abbreviations/Acronyms
CDI | Clostridioides difficile infection |
rCDI | Recurrent Clostridioides difficile infection |
HA-CDI | Healthcare-associated CDI |
CA-CDI | Community-associated CDI |
GDH | Glutamate dehydrogenase |
EIA | Enzyme immunoassay |
PCR | Polymerase chain reaction |
NAAT | Nucleic acid amplification test |
SOC | Standard of care |
FMT | Fecal microbiota transplantation |
LBPs | Live biotherapeutics products |
ASPs | Antimicrobial Stewardship Programs |
Appendix A
Country | CDI Rate | CDI Diagnosis Tests | Population | Publication Year/Reference |
---|---|---|---|---|
ASIA | ||||
Bangladesh | 8.7% | GDH + Toxin A/B EIA (C. Diff Quik Chek Complete® assay) + Toxigenic culture | Adults 18 years with diarrhea (≥3 loose stools in a 24 h period) | 2020 [51] |
10% | Culture in CCFA + Toxin A/B latex agglutination (C. difficile Oxoid Latex Reagent) + Toxin A/B PCR | Adults 18 years with hospital-acquired diarrhea | 2018 [113] | |
Iran | 15.9%/15.5% a | Culture in CCFA + Gram stain + 16srDNA PCR + Toxin A/B PCR | Inpatients and outpatients with diarrhea | 2020 [53] |
21% | Toxin A/B EIA + Antigen EIA | Patient with hospital-acquired diarrhea (≥3 loose stools in a 24 h period occurring ≥48 h after admission) | 2015 [81] | |
6.1% | Culture in CCFA + API 20A system (bioMerieux, Marcy l’Etoile, France) | Patients with hospital-acquired diarrhea | 2009 [114] | |
5.3% | Toxin A/B EIA (Premier Toxin A/B, Generic Assays, Inc., Blankenfelde-Mahlow, Germany) | Patients with diarrhea | 2011 [59] | |
21% | Culture in CDMN agar (Oxoid) + Toxin A/B PCR | Aliquots of stool from hospitalized patients with diarrhea (≥3 watery/unformed/loose stools in ≥24 h) | 2012 [115] | |
India | 17% | Toxin A/B EIA (Ridascreen kit) | Inpatient and outpatients with diarrhea | 2011 [116] |
17.5% | Toxin A/B EIA | Hospitalized patients with diarrhea | 2014 [117] | |
62.5% b | Culture in CCFA + Toxin A/B latex agglutination | Hospitalized patients with diarrhea | 2012 [118] | |
15.7%/10.9% a (toxigenic strains) | Robertson’s cooked meat media + Toxin A/B PCR | Patient >2 years old with diarrhea developed after >72 h of admission. | 2015 [56] | |
4%/16% c | GDH + Toxin A/B (C. Diff Quik Chek Complete® assay) | Inpatients and outpatients with diarrhea and recent history of antibiotic exposure and/or antiulcer drug | 2017 [119] | |
25% | Toxin A/B latex agglutination | Stool samples of all-age-group patients | 2002 [120] | |
8.57% | Toxin A/B PCR (Cepheid Xpert™ C. difficile assay or Biofire FilmArray® Gastrointestinal Panel) | Stool samples of inpatients with diarrhea | 2023 [121] | |
Lao | 7.1%/4.2% d | Culture in Chrom ID C. difficile agar (bioMerieux, Marcy l’Etoile, France) + Toxin latex agglutination (Oxoid C. difficile latex test kit, United Kingdom) confirmed by toxin A/B PCR | Hospitalized patient with unformed stools | 2017 [54] |
Pakistan | 29.18% | Culture in CCFA | Hospitalized patient who developed diarrhea after ≥2 days of taking antibiotics with fecal leukocytosis. | 2012 [60] |
Philippines | 43.6% | Toxin A/B ELISA (TechLab®, Blacksburg, VA, USA) | Adult patients aged ≥18 years who were scheduled for colonoscopy or sigmoidoscopy | 2012 [122] |
Cambodia | 3.75% | Toxin A (Oxoid Toxin Detection kit) | HIV-positive adult patients with chronic diarrhea (>3 loose stools daily for ≥3 days) | 2006 [123] |
China | 9.54% | Culture + Toxin B (TechLab®, Blacksburg, VA, USA) | Adult patient with diarrhea | 2008 [124] |
12.58% | Culture in CCFA + Vitek® Anaerobe Identification Card (bioMérieux, Inc., Salt Lake City, UT, USA) + CCCNA culture followed by ribotype PCR | Stool sample of adult hospitalized patients | 2011 [125] | |
14.29% | Culture in CCFA + Vitek 2® Anaerobe Identification Card (bioMérieux, Marcy l’Etoile, France) + Toxin A/B PCR | Hospitalized patient aged > 18 years with diarrhea (≥3 watery/loose stools in ≥24 h) | 2018 [126] | |
30.58% | Culture in CCFA + RAPID ID 32 A (bioMérieux, Marcy l’Etoile, France) + Toxin A/B PCR (Cepheid Xpert™ C. difficile assay, Sunnyvale, CA, USA) | Hospitalized patient aged ≥ 18 years with diarrhea (≥3 watery/loose stools in ≥24 h) and antibiotic used ≥4 weeks prior to onset of diarrhea | 2014 [127] | |
Indonesia | 1.3% | Premier C. difficile toxin A EIA (Meridian Diagnostic Inc.) | Outpatients and inpatients with diarrhea | 2002 [128] |
25% | GDH + Toxin A/B (C. Diff Quik Chek Complete® assay) | Elderly hospitalized patient with hepatocellular carcinoma | 2014 [129] | |
14.7% | Culture on C. difficile selective agar (bioMerieux, Marcy l’Etoile, France) or chromogenic agar (CHROMagar) + MALDI-TOF mass spectrometry (Biotyper, Bruker Daltonics, Bremen, Germany) + Toxin A/B EIA + Toxin A/B PCR | Patients with diarrhea and without diarrhea (controls) | 2018 [130] | |
10.9% | GDH + Toxin A/B (C. Diff Quik Chek Complete® assay) followed by Culture + Toxin A/B PCR | Stool samples from patient with diarrhea | 2017 [131] | |
Jordan | 9.7% | Toxin A EIA (Culturette, Brand Toxin CD kit, Becton-Dickinson) + Culture on CCFA + API 20A system (bioMérieux, Marcy l’Etoile, France) | Hospitalized patients aged ≥ 2 years with diarrhea. | 2001 [132] |
19.2% | Culture on CCFA + Remel RapiID ANA II system + Toxin A/B PCR | Stool samples from hospitalized patients aged ≥ 40 years and admitted ≥3 days with or without diarrhea | 2009 [133] | |
Vietnam | 9% | Toxin A/B PCR + Multiplexed NAAT (TAG gastrointestinal pathogen assay, Luminex Molecular Diagnostics) | Stool samples from hospitalized patients admitted with diarrhea (≥3 watery/loose stools in ≥24 h) | 2016 [134] |
AFRICA | ||||
Egypt | 20.4% (Pediatric: 17.89%/Adult: 27%) | Culture in CCFA + Gram stain + API 20A system (bioMérieux, Marcy l’Etoile, France) + Toxin A/B EIA confirmed by Toxin A/B PCR | Adult and pediatric patients with antibiotic-associated diarrhea | 2020 [61] |
24% | Culture in Columbia blood agar + Toxin A/B EIA (Ridascreen kit) | Patients with antibiotic-associated diarrhea | 2007 [135] | |
13.7% | Culture on C. difficile agar (Oxoid) + C. difficile identification latex agglutination test (Oxoid) | Hospitalized patients with healthcare-associated diarrhea (>3 unformed stools for 24 h) | 2017 [136] | |
Côte d’Ivoire | 5.88% b | GDH (Clostridium K-SeT, Coris BioConcept) confirmed in CLO culture (BioMerieux, Marcy l’Etoile, France) with MALDI-TOF and toxin A/B PCR | Patients aged ≥1 year presenting with persistent diarrhea (≥2 weeks) and patients without any gastrointestinal symptoms | 2015 [137] |
Ghana | 4.5% | GDH + Toxin A/B (C. Diff Quik Chek Complete® assay) + Culture C. difficile agar base (Oxoid) confirmed by MALDI-TOF | Hospitalized patients with diarrhea | 2016 [138] |
Nigeria | 15% | Toxin A/B EIA (Inverness Medical Professional Diagnostics) | Hospitalized patients with >2 witnessed watery bowel movement for ≥48 h or outpatients with loose stools greater than twice their regular frequencies e | 2011 [57] |
2.6% | Toxin A/B EIA (Meridian Immunocard, Meridian Bioscience) | Hospitalized patients with diarrhea | 2016 [58] | |
Kenya | 33.8%/25.5% f | Culture in toxigenic culture confirmed by toxin A/B PCR and toxin A/B ELISA (TechLab®, Blacksburg, VA, USA) | Hospitalized patients aged ≤ 5 years presenting with diarrhea | 2019 [139] |
92.4%/90.5% f | Culture in toxigenic culture confirmed by toxin A/B PCR and toxin A/B EIA | Hospitalized patients with diarrhea | 2018 [14] | |
Malawi | 13.3% g | Toxin A/B ELISA (TechLab®, Blacksburg, VA, USA)) | Hospitalized patients with and without diarrhea (≥3 loose stools per day) | 2014 [140] |
Tanzania | 6.4%/2.8% h | Culture on chromogenic agar (CHROMagar, Paris, France) + GDH + Toxin A/B (C. Diff Quik Chek Complete® assay) confirmed by toxin A/B PCR | Patients with and without diarrhea | 2015 [141] |
Zambia | 10% | Culture on CCFA + C. difficile latex agglutination + Toxin A/B ELISA confirmed by tpi gene PCR | Stool samples of patients with acute or persistent diarrhea | 2020 [142] |
Zimbabwe | 8.6% | Culture in toxigenic culture + Toxin A/B EIA | Stool samples of outpatients with diarrhea | 2014 [143] |
Botswana | 4.2% | Multiplexed NAAT (TAG gastrointestinal pathogen assay, Luminex Molecular Diagnostics) | Hospitalized patients aged < 13 years presenting with diarrhea | 2016 [144] |
Algeria | 6.9% | Culture on CLO (bioMérieux, Marcy l’Etoile, France) with cefoxitin, cyclosporine, and sodium taurocholate + Gram stain + API 20A system (bioMérieux, Marcy l’Etoile, France) confirmed by toxin A/B multiplex PCR | Hospitalized patients with diarrhea after admission | 2018 [52] |
Cameroon | 27.3% | GDH + Toxin A/B EIA (C. Diff Quik Chek Complete® assay) | Inpatients and outpatients with diarrhea | 2020 [145] |
South Africa | 22% | Culture on chromogenic agar (CHROMagar, Paris, France) + Toxin A/B PCR | Patients aged >18 years with diarrhea | 2016 [146] |
13.7% | Toxin B PCR (GeneXpert C. difficile) confirmed by culture on CCEYA + Toxin A/B multiplex PCR | Stool samples of patients with diarrhea | 2016 [147] | |
44.8% | Toxin A/B PCR | Hospitalized patients aged >18 years with diarrhea | 2018 [148] | |
9.2% | Toxin A EIA | Hospitalized patients aged >18 years who developed diarrhea after admission | 2013 [149] | |
LATIN AMERICA | ||||
Brazil | 27.8% b | Culture in CCFA + Bacterial cytotoxicity on VERO tissue culture + Toxin A/B PCR | Stool samples of pediatric patients aged 0–5 years with and without diarrhea | 2003 [150] |
4.17% | Toxin B PCR (BD Diagnostics) and stool culture | Stool samples of hospitalized patients aged 18 years or older with hospital stay of at least 5 days | 2012 [151] | |
8% | Toxin A/B EIA (Premier Toxins A & B, Meridian Bioscience, Cincinnati, OH, USA) + Culture in CLO agar (bioMerieux, Marcy l’Etoile, France) and/or toxin B PCR | Hospitalized adults with diarrhea (≥3 loose stools over 24 h period) | 2014 [152] | |
5.41% | Toxin A/B ELISA (Ridascreen C. difficile Toxin A/B, R-Biopharm) OR Culture in CCFA + tpi PCR + Toxin A/B PCR | Stool samples of hospitalized patients with diarrhea | 2014 [153] | |
48% | Toxin A/B EIA (ProSpect C. difficile Toxin A/B Microplate Assay, Remel) + Culture in CCFA + RapID ANA II system (Remel) and tpi gene PCR | Stool samples of hospitalized cancer patients aged >18 years with diarrhea (≥3 liquid stools over 24 h period) | 2017 [154] | |
4.51%/8.49%/15% i | GDH + Toxin A/B EIA (C. Diff Quik Chek Complete® assay) + Toxin B PCR (Cepheid Xpert) | Stool samples of hospitalized patients | 2020 [155] | |
Mexico | 5.43% | Toxin A Vidas II EIA (BioMerieux, Durham, UK) | Stool samples from all patients tested for toxin A with exclusion of repetition | 2009 [156] |
48.2% | Toxin A/B EIA | Hospitalized patients with liquid stools for >12 h after 24 h of admission | 2018 [157] | |
20.7% | Toxin A/B EIA | Patients who developed diarrhea (>3 unformed stools in 24 h) during hospital stay or within three days after hospital discharge | 2019 [158] | |
96%/91.3% j | Toxin A/B EIA immunocard (Meridian Bioscience) OR Toxin A/B PCR (Cepheid Xpert) | Patients who developed diarrhea (≥3 loose stools in the preceding 24 h) | 2017 [80] | |
18.2% | Toxin A/B immunochromatography (CerTest kit) | Stool samples of inpatients or outpatients | 2021 [159] | |
Paraguay | 19.7% | Toxin A/B PCR | Stool samples of hospitalized patients | 2020 [22] |
Colombia | 13.8% | Toxin A/B ELISA OR toxin B/binary toxin PCR (GeneXpert) | Hospitalized patients aged >18 years with >3 liquid stools and no laxative used | 2017 [19] |
13.95% | Toxin A/B PCR (Cepheid Xpert) | Hospitalized patients with >3 decreased consistency stools for at least 48 h and received antibiotics for at least 48 h within 90 days prior to onset of diarrhea | 2017 [20] | |
9.7% | Toxin A/B EIA immunocard (Meridian Bioscience, Cincinnati, OH, USA) or MiniVidas (bioMerieux, Marcy l’Etoile, France) | Hospitalized patient with suspicion of CDI and received at least one dose of antibiotic within 6 weeks prior to onset of symptoms | 2017 [21] | |
Peru | 35.3% | Toxin A/B ELISA (Remel) | Hospitalized patient aged >14 years with diarrhea ≥72 h after admission. | 2007 [17] |
11.2% | GDH (Rida Quik C. difficile) + Toxin A/B EIA (RIDA SCREEN C. difficile A & B) arbitrated by toxin A/B PCR (Cepheid Xpert) | Hospitalized patients aged > 18 years with ≥3 unformed stools 48 h after admission and received antibiotics for at least 48 h within 90 days prior to onset of diarrhea | 2020 [18] | |
EUROPE | ||||
North Macedonia | 13.2% | GDH and toxin A/B detection by immunochromatographic detection | Stool samples received collected 2016–2020 from symptomatic patients | 2024 [23] |
Bulgaria | 3.3% | C. difficile antigen and toxin by immunochromatographic method | Hospitalized patients with acute diarrhea with ≥3 unformed stools per day | 2022 [26] |
Bosnia and Herzegovina | 35.08% | Toxin A/B ELISA | Hospitalized patients with clinical symptoms and signs suggested for CDI | 2013 [28] |
Continent/ Reference | Ribotypes (RT) |
---|---|
Africa [13] |
|
Europe [24,25] |
|
Asia [78,160] |
|
Latin America [16,21,161,162,163] |
|
References
- Rineh, A.; Kelso, M.J.; Vatansever, F.; Tegos, G.P.; Hamblin, M.R. Clostridium difficile Infection: Molecular Pathogenesis and Novel Therapeutics. Expert Rev. Anti Infect. Ther. 2014, 12, 131–150. [Google Scholar] [CrossRef] [PubMed]
- Abt, M.C.; McKenney, P.T.; Pamer, E.G. Clostridium difficile Colitis: Pathogenesis and Host Defense. Nat. Rev. Microbiol. 2016, 14, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Villafuerte Gálvez, J.A.; Pollock, N.R.; Alonso, C.D.; Chen, X.; Xu, H.; Wang, L.; White, N.; Banz, A.; Miller, M.; Daugherty, K.; et al. Stool Interleukin-1β Differentiates Clostridioides difficile Infection (CDI) From Asymptomatic Carriage and Non-CDI Diarrhea. Clin. Infect. Dis. 2023, 76, e1467–e1475. [Google Scholar] [CrossRef] [PubMed]
- Lessa, F.C.; Mu, Y.; Bamberg, W.M.; Beldavs, Z.G.; Dumyati, G.K.; Dunn, J.R.; Farley, M.M.; Holzbauer, S.M.; Meek, J.I.; Phipps, E.C.; et al. Burden of Clostridium difficile Infection in the United States. N. Engl. J. Med. 2015, 372, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Center for Disease Control and Prevention Emerging Infections Program Healthcare-Associated Infections–Community Interface Report: Clostridioides Difficile Infection, 2020; USA, 2020. Available online: https://archive.cdc.gov/www_cdc_gov/hai/eip/Annual-CDI-Report-2020.html#anchor_36138 (accessed on 12 August 2024).
- European Centre for Disease Prevention and Control. Clostridioides Difficile Infections-Annual Epidemiological Report for 2018−2020; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2024; Available online: https://www.ecdc.europa.eu/en/publications-data/clostridioides-difficile-infections-annual-epidemiological-report-2018-2020 (accessed on 12 August 2024).
- Feuerstadt, P.; Theriault, N.; Tillotson, G. The Burden of CDI in the United States: A Multifactorial Challenge. BMC Infect. Dis. 2023, 23, 132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Prabhu, V.S.; Marcella, S.W. Attributable Healthcare Resource Utilization and Costs for Patients with Primary and Recurrent Clostridium difficile Infection in the United States. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2018, 66, 1326–1332. [Google Scholar] [CrossRef]
- Reigadas Ramírez, E.; Bouza, E.S. Economic Burden of Clostridium difficile Infection in European Countries. In Updates on Clostridium difficile in Europe; Mastrantonio, P., Rupnik, M., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2018; Volume 1050, pp. 1–12. ISBN 978-3-319-72798-1. [Google Scholar]
- Balsells, E.; Shi, T.; Leese, C.; Lyell, I.; Burrows, J.; Wiuff, C.; Campbell, H.; Kyaw, M.H.; Nair, H. Global Burden of Clostridium difficile Infections: A Systematic Review and Meta-Analysis. J. Glob. Health 2019, 9, 010407. [Google Scholar] [CrossRef]
- United Nations Human Development Index. Available online: https://hdr.undp.org/data-center/human-development-index (accessed on 17 February 2024).
- United Nations Country Insights. Available online: https://hdr.undp.org/data-center/country-insights (accessed on 17 February 2024).
- Kullin, B.; Abratt, V.R.; Reid, S.J.; Riley, T.V. Clostridioides difficile Infection in Africa: A Narrative Review. Anaerobe 2022, 74, 102549. [Google Scholar] [CrossRef]
- Oyaro, M.O.; Plants-Paris, K.; Bishoff, D.; Malonza, P.; Gontier, C.S.; DuPont, H.L.; Darkoh, C. High Rate of Clostridium difficile among Young Adults Presenting with Diarrhea at Two Hospitals in Kenya. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2018, 74, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Borren, N.Z.; Ghadermarzi, S.; Hutfless, S.; Ananthakrishnan, A.N. The Emergence of Clostridium difficile Infection in Asia: A Systematic Review and Meta-Analysis of Incidence and Impact. PLoS ONE 2017, 12, e0176797. [Google Scholar] [CrossRef]
- Acuña-Amador, L.; Quesada-Gómez, C.; Rodríguez, C. Clostridioides difficile in Latin America: A Comprehensive Review of Literature (1984–2021). Anaerobe 2022, 74, 102547. [Google Scholar] [CrossRef]
- Garcia, C.; Samalvides, F.; Vidal, M.; Gotuzzo, E.; Dupont, H.L. Epidemiology of Clostridium difficile-Associated Diarrhea in a Peruvian Tertiary Care Hospital. Am. J. Trop. Med. Hyg. 2007, 77, 802–805. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Contreras, O.; Soriano-Álvarez, C. Diarrea nosocomial por Clostridiodes difficile en un hospital de referencia en Lima, Perú. Acta Medica Peru. 2020, 37. [Google Scholar] [CrossRef]
- Gualtero, S.M.; Abril, L.A.; Camelo, N.; Sanchez, S.D.; Davila, F.A.; Arias, G.; Silva, E.; Bustos, I.G.; Josa, D.F.; Torres, I.C.; et al. Characteristics of Clostridium difficile Infection in a High Complexity Hospital and Report of the Circulation of the NAP1/027 Hypervirulent Strain in Colombia. Biomédica 2017, 37, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Varón, A.; Muñoz, O.M.; Pulido-Arenas, J.; Amado, S.B.; Tobón-Trujillo, M. Diarrea asociada a antibióticos: Características clínicas y presencia de Clostridium difficile. Rev. Gastroenterol. México 2017, 82, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Salazar, C.L.; Reyes, C.; Atehortua, S.; Sierra, P.; Correa, M.M.; Paredes-Sabja, D.; Best, E.; Fawley, W.N.; Wilcox, M.; González, Á. Molecular, Microbiological and Clinical Characterization of Clostridium difficile Isolates from Tertiary Care Hospitals in Colombia. PLoS ONE 2017, 12, e0184689. [Google Scholar] [CrossRef] [PubMed]
- Orrego, M.; Weiler, N.; Martínez, M.; Orrego, M.; Weiler, N.; Martínez, M. Detección de Clostridioides difficile toxigénico a partir de muestras diarreicas por reacción en cadena de la polimerasa, en pacientes hospitalizados en Paraguay. Periodo 2016–2018. Mem. Inst. Investig. En Cienc. Salud 2020, 18, 55–60. [Google Scholar] [CrossRef]
- Mihajlov, K.; Dokic, E.T.; Gjatovska, L.L.; Kostovski, M.; Jovchevski, R.; Kovacheva-Trpkovska, D.; Mihajlova, I.I. Antibiotics: Cure and Risk Factor for Clostridioides difficile Infection. Acad. Med. J. 2024, 4, 41–47. [Google Scholar] [CrossRef]
- Mihajlov, K.; Andreska, A.; Ristovska, N.; Grdanoska, T.; Trajkovska-Dokic, E. Distribution of Clostridium difficile Ribotypes in Macedonian Patients and Their Antimicrobial Susceptibility. Open Access Maced. J. Med. Sci. 2019, 7, 1896–1899. [Google Scholar] [CrossRef]
- Mihajlov, K.; Grdanoska, T.; Trajkovska, E.D. Distribution of Clostridioides difficile Ribotypes Isolated from Patients in North Macedonia-Update. Acad. Med. J. 2023, 3, 32–40. [Google Scholar] [CrossRef]
- Lyutsova, E.D.; Gospodinova, M.D. The epidemiological and clinical study of patients with Clostridium difficile enterocolitis in Varna, Bulgaria. Russ. J. Infect. Immun. 2022, 12, 366–372. [Google Scholar] [CrossRef]
- Velev, V.; Pavlova, M.; Alexandrova, E.; Popov, M.; Lutakov, I.; Tcherveniakova, T.; Angelova, A.; Hristozova, E.; Kalchev, Y.; Ivanov, I. Study on Patients with Clostridioides difficile Infection during the COVID-19 Pandemic in Bulgaria. Biotechnol. Biotechnol. Equip. 2023, 37, 188–193. [Google Scholar] [CrossRef]
- Ahmetagic, S.; Salkic, N.; Ahmetagic, A.; Custovic, A.; Tihic, N.; Smajlovic, J.; Porobic-Jahic, H. Clostridium difficile Infection in Hospitalized Patients at University Clinical Center Tuzla, Bosnia and Herzegovina: A 4 Year Experience. Mater. Socio-Medica 2013, 25, 153–157. [Google Scholar] [CrossRef]
- Legenza, L.; Barnett, S.; Rose, W.; Safdar, N.; Emmerling, T.; Peh, K.H.; Coetzee, R. Clostridium difficile Infection Perceptions and Practices: A Multicenter Qualitative Study in South Africa. Antimicrob. Resist. Infect. Control 2018, 7, 125. [Google Scholar] [CrossRef]
- Kara, A.; Tahir, M.; Snyderman, W.; Brinkman, A.; Fadel, W.; Dbeibo, L. Why Do Clinicians Order Inappropriate Clostridium difficile Testing? An Exploratory Study. Am. J. Infect. Control 2019, 47, 285–289. [Google Scholar] [CrossRef]
- Almutairi, M.S.; Alnezary, F.S.; Alsuwaylim, R.O.; Alsulaymi, I.; Almohammed, O.A.; Thabit, A.K. Assessment of Knowledge and Practice of Healthcare Providers in Saudi Arabia Regarding Clostridioides difficile Infection Diagnosis and Management: A Cross-Sectional Questionnaire-Based Study. Infect. Drug Resist. 2024, 17, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Abad, C.L.R.; Safdar, N. A Review of Clostridioides difficile Infection and Antibiotic-Associated Diarrhea. Gastroenterol. Clin. North Am. 2021, 50, 323–340. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.; Li, Z.R.; Qin, P.; Qiang, C.X.; Yang, J.; Niu, Y.N.; Niu, X.R.; Liu, X.X.; Wang, W.G.; Wen, B.J.; et al. Risk Factors for Clostridioides difficile Infection in Children: A Systematic Review and Meta-Analysis. J. Hosp. Infect. 2022, 130, 112–121. [Google Scholar] [CrossRef]
- Gupta, A.; Savanti, F.; Singh, B.; Sachdev, P.; Raj, D.; Garg, I.; Aruwani, S.K.; Shaukat, F. Risk Factors Associated With Clostridium difficile-Associated Diarrhea. Cureus 2021, 13, e18115. [Google Scholar] [CrossRef]
- Wu, K.-S.; Syue, L.-S.; Cheng, A.; Yen, T.-Y.; Chen, H.-M.; Chiu, Y.-H.; Hsu, Y.-L.; Chiu, C.-H.; Su, T.-Y.; Tsai, W.-L.; et al. Recommendations and Guidelines for the Treatment of Clostridioides difficile Infection in Taiwan. J. Microbiol. Immunol. Infect. 2020, 53, 191–208. [Google Scholar] [CrossRef]
- McKeown, R.E. The Epidemiologic Transition: Changing Patterns of Mortality and Population Dynamics. Am. J. Lifestyle Med. 2009, 3, 19S–26S. [Google Scholar] [CrossRef]
- United Nations World Population Prospects-Population Division-United Nations-File POP/02-1: Total Population (Both Sexes Combined) by Five-Year Age Group, Region, Subregion and Country, Anually for 1950–2021. Available online: https://population.un.org/wpp/Download/Standard/Population/ (accessed on 28 March 2024).
- Shin, J.H.; High, K.P.; Warren, C.A. Older Is Not Wiser, Immunologically Speaking: Effect of Aging on Host Response to Clostridium difficile Infections. J. Gerontol. A. Biol. Sci. Med. Sci. 2016, 71, 916–922. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global Antibiotic Consumption 2000 to 2010: An Analysis of National Pharmaceutical Sales Data. Lancet Infect. Dis. 2014, 14, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Doll, M.; Marra, A.R.; Apisarnthanarak, A.; Al-Maani, A.S.; Abbas, S.; Rosenthal, V.D. Prevention of Clostridioides difficile in Hospitals: A Position Paper of the International Society for Infectious Diseases. Int. J. Infect. Dis. 2021, 102, 188–195. [Google Scholar] [CrossRef]
- Do, N.T.T.; Vu, H.T.L.; Nguyen, C.T.K.; Punpuing, S.; Khan, W.A.; Gyapong, M.; Asante, K.P.; Munguambe, K.; Gómez-Olivé, F.X.; John-Langba, J.; et al. Community-Based Antibiotic Access and Use in Six Low-Income and Middle-Income Countries: A Mixed-Method Approach. Lancet Glob. Health 2021, 9, e610–e619. [Google Scholar] [CrossRef]
- Auta, A.; Hadi, M.A.; Oga, E.; Adewuyi, E.O.; Abdu-Aguye, S.N.; Adeloye, D.; Strickland-Hodge, B.; Morgan, D.J. Global Access to Antibiotics without Prescription in Community Pharmacies: A Systematic Review and Meta-Analysis. J. Infect. 2019, 78, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Thriemer, K.; Katuala, Y.; Batoko, B.; Alworonga, J.-P.; Devlieger, H.; Van Geet, C.; Ngbonda, D.; Jacobs, J. Antibiotic Prescribing in DR Congo: A Knowledge, Attitude and Practice Survey among Medical Doctors and Students. PLoS ONE 2013, 8, e55495. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.V.; Do, N.T.T.; Vu, D.T.V.; Greer, R.C.; Dittrich, S.; Vandendorpe, M.; Pham, T.N.; Ta, N.T.D.; Pham, T.Q.; Khuong, V.T.; et al. Outpatient Antibiotic Prescribing for Acute Respiratory Infections in Vietnamese Primary Care Settings by the WHO AWaRe (Access, Watch and Reserve) Classification: An Analysis Using Routinely Collected Electronic Prescription Data. Lancet Reg. Health-West. Pac. 2023, 30, 100611. [Google Scholar] [CrossRef]
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018, 66, e1–e48. [Google Scholar] [CrossRef]
- Crobach, M.J.T.; Planche, T.; Eckert, C.; Barbut, F.; Terveer, E.M.; Dekkers, O.M.; Wilcox, M.H.; Kuijper, E.J. European Society of Clinical Microbiology and Infectious Diseases: Update of the Diagnostic Guidance Document for Clostridium difficile Infection. Clin. Microbiol. Infect. 2016, 22, S63–S81. [Google Scholar] [CrossRef] [PubMed]
- Nana, T.; Moore, C.; Boyles, T.; Brink, A.J.; Cleghorn, J.; Devenish, L.M.; du Toit, B.; Fredericks, E.S.; Lekalakala-Mokaba, M.R.; Maluleka, C.; et al. South African Society of Clinical Microbiology Clostridioides difficile Infection Diagnosis, Management and Infection Prevention and Control Guideline. South. Afr. J. Infect. Dis. 2020, 35, 219. [Google Scholar] [CrossRef]
- Abreu y Abreu, A.T.; Velarde-Ruiz Velasco, J.A.; Zavala-Solares, M.R.; Remes-Troche, J.M.; Carmona-Sánchez, R.I.; Aldana-Ledesma, J.M.; Camacho-Ortiz, A.; Contreras-Omaña, R.; Díaz-Seoane, R.; Elizondo-Vázquez, C.T.; et al. Consenso sobre prevención, diagnóstico y tratamiento de la infección por Clostridium difficile. Rev. Gastroenterol. México 2019, 84, 204–219. [Google Scholar] [CrossRef]
- Ghia, C.J.; Waghela, S.; Rambhad, G.S. Systematic Literature Review on Burden of Clostridioides difficile Infection in India. Clin. Pathol. 2021, 14, 2632010X211013816. [Google Scholar] [CrossRef]
- Sofjan, A.K.; Islam, M.A.; Halder, K.; Kabir, N.D.; Saleh, A.A.; Miranda, J.; Lancaster, C.; Begum, K.; Alam, M.J.; Garey, K.W. Molecular Epidemiology of Toxigenic Clostridioides difficile Isolates from Hospitalized Patients and the Hospital Environment in Dhaka, Bangladesh. Anaerobe 2020, 61, 102081. [Google Scholar] [CrossRef] [PubMed]
- Djebbar, A.; Sebaihia, M.; Kuijper, E.; Harmanus, C.; Sanders, I.; Benbraham, N.; Hacène, H. First Molecular Characterisation and PCR Ribotyping of Clostridium difficile Strains Isolated in Two Algerian Hospitals. J. Infect. Dev. Ctries. 2018, 12, 015–021. [Google Scholar] [CrossRef]
- Azimirad, M.; Krutova, M.; Yadegar, A.; Shahrokh, S.; Olfatifar, M.; Aghdaei, H.A.; Fawley, W.N.; Wilcox, M.H.; Zali, M.R. Clostridioides difficile Ribotypes 001 and 126 Were Predominant in Tehran Healthcare Settings from 2004 to 2018: A 14-Year-Long Cross-Sectional Study. Emerg. Microbes Infect. 2020, 9, 1432–1443. [Google Scholar] [CrossRef] [PubMed]
- Cheong, E.; Roberts, T.; Rattanavong, S.; Riley, T.V.; Newton, P.N.; Dance, D.A.B. Clostridium difficile Infection in the Lao People’s Democratic Republic: First Isolation and Review of the Literature. BMC Infect. Dis. 2017, 17, 635. [Google Scholar] [CrossRef]
- Moukhaiber, R.; Araj, G.F.; Kissoyan, K.A.B.; Cheaito, K.A.; Matar, G.M. Prevalence of Clostridium difficile Toxinotypes in Infected Patients at a Tertiary Care Center in Lebanon. J. Infect. Dev. Ctries. 2015, 9, 732–735. [Google Scholar] [CrossRef]
- Vaishnavi, C.; Singh, M.; Mahmood, S.; Kochhar, R. Prevalence and Molecular Types of Clostridium difficile Isolates from Faecal Specimens of Patients in a Tertiary Care Centre. J. Med. Microbiol. 2015, 64, 1297–1304. [Google Scholar] [CrossRef]
- Onwueme, K.; Fadairo, Y.; Idoko, L.; Onuh, J.; Alao, O.; Agaba, P.; Lawson, L.; Ukomadu, C.; Idoko, J. High Prevalence of Toxinogenic Clostridium difficile in Nigerian Adult HIV Patients. Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 667–669. [Google Scholar] [CrossRef] [PubMed]
- Maina, D.; Omuse, G.; Revathi, G.; Adam, R.D. Spectrum of Microbial Diseases and Resistance Patterns at a Private Teaching Hospital in Kenya: Implications for Clinical Practice. PLoS ONE 2016, 11, e0147659. [Google Scholar] [CrossRef]
- Nazemalhosseini-Mojarad, E.; Azimirad, M.; Razaghi, M.; Torabi, P.; Moosavi, A.; Alebouyeh, M.; Aslani, M.M.; Zali, M.R. Frequency of Clostridium difficile among Patients with Gastrointestinal Complaints. Gastroenterol. Hepatol. Bed Bench 2011, 4, 210. [Google Scholar]
- Haider Naqvi, S.A.; Chaudhry, F.F. Clostridium difficile Postantibiotic Diarrhoea Diagnosis. J. Coll. Physicians Surg. Pak. 2012, 22, 640–643. [Google Scholar]
- Elgendy, S.G.; Aly, S.A.; Fathy, R.; Deaf, E.A.E.; Abu Faddan, N.H.; Abdel Hameed, M.R. Clinical and Microbial Characterization of Toxigenic Clostridium difficile Isolated from Antibiotic Associated Diarrhea in Egypt. Iran. J. Microbiol. 2020, 12, 296–304. [Google Scholar] [CrossRef]
- Carey-Ann, B.D.; Carroll, K.C. Diagnosis of Clostridium difficile Infection: An Ongoing Conundrum for Clinicians and for Clinical Laboratories. Clin. Microbiol. Rev. 2013, 26, 604–630. [Google Scholar] [CrossRef]
- Wilson, M.L.; Fleming, K.A.; Kuti, M.A.; Looi, L.M.; Lago, N.; Ru, K. Access to Pathology and Laboratory Medicine Services: A Crucial Gap. Lancet 2018, 391, 1927–1938. [Google Scholar] [CrossRef]
- Nkengasong, J.N.; Yao, K.; Onyebujoh, P. Laboratory Medicine in Low-Income and Middle-Income Countries: Progress and Challenges. Lancet Lond. Engl. 2018, 391, 1873–1875. [Google Scholar] [CrossRef]
- World Health Organization Laboratory Quality Management System: Handbook. Available online: https://www.who.int/publications-detail-redirect/9789241548274 (accessed on 28 March 2024).
- Schroeder, L.F.; Amukele, T. Medical Laboratories in Sub-Saharan Africa That Meet International Quality Standards. Am. J. Clin. Pathol. 2014, 141, 791–795. [Google Scholar] [CrossRef]
- Ahmat, A.; Okoroafor, S.C.; Kazanga, I.; Asamani, J.A.; Millogo, J.J.S.; Illou, M.M.A.; Mwinga, K.; Nyoni, J. The Health Workforce Status in the WHO African Region: Findings of a Cross-Sectional Study. BMJ Glob. Health 2022, 7, e008317. [Google Scholar] [CrossRef]
- Kuehn, B.M. Africa Succeeded Against COVID-19’s First Wave, but the Second Wave Brings New Challenges. JAMA 2021, 325, 327–328. [Google Scholar] [CrossRef] [PubMed]
- Vidyarthi, A.J.; Das, A.; Chaudhry, R. Challenges in Setting up a Diagnostic Microbiology Laboratory during Coronavirus Disease 2019 Crisis and Impact on the Diagnosis of Communicable Diseases. Indian J. Public Health 2022, 66, 230–233. [Google Scholar]
- Ravi, V.; Chakrabarti, A.; Wattal, C.; Raveendran, R. COVID-19: A Boon or a Bane for the Microbiologists. Indian J. Med. Microbiol. 2022, 40, 7–11. [Google Scholar] [CrossRef]
- Wertheim, H.F.L.; Huong, V.T.L.; Kuijper, E.J. Clinical Microbiology Laboratories in Low-Resource Settings, It Is Not Only about Equipment and Reagents, but Also Good Governance for Sustainability. Clin. Microbiol. Infect. 2021, 27, 1389–1390. [Google Scholar] [CrossRef]
- Transparencia COVID-19 Perú Compras. Available online: https://www.perucompras.gob.pe/contrataciones/contrataciones-emergencia-covid19.php (accessed on 26 March 2024).
- Sarmento, N.; Soares da Silva, E.; Barreto, I.; Ximenes, J.C.; Angelina, J.M.; Correia, D.M.; Babo, S.M.; Tilman, A.J.P.; Salles de Sousa, A.; Hornay, E.; et al. The COVID-19 Laboratory Response in Timor-Leste: A Story of Collaboration. Lancet Reg. Health-Southeast Asia 2023, 11, 100150. [Google Scholar] [CrossRef]
- Sayed, S.; Cherniak, W.; Lawler, M.; Tan, S.Y.; El Sadr, W.; Wolf, N.; Silkensen, S.; Brand, N.; Looi, L.M.; Pai, S.A.; et al. Improving Pathology and Laboratory Medicine in Low-Income and Middle-Income Countries: Roadmap to Solutions. Lancet 2018, 391, 1939–1952. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, S.D.; Bisnauthsing, K.N.; Patel, A.; Postulka, A.; Wyncoll, D.; Schiff, R.; French, G.L. Point-of-Care Testing for Clostridium difficile Infection: A Real-World Feasibility Study of a Rapid Molecular Test in Two Hospital Settings. Infect. Dis. Ther. 2014, 3, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Lavergne, V.; Skinner, A.M.; Gonzales-Luna, A.J.; Garey, K.W.; Kelly, C.P.; Wilcox, M.H. Clinical Practice Guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 Focused Update Guidelines on Management of Clostridioides Difficile Infection in Adults. Clin. Infect. Dis. 2021, 73, e1029–e1044. [Google Scholar] [CrossRef]
- Bishop, E.J.; Tiruvoipati, R. Management of Clostridioides difficile Infection in Adults and Challenges in Clinical Practice: Review and Comparison of Current IDSA/SHEA, ESCMID and ASID Guidelines. J. Antimicrob. Chemother. 2022, 78, 21–30. [Google Scholar] [CrossRef]
- Collins, D.A.; Sohn, K.M.; Wu, Y.; Ouchi, K.; Ishii, Y.; Elliott, B.; Riley, T.V.; Tateda, K. Clostridioides difficile Infection in the Asia-Pacific Region. Emerg. Microbes Infect. 2019, 9, 42–52. [Google Scholar] [CrossRef]
- Singhal, T.; Shah, S.; Tejam, R.; Thakkar, P. Incidence, Epidemiology and Control of Clostridium difficile Infection in a Tertiary Care Private Hospital in India. Indian J. Med. Microbiol. 2018, 36, 381–384. [Google Scholar] [CrossRef]
- Dávila, L.P.; Garza-González, E.; Rodríguez-Zulueta, P.; Morfín-Otero, R.; Rodríguez-Noriega, E.; Vilar-Compte, D.; Rodríguez-Aldama, J.C.; Camacho-Ortiz, A. Increasing Rates of Clostridium difficile Infection in Mexican Hospitals. Braz. J. Infect. Dis. 2017, 21, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Alinejad, F.; Barati, M.; Satarzadeh Tabrisi, M.; Saberi, M. Hospital Acquired Diarrhea in a Burn Center of Tehran. Iran. J. Microbiol. 2015, 7, 310–314. [Google Scholar] [PubMed]
- Peruvian Ministry of Health [Observatorio Peruano de Productos Farmaceuticos-OPM]. Available online: https://opm-digemid.minsa.gob.pe/#/consulta-producto (accessed on 26 March 2024).
- Ensom, M.H.H.; Decarie, D.; Lakhani, A. Stability of Vancomycin 25 Mg/mL in Ora-Sweet and Water in Unit-Dose Cups and Plastic Bottles at 4 °C and 25 °C. Can. J. Hosp. Pharm. 2010, 63, 366–372. [Google Scholar] [CrossRef]
- Bass, S.N.; Lam, S.W.; Bauer, S.R.; Neuner, E.A. Comparison of Oral Vancomycin Capsule and Solution for Treatment of Initial Episode of Severe Clostridium Difficile Infection. J. Pharm. Pract. 2015, 28, 183–188. [Google Scholar] [CrossRef] [PubMed]
- de Albuquerque, T.D.A.; Vilela, E.G.; Silva, R.O.S.; Leão, L.A.; Lima, K.S.; Kuijper, E.J.; Passos, R.I.F.Â.; Coelho, L.G.V. Experience of the First Brazilian Fecal Microbiota Transplantation Center in Treating Recurrent Clostridioides difficile Infection. Microb. Health Dis. 2022, 4, e806. [Google Scholar]
- Martínez-Ayala, P.; González-Hernández, L.A.; Amador-Lara, F.; Andrade-Villanueva, J.; Ramos-Solano, M. Fecal Microbiota Transplantation for Severe Complicated C. difficile Colitis in a Patient with Acquired Immunodeficiency Syndrome. Rev. Gastroenterol. México 2019, 84, 110–112. [Google Scholar] [CrossRef]
- Lee, S.; Drennan, K.; Simons, G.; Hepple, A.; Karlsson, K.; Lowman, W.; Gaylard, P.C.; McNamara, L.; Fabian, J. The ‘Ins and Outs’ of Faecal Microbiota Transplant for Recurrent Clostridium difficile Diarrhoea at Wits Donald Gordon Medical Centre, Johannesburg, South Africa. S. Afr. Med. J. 2018, 108, 403. [Google Scholar] [CrossRef]
- Wang, J.-W.; Wang, Y.-K.; Zhang, F.; Su, Y.-C.; Wang, J.-Y.; Wu, D.-C.; Hsu, W.-H. Initial Experience of Fecal Microbiota Transplantation in Gastrointestinal Disease: A Case Series. Kaohsiung J. Med. Sci. 2019, 35, 566–571. [Google Scholar] [CrossRef]
- Dulcey-Sarmiento, L.A.; Castillo-Blanco, J.F.; Therán-León, J.S.; Caltagirone-Miceli, R. Trasplante de Microbiota Fecal en Casos Refractarios de Colitis Pseudomembranosa. A propósito de Un Caso Clínico. Rev. De Med. Clínica 2022, 6, e28052206009. [Google Scholar] [CrossRef]
- Savigamin, C.; Mahakit, N.; Stithit, S.; Samuthpongtorn, C. How to Initiate Fecal Microbiota Transplantation in Developing Countries Using the Behavior Economics Concept of “Choice Architecture”. Front. Med. 2021, 8, 746230. [Google Scholar] [CrossRef]
- Smith, M.; Kassam, Z.; Edelstein, C.; Burgess, J.; Alm, E. OpenBiome Remains Open to Serve the Medical Community. Nat. Biotechnol. 2014, 32, 867. [Google Scholar] [CrossRef]
- Terveer, E.M.; van Beurden, Y.H.; Goorhuis, A.; Seegers, J.F.M.L.; Bauer, M.P.; van Nood, E.; Dijkgraaf, M.G.W.; Mulder, C.J.J.; Vandenbroucke-Grauls, C.M.J.E.; Verspaget, H.W.; et al. How to: Establish and Run a Stool Bank. Clin. Microbiol. Infect. 2017, 23, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Cockeran, R.; Glatt, T.; Barrow, P.; Karlsson, K.; van den Berg, K. Faecal Microbiota Transplant and the Benefit of a National Faecal Microbiota Bank in South Africa. South Afr. Gastroenterol. Rev. 2022, 20, 14–15. [Google Scholar]
- Chen, J.; Gong, C.L.; Hitchcock, M.M.; Holubar, M.; Deresinski, S.; Hay, J.W. Cost-Effectiveness of Bezlotoxumab and Fidaxomicin for Initial Clostridioides difficile Infection. Clin. Microbiol. Infect. 2021, 27, 1448–1454. [Google Scholar] [CrossRef] [PubMed]
- Rajasingham, R.; Enns, E.A.; Khoruts, A.; Vaughn, B.P. Cost-Effectiveness of Treatment Regimens for Clostridioides difficile Infection: An Evaluation of the 2018 Infectious Diseases Society of America Guidelines. Clin. Infect. Dis. 2020, 70, 754–762. [Google Scholar] [CrossRef]
- Gupta, A.; Ananthakrishnan, A.N. Economic Burden and Cost-Effectiveness of Therapies for Clostridiodes difficile Infection: A Narrative Review. Ther. Adv. Gastroenterol. 2021, 14, 17562848211018654. [Google Scholar] [CrossRef]
- Stranges, P.M.; Hutton, D.W.; Collins, C.D. Cost-Effectiveness Analysis Evaluating Fidaxomicin versus Oral Vancomycin for the Treatment of Clostridium difficile Infection in the United States. Value Health 2013, 16, 297–304. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, L.F.; White, M.N.; Obi, E.N.; Kohinke, R.M.; Lockhart, E.R.S.; Chipriano, D.J.; Chen, Y.; Everson, N.A. Clinical and Economic Outcomes After Implementation of a Fidaxomicin Treatment Optimization and Access Pathway at a US Hospital System. Infect. Dis. Ther. 2023, 12, 95–107. [Google Scholar] [CrossRef]
- Prabhu, V.S.; Dubberke, E.R.; Dorr, M.B.; Elbasha, E.; Cossrow, N.; Jiang, Y.; Marcella, S. Cost-Effectiveness of Bezlotoxumab Compared With Placebo for the Prevention of Recurrent Clostridium difficile Infection. Clin. Infect. Dis. 2018, 66, 355–362. [Google Scholar] [CrossRef]
- World Health Organization Universal Health Coverage (UHC). Available online: https://www.who.int/news-room/fact-sheets/detail/universal-health-coverage-(uhc) (accessed on 3 April 2024).
- World Health Organization Coverage of Essential Health Services (SDG 3.8.1). Available online: https://www.who.int/data/gho/data/themes/topics/service-coverage (accessed on 3 April 2024).
- Khanna, S.; Assi, M.; Lee, C.; Yoho, D.; Louie, T.; Knapple, W.; Aguilar, H.; Garcia-Diaz, J.; Wang, G.P.; Berry, S.M.; et al. Efficacy and Safety of RBX2660 in PUNCH CD3, a Phase III, Randomized, Double-Blind, Placebo-Controlled Trial with a Bayesian Primary Analysis for the Prevention of Recurrent Clostridioides difficile Infection. Drugs 2022, 82, 1527–1538. [Google Scholar] [CrossRef]
- Feuerstadt, P.; Louie, T.J.; Lashner, B.; Wang, E.E.L.; Diao, L.; Bryant, J.A.; Sims, M.; Kraft, C.S.; Cohen, S.H.; Berenson, C.S.; et al. SER-109, an Oral Microbiome Therapy for Recurrent Clostridioides difficile Infection. N. Engl. J. Med. 2022, 386, 220–229. [Google Scholar] [CrossRef]
- Collins, D.A.; Riley, T.V. Ridinilazole: A Novel, Narrow-spectrum Antimicrobial Agent Targeting Clostridium (Clostridioides) difficile. Lett. Appl. Microbiol. 2022, 75, 526–536. [Google Scholar] [CrossRef]
- Okhuysen, P.C.; Ramesh, M.S.; Louie, T.; Kiknadze, N.; Torre-Cisneros, J.; de Oliveira, C.M.; Van Steenkiste, C.; Stychneuskaya, A.; Garey, K.W.; Garcia-Diaz, J.; et al. A Randomized, Double-Blind, Phase 3 Safety and Efficacy Study of Ridinilazole Versus Vancomycin for Treatment of Clostridioides difficile Infection: Clinical Outcomes With Microbiome and Metabolome Correlates of Response. Clin. Infect. Dis. 2024, 78, ciad792. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.U.; Griffiss, J.M.; Blumer, J.; O’Riordan, M.A.; Gray, W.; McKenzie, R.; Jurao, R.A.; An, A.T.; Le, M.; Bell, S.J.; et al. Safety, Tolerability, Systemic Exposure, and Metabolism of CRS3123, a Methionyl-tRNA Synthetase Inhibitor Developed for Treatment of Clostridium difficile, in a Phase 1 Study. Antimicrob. Agents Chemother. 2017, 61, e02760-16. [Google Scholar] [CrossRef]
- Summit Therapeutics. A Randomized, Double Blind, Active Controlled Study to Evaluate the Safety and Tolerability of Ridinilazole Compared With Vancomycin and to Assess the Pharmacokinetics of Ridinilazole in Adolescent Subjects (Aged 12 to <18 Years) With Clostridioides Difficile Infection; National Library of Medicine: Bethesda, Maryland, 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04802837 (accessed on 29 April 2024).
- Crestone, Inc. A Phase 2, Randomized, Double-Blind, Comparator-Controlled, Multicenter Study to Evaluate the Safety and Efficacy of CRS3123 Compared With Oral Vancomycin in Adults With Clostridioides difficile Infection; National Library of Medicine: Bethesda, Maryland, 2023. Available online: https://clinicaltrials.gov/ct2/show/NCT04781387 (accessed on 29 April 2024).
- Pierce, J.; Apisarnthanarak, A.; Schellack, N.; Cornistein, W.; Maani, A.A.; Adnan, S.; Stevens, M.P. Global Antimicrobial Stewardship with a Focus on Low- and Middle-Income Countries: A Position Statement for the International Society for Infectious Diseases. Int. J. Infect. Dis. 2020, 96, 621–629. [Google Scholar] [CrossRef]
- Baur, D.; Gladstone, B.P.; Burkert, F.; Carrara, E.; Foschi, F.; Döbele, S.; Tacconelli, E. Effect of Antibiotic Stewardship on the Incidence of Infection and Colonisation with Antibiotic-Resistant Bacteria and Clostridium difficile Infection: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2017, 17, 990–1001. [Google Scholar] [CrossRef]
- Cox, J.A.; Vlieghe, E.; Mendelson, M.; Wertheim, H.; Ndegwa, L.; Villegas, M.V.; Gould, I.; Levy Hara, G. Antibiotic Stewardship in Low- and Middle-Income Countries: The Same but Different? Clin. Microbiol. Infect. 2017, 23, 812–818. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Stewardship Programmes in Health-Care Facilities in Low- and Middle-Income Countries: A WHO Practical Toolkit; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar] [CrossRef]
- Halder, K.; Nesa, M.; Tanni, N.N.; Ahmed, S.; Anwar, S.; Setu, S.K.; Saleh, A.A. Clostridium difficile Induced Diarrhoea Among Hospitalized Patients of Tertiary Care Hospitals in Dhaka. Bangladesh J. Med. Microbiol. 2018, 12, 4–9. [Google Scholar] [CrossRef]
- Sadeghifard, N.; Salari, M.H.; Ghassemi, M.R.; Eshraghi, S.; Harati, F.A. The Incidence of Nosocomial Toxigenic Clostridium difficile Associated Diarrhea in Tehran Tertiary Medical Centers. Acta Medica Iran. 2009, 48, 320–325. [Google Scholar]
- Jalali, M.; Khorvash, F.; Warriner, K.; Weese, J.S. Clostridium difficile Infection in an Iranian Hospital. BMC Res. Notes 2012, 5, 159. [Google Scholar] [CrossRef]
- Ingle, M.; Deshmukh, A.; Desai, D.; Abraham, P.; Joshi, A.; Rodrigues, C.; Mankeshwar, R. Prevalence and Clinical Course of Clostridium difficile Infection in a Tertiary-Care Hospital: A Retrospective Analysis. Indian J. Gastroenterol. 2011, 30, 89–93. [Google Scholar] [CrossRef]
- Vaishnavi, C.; Singh, M.; Kapoor, P.; Kochhar, R. Clinical and Demographic Profile of Patients Reporting for Clostridium difficile Infection in a Tertiary Care Hospital. Indian J. Med. Microbiol. 2015, 33, 326–327. [Google Scholar] [CrossRef]
- Vaishnavi, C.; Singh, M. Preliminary Investigation of Environmental Prevalence of Clostridium difficile Affecting Inpatients in a North Indian Hospital. Indian J. Med. Microbiol. 2012, 30, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Segar, L.; Easow, J.M.; Srirangaraj, S.; Hanifah, M.; Joseph, N.M.; Seetha, K.S. Prevalence of Clostridium difficile Infection among the Patients Attending a Tertiary Care Teaching Hospital. Indian J. Pathol. Microbiol. 2017, 60, 221. [Google Scholar] [CrossRef]
- Katyal, R.; Vaishnavi, C.; Singh, K. Faecal Excretion of Brush Border Membran Enzymes in Patients with Clostridium difficile Diarrhoea. Indian J. Med. Microbiol. 2002, 20, 178–182. [Google Scholar] [CrossRef]
- Rohra, S.; Poojary, A.; Patil, P.; John, S.; Michael, R.; Johnson, S.; Pardeshi, P. Surveillance and Epidemiology of Clostridioides difficile Infection Using the National Health Surveillance Network Criteria: A 7-Year Study from Mumbai, India. Indian J. Med. Microbiol. 2023, 46, 100425. [Google Scholar] [CrossRef]
- Warren, C.A.; Labio, E.; Destura, R.; Sevilleja, J.E.; Jamias, J.D.; Daez, M.L.O. Clostridium difficile and Entamoeba histolytica Infections in Patients with Colitis in the Philippines. Trans. R. Soc. Trop. Med. Hyg. 2012, 106, 424–428. [Google Scholar] [CrossRef]
- Chhin, S.; Harwell, J.I.; Bell, J.D.; Rozycki, G.; Ellman, T.; Barnett, J.M.; Ward, H.; Reinert, S.E.; Pugatch, D. Etiology of Chronic Diarrhea in Antiretroviral-Naive Patients with HIV Infection Admitted to Norodom Sihanouk Hospital, Phnom Penh, Cambodia. Clin. Infect. Dis. 2006, 43, 925–932. [Google Scholar] [CrossRef]
- Huang, H.; Wu, S.; Wang, M.; Zhang, Y.; Fang, H.; Palmgren, A.-C.; Weintraub, A.; Nord, C.E. Molecular and Clinical Characteristics of Clostridium difficile Infection in a University Hospital in Shanghai, China. Clin. Infect. Dis. 2008, 47, 1606–1608. [Google Scholar] [CrossRef]
- Cheng, V.C.C.; Yam, W.C.; Lam, O.T.C.; Tsang, J.L.Y.; Tse, E.Y.F.; Siu, G.K.H.; Chan, J.F.W.; Tse, H.; To, K.K.W.; Tai, J.W.M.; et al. Clostridium difficile Isolates with Increased Sporulation: Emergence of PCR Ribotype 002 in Hong Kong. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 1371–1381. [Google Scholar] [CrossRef]
- Tang, C.; Li, Y.; Liu, C.; Sun, P.; Huang, X.; Xia, W.; Qian, H.; Cui, L.; Liu, G. Epidemiology and Risk Factors for Clostridium difficile–Associated Diarrhea in Adult Inpatients in a University Hospital in China. Am. J. Infect. Control 2018, 46, 285–290. [Google Scholar] [CrossRef]
- Zhou, F.F.; Wu, S.; Klena, J.D.; Huang, H.H. Clinical Characteristics of Clostridium difficile Infection in Hospitalized Patients with Antibiotic-Associated Diarrhea in a University Hospital in China. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2014, 33, 1773–1779. [Google Scholar] [CrossRef]
- Oyofo, B.A.; Subekti, D.; Tjaniadi, P.; Machpud, N.; Komalarini, S.; Setiawan, B.; Simanjuntak, C.; Punjabi, N.; Corwin, A.L.; Wasfy, M.; et al. Enteropathogens Associated with Acute Diarrhea in Community and Hospital Patients in Jakarta, Indonesia. FEMS Immunol. Med. Microbiol. 2002, 34, 139–146. [Google Scholar] [CrossRef]
- Kurniawan, A.; Lugito, N.P.H.; Yanto, T.A.; Tjiang, M.M.; Setiadinata, R.; Wijaya, I.; Soemantri, S. Clostridium difficile Infection in Elderly Hepatocellular Carcinoma Patients in General Hospital, Karawaci, Tangerang, Banten, Indonesia. J. Geriatr. Oncol. 2014, 5, S17. [Google Scholar] [CrossRef]
- Seugendo, M.; Janssen, I.; Lang, V.; Hasibuan, I.; Bohne, W.; Cooper, P.; Daniel, R.; Gunka, K.; Kusumawati, R.L.; Mshana, S.E.; et al. Prevalence and Strain Characterization of Clostridioides (Clostridium) difficile in Representative Regions of Germany, Ghana, Tanzania and Indonesia—A Comparative Multi-Center Cross-Sectional Study. Front. Microbiol. 2018, 9, 1843. [Google Scholar] [CrossRef] [PubMed]
- Collins, D.A.; Gasem, M.H.; Habibie, T.H.; Arinton, I.G.; Hendriyanto, P.; Hartana, A.P.; Riley, T.V. Prevalence and Molecular Epidemiology of Clostridium difficile Infection in Indonesia. New Microbes New Infect. 2017, 18, 34–37. [Google Scholar] [CrossRef]
- Shehabi, A.A.; Abu-Ragheb, H.A.; Allaham, N.A. Prevalence of Clostridium difficile-Associated Diarrhoea among Hospitalized Jordanian Patients. East. Mediterr. Health J. Rev. Sante Mediterr. Orient. Al-Majallah Al-Sihhiyah Li-Sharq Al-Mutawassit 2001, 7, 750–755. [Google Scholar]
- Nasereddin, L.M.; Bakri, F.G.; Shehabi, A.A. Clostridium difficile Infections among Jordanian Adult Hospitalized Patients. Am. J. Infect. Control 2009, 37, 864–866. [Google Scholar] [CrossRef]
- Duong, V.T.; Phat, V.V.; Tuyen, H.T.; Dung, T.T.N.; Trung, P.D.; Minh, P.V.; Tu, L.T.P.; Campbell, J.I.; Le Phuc, H.; Ha, T.T.T.; et al. Evaluation of Luminex xTAG Gastrointestinal Pathogen Panel Assay for Detection of Multiple Diarrheal Pathogens in Fecal Samples in Vietnam. J. Clin. Microbiol. 2016, 54, 1094–1100. [Google Scholar] [CrossRef]
- Shaheen, M.A.; Zaki, S.M.; El-Sayed, A.A.; Sayed, N.M.; Aziz, A.A.; Hamza, S.A. Molecular Epidemiology of Antibiotic-Associated Diarrhoea Due to Clostridium difficile and Clostridium perfringens in Ain Shams University Hospitals. Egypt. J. Med. Hum. Genet. 2007, 8, 121–130. [Google Scholar]
- El-Sokkary, R.H.; Gerges, M.A.; Sharaf, H.E.; Abdel Fattah, L.; Amer, F.A.; Elsaid Tash, R.M.; Aamir, R.; Sherif, A.M.; Hegab, M.S.; Elashkar, S.S.A.; et al. Clostridium difficile Occurrence, Toxin Profile and Antibiotic Susceptibility: An Egyptian Center Experience. Egypt. J. Med. Microbiol. 2017, 26, 31–36. [Google Scholar] [CrossRef]
- Becker, S.L.; Chatigre, J.K.; Coulibaly, J.T.; Mertens, P.; Bonfoh, B.; Herrmann, M.; Kuijper, E.J.; N’Goran, E.K.; Utzinger, J.; von Müller, L. Molecular and Culture-Based Diagnosis of Clostridium difficile Isolates from Côte d’Ivoire after Prolonged Storage at Disrupted Cold Chain Conditions. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 660–668. [Google Scholar] [CrossRef]
- Janssen, I.; Cooper, P.; Gunka, K.; Rupnik, M.; Wetzel, D.; Zimmermann, O.; Groß, U. High Prevalence of Nontoxigenic Clostridium difficile Isolated from Hospitalized and Non-Hospitalized Individuals in Rural Ghana. Int. J. Med. Microbiol. 2016, 306, 652–656. [Google Scholar] [CrossRef]
- Plants-Paris, K.; Bishoff, D.; Oyaro, M.O.; Mwinyi, B.; Chappell, C.; Kituyi, A.; Nyangao, J.; Mbatha, D.; Darkoh, C. Prevalence of Clostridium difficile Infections among Kenyan Children with Diarrhea. Int. J. Infect. Dis. 2019, 81, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Beadsworth, M.; Keeley, A.J.; Roberts, P.; Farragher, B.; Watson, A.; Beeching, N. Clostridium difficile Toxin in Adult Inpatients in an Urban Hospital in Malawi: Associations with HIV Status, CD4 Count and Diarrhoea. Int. J. Trop. Med. 2014, 9, 7–9. [Google Scholar]
- Seugendo, M.; Mshana, S.E.; Hokororo, A.; Okamo, B.; Mirambo, M.M.; von Müller, L.; Gunka, K.; Zimmermann, O.; Groß, U. Clostridium difficile Infections among Adults and Children in Mwanza/Tanzania: Is It an Underappreciated Pathogen among Immunocompromised Patients in Sub-Saharan Africa? New Microbes New Infect. 2015, 8, 99–102. [Google Scholar] [CrossRef]
- Nehanda, S.; Mulundu, G.; Kelly, P. Prevalence of Clostridium difficile and Its Toxins in Hospital Patients with Diarrhoeal Diseases in Lusaka, Zambia. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 86–90. [Google Scholar] [CrossRef]
- Simango, C.; Uladi, S. Detection of Clostridium difficile Diarrhoea in Harare, Zimbabwe. Trans. R. Soc. Trop. Med. Hyg. 2014, 108, 354–357. [Google Scholar] [CrossRef]
- Pernica, J.M.; Steenhoff, A.P.; Welch, H.; Mokomane, M.; Quaye, I.; Arscott-Mills, T.; Mazhani, L.; Lechiile, K.; Mahony, J.; Smieja, M.; et al. Correlation of Clinical Outcomes With Multiplex Molecular Testing of Stool From Children Admitted to Hospital With Gastroenteritis in Botswana. J. Pediatr. Infect. Dis. Soc. 2016, 5, 312–318. [Google Scholar] [CrossRef]
- Djuikoue, I.C.; Tambo, E.; Tazemda, G.; Njajou, O.; Makoudjou, D.; Sokeng, V.; Wandji, M.; Tomi, C.; Nanfack, A.; Dayomo, A.; et al. Evaluation of Inpatients Clostridium difficile Prevalence and Risk Factors in Cameroon. Infect. Dis. Poverty 2020, 9, 122. [Google Scholar] [CrossRef] [PubMed]
- Rajabally, N.; Kullin, B.; Ebrahim, K.; Brock, T.; Weintraub, A.; Whitelaw, A.; Bamford, C.; Watermeyer, G.; Thomson, S.; Abratt, V.; et al. A Comparison of Clostridium difficile Diagnostic Methods for Identification of Local Strains in a South African Centre. J. Med. Microbiol. 2016, 65, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Kullin, B.; Wojno, J.; Abratt, V.; Reid, S.J. Toxin A-Negative Toxin B-Positive Ribotype 017 Clostridium difficile Is the Dominant Strain Type in Patients with Diarrhoea Attending Tuberculosis Hospitals in Cape Town, South Africa. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Legenza, L.; Barnett, S.; Rose, W.; Bianchini, M.; Safdar, N.; Coetzee, R. Epidemiology and Outcomes of Clostridium difficile Infection among Hospitalised Patients: Results of a Multicentre Retrospective Study in South Africa. BMJ Glob. Health 2018, 3, e000889. [Google Scholar] [CrossRef] [PubMed]
- Rajabally, N.M.; Pentecost, M.; Pretorius, G.; Whitelaw, A.; Mendelson, M.; Watermeyer, G. The Clostridium difficile Problem: A South African Tertiary Institution’s Prospective Perspective. South Afr. Med. J. Suid-Afr. Tydskr. Vir Geneeskd. 2013, 103, 168–172. [Google Scholar] [CrossRef]
- Ferreira, C.E.; Nakano, V.; Durigon, E.L.; Avila-Campos, M.J. Prevalence of Clostridium spp. and Clostridium difficile in Children with Acute Diarrhea in São Paulo City, Brazil. Mem. Inst. Oswaldo Cruz 2003, 98, 451–454. [Google Scholar] [CrossRef]
- Hung, Y.-P.; Tsai, P.-J.; Hung, K.-H.; Liu, H.-C.; Lee, C.-I.; Lin, H.-J.; Wu, Y.-H.; Wu, J.-J.; Ko, W.-C. Impact of Toxigenic Clostridium difficile Colonization and Infection among Hospitalized Adults at a District Hospital in Southern Taiwan. PLoS ONE 2012, 7, e42415. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.A.; Pires, R.N.; Baethgen, L.F.; Carneiro, L.C.; Tavares, R.G.; Caierão, J.; Park, S.; Perlin, D.S.; Rodrigues Filho, E.M.; Pasqualotto, A.C. Discrepancies among Three Laboratory Methods for Clostridium difficile Detection and a Proposal for Their Optimal Use. FEMS Microbiol. Lett. 2014, 350, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Secco, D.A.; Balassiano, I.T.; Boente, R.F.; Miranda, K.R.; Brazier, J.; Hall, V.; Santos-Filho, J.d.; Lobo, L.A.; Nouér, S.A.; Domingues, R.M.C.P. Clostridium difficile Infection among Immunocompromised Patients in Rio de Janeiro, Brazil and Detection of Moxifloxacin Resistance in a Ribotype 014 Strain. Anaerobe 2014, 28, 85–89. [Google Scholar] [CrossRef]
- Costa, C.L.; Mano de Carvalho, C.B.; González, R.H.; Gifoni, M.A.C.; Ribeiro, R.d.A.; Quesada-Gómez, C.; Brito, G.A. de C. Molecular Epidemiology of Clostridium difficile Infection in a Brazilian Cancer Hospital. Anaerobe 2017, 48, 232–236. [Google Scholar] [CrossRef]
- Girão, E.S.; de Melo Tavares, B.; Alves dos Santos, S.; Gamarra, G.L.; Rizek, C.; Martins, R.C.; Perdigão Neto, L.V.; Diogo, C.; Annibale Orsi, T.D.; Sanchez Espinoza, E.P.; et al. Prevalence of Clostridioides difficile Associated Diarrhea in Hospitalized Patients in Five Brazilian Centers: A Multicenter, Prospective Study. Anaerobe 2020, 66, 102267. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Ortiz, A.; Galindo-Fraga, A.; Rancel-Cordero, A.; Macías, A.E.; Lamothe-Molina, P.; Ponce de León-Garduño, A.; Sifuentes-Osornio, J. [Factors associated with Clostridium difficile disease in a tertiary-care medical institution in Mexico: A case-control study]. Rev. Investig. Clin. Organo Hosp. Enfermedades Nutr. 2009, 61, 371–377. [Google Scholar]
- Martínez-Rodríguez, A.A.; Estrada-Hernández, L.O.; Tomé-Sandoval, P.; Salazar-Salinas, J.; Martínez-Rodríguez, A.A.; Estrada-Hernández, L.O.; Tomé-Sandoval, P.; Salazar-Salinas, J. Diarrea por Clostridium difficile en pacientes hospitalizados. Med. Interna México 2018, 34, 9–18. [Google Scholar] [CrossRef]
- Tadeo-Escobar, I.; Ángeles-Morales, V.; Soto-Hernandez, J.L.; Hernández, G.A.C. Infección por Clostridiodes difficile en un centro de referencia neurológico de la ciudad de México. Arch. Neurocienc. 2020, 24, 6–13. [Google Scholar]
- García-Fuentes, J.F.; Torres-Murillo, B.J.; Aguilar-Orozco, G.; González, É.; Mosqueda, J.L.; Macías, A.E.; Álvarez, J.A. Is Clostridioides difficile Toxins Detection Necessary When the Glutamate Dehydrogenase Enzyme Is Detected? Gac. Médica México 2021, 157, 107–109. [Google Scholar] [CrossRef] [PubMed]
- Khun, P.A.; Riley, T.V. Epidemiology of Clostridium (Clostridioides) difficile Infection in Southeast Asia. Am. J. Trop. Med. Hyg. 2022, 107, 517. [Google Scholar] [CrossRef]
- Hidalgo-Villeda, F. Diversity of Multidrug-Resistant Epidemic Clostridium difficile NAP1/RT027/ST01 Strains in Tertiary Hospitals from Honduras. Anaerobe 2018, 52, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Araya, E.; Meneses, C.; Castro-Nallar, E.; Guzmán D., A.M.; Álvarez-Lobos, M.; Quesada-Gómez, C.; Paredes-Sabja, D.; Rodríguez, C. Origin, Genomic Diversity and Microevolution of the Clostridium difficile B1/NAP1/RT027/ST01 Strain in Costa Rica, Chile, Honduras and Mexico. Microb. Genom. 2020, 6, e000355. [Google Scholar] [CrossRef]
- Salazar, C.L.; Reyes, C.; Cienfuegos-Gallet, A.V.; Best, E.; Atehortua, S.; Sierra, P.; Correa, M.M.; Fawley, W.N.; Paredes-Sabja, D.; Wilcox, M.; et al. Subtyping of Clostridium difficile PCR Ribotypes 591, 106 and 002, the Dominant Strain Types Circulating in Medellin, Colombia. PLoS ONE 2018, 13, e0195694. [Google Scholar] [CrossRef]
CDI | IDSA/SHEA | ESCMID a | South African Society of Clinical Microbiology b | Taiwan Guidelines | Mexican Consensus |
---|---|---|---|---|---|
Primary episode, non-severe | Preferred regimen: SOC c FDX | ||||
Alternative regimen: SOC c VAN | Preferred regimen: SOC c VAN | ||||
Alternative regimen: SOC c MET d | Preferred regimen: SOC MET | Alternative regimen: SOC MET d | |||
Primary episode, severe e | Preferred regimen: SOC FDX | ||||
Alternative regimen: SOC VAN | Preferred regimen: SOC VAN | Preferred regimen: VAN 125–250 mg qid for 14 days | |||
Oral administration not possible f: Rectal or nasoduodenal delivery +/− adjunctive IV MET 500 mg tid | Alternative regimen: TEC 200 mg bid for 10 days | ||||
First recurrence | SOC FDX OR FDX EPX g | SOC FDX (if primary episode was treated with VAN or MET) | SOC FDX (if VAN was used for primary episode) | SOC FDX (if VAN was used for primary episode in a patient without risk factors h) | |
Alternative regimen: VAN prolonged ta-pered and pulsed regimen i OR SOC VAN | SOC VAN OR SOC FDX + BEZ 10 mg/kg IV once (if primary episode treated with FDX) | SOC VAN (if MET was used for primary episode) | SOC VAN (if MET was used for primary episode in a patient without risk factors h) | SOC VAN (if MET was used for primary episode) | |
Adjunctive therapy: BEZ 10 mg/kg IV once after SOC | VAN prolonged tapered and pulsed regimen (if FDX or BEZ are unavailable) | VAN prolonged tapered and pulsed regimen (if standard VAN was used in primary episode) | TEC 100–200 mg bid for 10 days (if VAN was used for primary episode in a patient without risk factors). Patient with risk factors h,j: VAN extended-regimen k OR FDX EPX g | VAN prolonged tapered and pulsed regimen (if SOC VAN was used in primary episode) | |
Second or subsequent recurrence | SOC FDX | SOC FDX + BEZ 10 mg/kg IV once OR SOC FDX followed by FMT | SOC FDX | FDX EPX if it was not previously used | |
VAN tapered and pulsed regimen OR SOC VAN followed by RAX 400 mg tid for 20 days | SOC VAN followed by FMT OR SOC VAN + BEZ 10 mg/kg IV once | VAN prolonged tapered and pulsed regimen | VAN extended regimen k | VAN tapered and pulsed regimen OR VAN 125 mg qid for 10–14 days followed by RAX (unavailable in Mexico) 400 mg tid for 20 days | |
Adjunctive therapy: BEZ 10 mg/kg IV once after SOC | Alternative regimen: VAN tapered and pulsed regimen (if FDX, BEZ, and FMT are unavailable) | TEC 100–200 mg bid for 10–14 days if it was not previously used | |||
FMT | FMT | FMT (for third and subsequent recurrence) | FMT | FMT | |
Fulminant CDI l | VAN 500 mg qid PO or NGT + IV MET 500 mg tid | SOC VAN OR SOC FDX + surgical consultation | VAN 500 mg qid PO or NGT + IV MET 500 mg tid | VAN 125–500 mg qid PO or NGT + IV MET 500 mg tid | VAN 250–500 mg qid PO or NGT + IV MET 500 mg tid |
If ileus present: Consider adding rectal VAN 500 mg in 100 mL NaCl qid as retention enema. | If ileus present: Consider adding rectal VAN 500 mg in 100 mL NaCl qid as retention enema. | VAN 125–500 mg qid PO or NGT plus VAN 0.25–1 g bid-qid per rectum | If ileus or abdominal distention: VAN 500 mg qid rectal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendo-Lopez, R.; Alonso, C.D.; Villafuerte-Gálvez, J.A. Best Practices in the Management of Clostridioides difficile Infection in Developing Nations. Trop. Med. Infect. Dis. 2024, 9, 185. https://doi.org/10.3390/tropicalmed9080185
Mendo-Lopez R, Alonso CD, Villafuerte-Gálvez JA. Best Practices in the Management of Clostridioides difficile Infection in Developing Nations. Tropical Medicine and Infectious Disease. 2024; 9(8):185. https://doi.org/10.3390/tropicalmed9080185
Chicago/Turabian StyleMendo-Lopez, Rafael, Carolyn D. Alonso, and Javier A. Villafuerte-Gálvez. 2024. "Best Practices in the Management of Clostridioides difficile Infection in Developing Nations" Tropical Medicine and Infectious Disease 9, no. 8: 185. https://doi.org/10.3390/tropicalmed9080185
APA StyleMendo-Lopez, R., Alonso, C. D., & Villafuerte-Gálvez, J. A. (2024). Best Practices in the Management of Clostridioides difficile Infection in Developing Nations. Tropical Medicine and Infectious Disease, 9(8), 185. https://doi.org/10.3390/tropicalmed9080185