Numerical Investigation of Rotating Instability Development in a Wide Tip Gap Centrifugal Compressor †
Abstract
:1. Introduction
- It highlights the interaction between tip leakage vortices and splitter blades (related to a wide tip clearance), which degrades performances near the peak efficiency.
2. Methodology
2.1. Test Case Geometry
2.2. Flow Solver
2.3. Mesh
2.4. Boundary Conditions
2.5. Validation
3. Unsteady Phenomenon near the Peak Efficiency
3.1. Flow Structures near Choke Conditions
3.2. Flow Structures at Design Conditions
4. Backflow Vortices Emergence
4.1. Flow Structures in Near-Stall Conditions
4.2. Flow Structures in Stall Conditions
4.3. Backflow Vortices Inception Mechanisms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BFV | Backflow Vortex. |
BPF | Blade Passing Frequency. |
SPL | Splitter blade. |
TLV | Tip Leakage Vortex. |
Absolute velocity component on direction ’i’. | |
Relative velocity component on direction ’i’. | |
Relative meridional position. | |
Backflow vortex primary vorticity. |
References
- Inoue, M.; Kuroumaru, M. Structure of Tip Clearance Flow in an Isolated Axial Compressor Rotor. J. Turbomach. 1989, 111, 250–256. [Google Scholar] [CrossRef]
- Inoue, M.; Kuroumaru, M.; Iwamoto, T.; Ando, Y. Detection of a Rotating Stall Precursor in Isolated Axial Flow Compressor Rotors. J. Turbomach. 1991, 113, 281–287. [Google Scholar] [CrossRef]
- Inoue, M.; Kuroumaru, M.; Tanino, T.; Furukawa, M. Propagation of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Rotor. J. Turbomach. 1999, 122, 45–54. [Google Scholar] [CrossRef]
- Inoue, M.; Kuroumaru, M.; Tanino, T.; Yoshida, S.; Furukawa, M. Comparative Studies on Short and Long Length-Scale Stall Cell Propagating in an Axial Compressor Rotor. J. Turbomach. 2000, 123, 24–30. [Google Scholar] [CrossRef]
- März, J.; Hah, C.; Neise, W. An Experimental and Numerical Investigation into the Mechanisms of Rotating Instability. J. Turbomach. 2002, 124, 367–374. [Google Scholar] [CrossRef]
- Mailach, R.; Lehmann, I.; Vogeler, K. Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex. J. Turbomach. 2000, 123, 453–460. [Google Scholar] [CrossRef]
- Vo, H.D.; Tan, C.S.; Greitzer, E.M. Criteria for spike initiated rotating stall. J. Turbomach. 2008, 130, 011023. [Google Scholar] [CrossRef]
- Pullan, G.; Young, A.M.; Day, I.J.; Greitzer, E.M.; Spakovszky, Z.S. Origins and Structure of Spike-Type Rotating Stall. J. Turbomach. 2015, 137, 051007. [Google Scholar] [CrossRef]
- Bousquet, Y.; Binder, N.; Dufour, G.; Carbonneau, X.; Roumeas, M.; Trébinjac, I. Numerical simulation of stall inception mechanisms in a centrifugal compressor with vaned diffuser. J. Turbomach. 2016, 138, 121005. [Google Scholar] [CrossRef] [Green Version]
- Cao, T.; Kanzaka, T.; Xu, L.; Brandvik, T. Tip Leakage Flow Instability in a Centrifugal Compressor. J. Eng. Gas Turbines Power 2021, 143, 041012. [Google Scholar] [CrossRef]
- Iwakiri, K.; Furukawa, M.; Ibaraki, S.; Tomita, I. Unsteady and three-dimensional flow phenomena in a transonic centrifugal compressor impeller at rotating stall. In Proceedings of the ASME Turbo Expo 2009: Power for Land, Sea, and Air, Orlando, FL, USA, 8–12 June 2009; Volume 48883, pp. 1611–1622. [Google Scholar] [CrossRef]
- Tomita, I.; Ibaraki, S.; Furukawa, M.; Yamada, K. The Effect of Tip Leakage Vortex for Operating Range Enhancement of Centrifugal Compressor. J. Turbomach. 2013, 135, 051020. [Google Scholar] [CrossRef]
- Flete, X.; Binder, N.; Bousquet, Y.; Cros, S. Numerical investigation of rotating instabilities development in a wide tip gap centrifugal compressor. In Proceedings of the 15th European Turbomachinery Conference, Budapest, Hungary, 24–28 April 2023; Paper n. ETC2023-119. Available online: https://www.euroturbo.eu/publications/conference-proceedings-repository/ (accessed on 7 June 2023).
- Chen, H.; Li, Y.; Tan, D.; Katz, J. Visualizations of Flow Structures in the Rotor Passage of an Axial Compressor at the Onset of Stall. In Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, Republic of Korea, 13–17 June 2016. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar]
- Kulak, M.; Grapow, F.; Liśkiewicz, G. Numerical analysis of centrifugal compressor operating in near-surge conditions. J. Phys. Conf. Ser. 2018, 1101, 012017. [Google Scholar] [CrossRef]
- Jeong, J.; Hussain, F. On the identification of a vortex. J. Fluid Mech. 1995, 285, 69–94. [Google Scholar] [CrossRef]
- You, D.; Wang, M.; Moin, P.; Mittal, R. Effects of tip-gap size on the tip-leakage flow in a turbomachinery cascade. Phys. Fluids 2006, 18, 105102. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.; Li, Y.; Chen, H.; Wilkes, I.; Katz, J. The Three Dimensional Flow Structure and Turbulence in the Tip Region of an Axial Flow Compressor. In Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Montreal, QC, Canada, 15–19 June 2015. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, C.; Shi, X.; Yang, C.; Chen, J. Two stall stages in a centrifugal compressor with a vaneless diffuser. Aerosp. Sci. Technol. 2021, 110, 106496. [Google Scholar] [CrossRef]
- Young, A.; Day, I.; Pullan, G. Stall Warning by Blade Pressure Signature Analysis. J. Turbomach. 2012, 135, 011033. [Google Scholar] [CrossRef]
- Day, I. Stall, surge, and 75 years of research. J. Turbomach. 2016, 138, 011001. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Blade number | 7 + 7 |
Design rotation rate | 100 krpm |
Design mass flow rate | 0.1 kg/s |
Design pressure ratio | 2 |
Diffuser radius ratio | 1.4 |
Diffuser width ratio | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Share and Cite
Flete, X.; Binder, N.; Bousquet, Y.; Cros, S. Numerical Investigation of Rotating Instability Development in a Wide Tip Gap Centrifugal Compressor. Int. J. Turbomach. Propuls. Power 2023, 8, 25. https://doi.org/10.3390/ijtpp8030025
Flete X, Binder N, Bousquet Y, Cros S. Numerical Investigation of Rotating Instability Development in a Wide Tip Gap Centrifugal Compressor. International Journal of Turbomachinery, Propulsion and Power. 2023; 8(3):25. https://doi.org/10.3390/ijtpp8030025
Chicago/Turabian StyleFlete, Xavier, Nicolas Binder, Yannick Bousquet, and Sandrine Cros. 2023. "Numerical Investigation of Rotating Instability Development in a Wide Tip Gap Centrifugal Compressor" International Journal of Turbomachinery, Propulsion and Power 8, no. 3: 25. https://doi.org/10.3390/ijtpp8030025
APA StyleFlete, X., Binder, N., Bousquet, Y., & Cros, S. (2023). Numerical Investigation of Rotating Instability Development in a Wide Tip Gap Centrifugal Compressor. International Journal of Turbomachinery, Propulsion and Power, 8(3), 25. https://doi.org/10.3390/ijtpp8030025