Predicting Erosion Damage in a Centrifugal Fan
Abstract
:1. Introduction
2. Fan Model
3. Flow Field Solution
3.1. Mesh Generation
3.2. Flow Results
3.2.1. Fan Performance
3.2.2. Flow Characterization
4. Particle Trajectory Modeling
4.1. Turbulence Effect
4.2. Particle Tracking
4.3. Boundary Conditions
4.4. Particle Seeding
5. Erosion Assessment
6. Results and Discussion
6.1. Particle Trajectory Results
6.2. Erosion Results
7. Conclusions
- ▪
- This forward-curved blade impeller exhibits flow complexity due to regions of swirl and recirculation, poor flow guidance at the blade entrance, and non-uniformity at the impeller exit.
- ▪
- The scroll is characterized by two large counter-rotating eddies occupying the entire cross-sections.
- ▪
- The blockage in the tongue region caused the fluid to be recirculated from the volute through the impeller inlet.
- ▪
- Small particles are more susceptible to the drag force, and sensitive to the secondary flows and leakage flow, so they closely follow the streamlines. In contrast, large particles behave differently owing to their greater inertia and centrifugal force relative to the drag force.
- ▪
- The high frequency of impacts on the outer wall of the scroll is caused by particles travelling multiple times via the tongue and colliding with the scroll.
- ▪
- The axial–radial bend of the impeller hub and the full blades exhibit high erosion rates, while the splitters have unevenly distributed erosion over the PS.
- ▪
- The casing plate depicts noticeable erosion alongside the full blades and first splitter.
- ▪
- The scroll shows significant erosion rates across the outer walls, associated with the dense flux of particles exiting the impeller at high velocities.
- ▪
- The non-uniformities of erosion patterns may be related to the flow nature of the impeller, as characterized by large recirculations and flow separations.
- ▪
- It can be inferred that AC-coarse dust particles caused significant erosion of the scroll and casing plate, independently of the fan operation.
- ▪
- The impeller is more affected by AC-coarse dust when operating at the nominal point compared to the high discharge point, where Saharan dust caused more erosion.
- ▪
- The identification of areas prone to erosion will help selecting adequate coatings to improve erosion resistance.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
area (m2) | |
c | chord (m) |
drag coefficient | |
shear lift force coefficient | |
slip–rotation lift coefficient | |
rotational coefficient | |
d | diameter of particle (m) |
E | erosion rate density (mg/s·mm2) |
f | force reduced by mass (N/kg) |
F | force (N) |
g | gravity (m/s2) |
H | pressure head (mmH2O) |
k | turbulent kinetic energy (m2/s2) |
m | mass (kg) |
normal unit vector | |
p | pressure (Pa) |
P | power (W) |
r | radius, radial co-ordinate (m) |
Re | Reynolds number |
particle Reynolds number | |
shear flow Reynolds number | |
time (s) | |
tangential unit vector | |
torque (N·m) | |
velocity (m/s) |
Greek Symbols
β | impact angle (deg) |
local erosion rate (mg/g) | |
η | efficiency |
ρ | density (kg/m3) |
μ | dynamic viscosity (kg/m.s) |
blade speed of rotation (rad/s) | |
fluid rotation (s−1) | |
relative fluid rotation (s−1) | |
angular velocity of particle (s−1) |
Subscripts
abs | absolute |
f | fluid |
in | input |
p | particle |
r | radial |
rel | relative |
s | static |
t-s | total-to-static |
θ | tangential direction |
z | axial direction |
1, 2 | impact/rebound |
Abbreviations
AERD | average erosion rate density |
EMPH | eroded mass per hour |
LE | leading edge |
PS | pressure side |
SS | suction side |
TE | trailing edge |
References
- Meher-Homji, C.; Bromley, A.F.; Stalder, J.P. Gas turbine performance deterioration and compressor washing. In Proceedings of the 2nd Middle East Turbomachiery Symposium, Doha, Qatar, 17–20 March 2013. [Google Scholar]
- Atkin, M.L.; Duke, G.A. Erosion Prediction in Turbomachinery Resulting From Environmental Particles; Aeronautical Research Laboratory: Melbourne, VIC, Australia, 1971.
- Kurz, R.; Brun, K. Degradation in Gas Turbine Systems. J. Eng. Gas Turbines Power 2001, 123, 70–77. [Google Scholar] [CrossRef]
- Tabakoff, W.; Balan, C. Effects of Solid Particles Suspended in Fluid Flow through an Axial Flow Compressor Stage. In Proceedings of the International Symposium on Air Breathing Engines, Bangalore, India, 16–18 February 1981. Paper No. 75. [Google Scholar]
- Ghenaiet, A.; Tan, S.C.; Elder, R.L. Experimental investigation of an axial fan erosion and performance degradation. Proc. Inst. Mech. Eng. Part A J. Power Energy 2004, 218, 437–450. [Google Scholar] [CrossRef]
- Ghenaiet, A.; Tan, S.C.; Elder, R.L. Prediction of an Axial Turbomachine Performance degradation. Proc. Inst. Mech. Eng. Part A J. Power Energy 2005, 219, 273–287. [Google Scholar] [CrossRef]
- Hussein, M.F.; Tabakoff, W. Dynamic Behavior of Solid Particles Suspended by Polluted Flow in a Turbine Stage. J. Aircr. 1973, 10, 434–440. [Google Scholar] [CrossRef]
- Elsayed, A.F.; Rashed, M.I.I. Erosion in Centrifugal Compressors. In Proceedings of the Fifth International Conference on Erosion by Liquid and Solid Impact, Cambridge, UK, 2–6 September 1979; University of Cambridge: Cambridge, UK, 1979. Paper No. 55. [Google Scholar]
- Mengiiturk, M.; Sverdrup, E.F. Computer Calculation of Fan Erosion in Coal-Fired Power Plants. Part 1: Centrifugal Fans. Int. J. Turbo Jet Engines 1985, 2, 169–176. [Google Scholar] [CrossRef]
- Elfeki, S.; Tabakoff, W. Erosion Study of Radial Flow Compressor with Splitters. ASME J. Turbomach. 1987, 109, 62–69. [Google Scholar] [CrossRef]
- Harris, P.K. Erosion in Centrifugal Compressor Impellers. Ph.D. Thesis, Cranfield University, Wharley End, UK, 1996. [Google Scholar]
- Cardillo, L.; Corsini, A.; Delibra, G.; Rispoli, F.; Sheard, A.G.; Venturini, P. Simulation of Particle-Laden Flows in a Large Centrifugal Fan for Erosion Prediction. In Proceedings of the ASME Turbo Expo 2014, Düsseldorf, Germany, 16–20 June 2014. Paper No. GT2014-25865. [Google Scholar] [CrossRef]
- Fritsche, M.; Epple, P.; Steber, M.; Rußwurm, H.J. Erosion Optimized Radial Fan Impellers and Scrolls for Particle Flows. In Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, Tampa, FL, USA , 3–9 November 2017; American Society of Mechanical Engineers: New York, NY, USA, 2017. Paper No. IMECE2017-71825. [Google Scholar] [CrossRef]
- Aldi, N.; Casari, N.; Pinelli, M.; Suman, A.; Vulpio, A.; Saccenti, P.; Beretta, R.; Fortini, A.; Merlin, M. Erosion Behavior on a Large-Sized Centrifugal Fan. In Proceedings of the 13th European Conference on Turbomachinery Fluid dynamics & Thermodynamics ETC13, Lausanne, Switzerland, 8–12 April 2019. Paper ID: ETC2019-389. [Google Scholar]
- Mandi, R.P.; Yaragatti, U.R. Energy Efficiency Improvement of Auxiliary Power Equipment in Thermal Power Plant through Operational Optimization. In Proceedings of the 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems, Bengaluru, India, 16–19 December 2012. [Google Scholar]
- Holzdeppe, D. Particle Flow Erosion at Ventilator Components. In Basic Principles of Erosion and Materials/Coatings Resistant against ParticleFlow Erosion; TLT-Turbo GmbH: Zweibrücken, Germany, 2015. [Google Scholar]
- Zhang, J.; Han, Z.; Yin, W.; Wang, H.; Ge, C.; Jiang, J. Numerical Experiment of the Solid Particle Erosion of Bionic Configuration Blade of Centrifugal Fan. Acta Metall. Sin. 2013, 26, 16–24. [Google Scholar] [CrossRef]
- Han, Z.; Yin, W.; Zhang, J.; Jiang, J.; Niu, S.; Ren, L. Erosion-Resistant Surfaces Inspired by Tamarisk. J. Bionic. Eng. 2013, 10, 479–487. [Google Scholar] [CrossRef]
- Ghenaiet, A. Effects of Sand Ingestion through an Axial Fan with Blade Staggering. In Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air, Berlin, Germany, 9–13 June 2008; American Society of Mechanical Engineers: New York, NY, USA, 2008; pp. 239–255, Paper No. GT2008-50338. [Google Scholar] [CrossRef]
- Ghenaiet, A. Simulation of Erosive Effects of Sand Particle Impacts in Axial Turbomachinery; AIP, American Institute of Physics: College Park, MD, USA, 2010; CP1220; pp. 78–90. ISBN 978-0-7354-0766-4. [Google Scholar]
- Ghenaiet, A. Study of Sand Particle Trajectories and Erosion Into the First Compression Stage af a Turbofan. ASME J. Turbomach. 2012, 134, 051025. [Google Scholar] [CrossRef]
- Ghenaiet, A. Simulation of Particle Trajectories and Erosion in a Centrifugal Compressor. ASME J. Turbomach. 2012, 134, 051022. [Google Scholar] [CrossRef]
- Ghenaiet, A. Effects of Solid Particle Ingestion through an Hp Turbine. In Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenhagen, Denmark, 11–15 June 2012; American Society of Mechanical Engineers: New York, NY, USA, 2012; pp. 1583–1595, Paper No. GT2012-69875. [Google Scholar] [CrossRef]
- Ghenaiet, A. Prediction of Erosion in Radial Turbine Components. In Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air, Glasgow, UK, 14–18 June 2010; American Society of Mechanical Engineers: New York, NY, USA, 2010. Paper No. GT2010-22419. [Google Scholar]
- Fluent 6.1 User’s Guide; Fluent Inc.: New York, NY, USA, 2003.
- White, F.M. Fluid Mechanics, 5th ed.; McGraw-Hill: New York, NY, USA, 2003; p. 467. [Google Scholar]
- Sommerfeld, M. Theoretical and Experimental Modelling of Particulate Flow; Technical Report Lecture Series; Von Karman Institute for Fluid Dynamics: Sint-Genesius-Rode, Belgium, 2006. [Google Scholar]
- Haider, A.; Levenspiel, O. Drag Coefficient and Terminal Velocity of Spherical and Non Spherical Particles. J. Powder Technol. 1989, 58, 63. [Google Scholar] [CrossRef]
- Soo, S.L. Fluid Dynamics of Multiphase Systems; Ginn and Blaisdell Publishing Co.: Waltham, MA, USA, 1967. [Google Scholar]
- Thompson, T.L.; Clark, N.N. A Holistic Approach to Particle Drag Prediction. Powder Technol. 1991, 67, 57–66. [Google Scholar] [CrossRef]
- Saffman, P. The lift on a Small Sphere in a Slow Shear Flow. J. Fluid Mech. 1965, 22, 385–400. [Google Scholar] [CrossRef]
- Mei, R. An approximated Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number. Int. J. Multiph. Flow 1992, 18, 145–147. [Google Scholar] [CrossRef]
- Crowe, C.T.; Sommerfeld, M.; Tsuji, Y. Multiphase Flows with Droplets and Particles; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Oesterlé, B.; Dinh, T.B. Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers. Exp. Fluids 1998, 25, 16–22. [Google Scholar] [CrossRef]
- Dennis, S.C.R.; Singh, S.N.; Ingham, D.B. The Steady Flow Due To Rotating Sphere at Low And Moderate Reynolds Numbers. J. Fluid Mech. 1980, 101, 257–279. [Google Scholar] [CrossRef]
- Gosman, A.D.; Ionnides, E. Aspects of Computer Simulation of Liquid Fuelled Combustors. In Proceedings of the 19th Aerospace Science Meeting, St. Louis, MO, USA, 12–15 January 1981. Paper AIAA 81-0323. [Google Scholar]
- Brown, D.J.; Hutchinson, P. The Interaction of Solid or Liquid and Turbulent Fluid Flow Fields—A Numerical Simulation. ASME J. Fluids Eng. 1979, 101, 265–269. [Google Scholar] [CrossRef]
- Shirolkar, J.S.; Coimbra, C.F.M.; Queiroz, M.Q. Fundamental Aspects of Modeling Turbulent Particle Dispersion in Dilute Flows. Prog. Energy Combust. Sci. 1996, 22, 363–399. [Google Scholar] [CrossRef]
- Sommerfeld, M. Modelling of Particle-Wall Collisions in Confined Gas-Particle Flows. Int. J. Multiph. Flow 1992, 18, 905–926. [Google Scholar] [CrossRef]
- Breuer, M.; Alletto, M.; Langfeldt, F. Sand Grain Roughness Model for Rough Walls Within Eulerian-Lagrangian Predictions of Turbulent Flows. Int. J. Multiph. Flow 2012, 43, 157–175. [Google Scholar] [CrossRef]
- Tabakoff, W.; Hamed, A.; Murugan, D.M. Effect of Target Materials on the Particle Restitution Characteristics for Turbomachinery Application. J. Propuls. Power 1996, 12, 260–266. [Google Scholar] [CrossRef]
- Schulz, M.; Tsyro, S.; Mortier, A.; Valdebenito, A.; Benedictow, A. Saharan Dust Episode of 13–18 March 2022, Episode Analysis: CAMS2_71 Report N°01 in 2022. Issued by Norwegian Meteorological Institute. Available online: https://atmosphere.copernicus.eu/sites/default/files/publications/CAMS271_2021SCx_D1.1.1._202306_2022_Interim_Assessment_Report_v3.pdf (accessed on 30 April 2022).
- Ryder, C.L.; Marenco, F.; Brooke, J.K.; Estelles, V.; Cotton, R.; Formenti, P.; McQuaid, J.B.; Price, H.C.; Liu, D.; Ausset, P.; et al. Coarse-mode mineral dust size distributions, composition and optical properties from AER-D aircraft measurements over the tropical eastern Atlantic. Atmos. Chem. Phys. 2018, 18, 17225–17257. [Google Scholar] [CrossRef]
- Mund, M.G.; Guhne, H. Gas Turbines—Dust—Air Cleaners: Experience and Trends. In Proceedings of the ASME 1970 International Gas Turbine Conference and Products Show, Brussels, Belgium, 24–28 May 1970; American Society of Mechanical Engineers: New York, NY, USA, 1970. 27p; Paper No. 70-GT-104, V01BT02A037. [Google Scholar] [CrossRef]
- Finnie, I. Erosion of Surfaces by Solid Particles. Wear 1960, 3, 87–103. [Google Scholar] [CrossRef]
- Bitter, J.G.A. A Study of Erosion Phenomena. Wear 1963, 6, 5–21, 169–190. [Google Scholar] [CrossRef]
- Grant, G.; Tabakoff, W. Erosion Prediction in Turbomachinery Due to Environmental Solid Particles. In Proceedings of the AIAA 12th Aerospace Sciences Meeting, Washington, DC, USA, 30 January–1 February 1974. AIAA Paper No. 74-16. [Google Scholar] [CrossRef]
NominalPoint (304.2 m3/h) | Maximum Discharge (533.2 m3/h) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Concentration (μg/m3) | Concentration (μg/m3) | |||||||||
100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 | |
Particle mass rate (μg/s) | 8.4383 | 16.8766 | 25.3149 | 33.7533 | 42.1916 | 14.7906 | 29.3813 | 44.3719 | 59.1626 | 73.9553 |
AERD of full blades (mg/s·mm2) × 10−12 | 2.230 | 4.496 | 6.723 | 8.974 | 11.220 | 6.963 | 14.150 | 21.210 | 28.280 | 35.390 |
EMPH of full blades (mg/h) × 10−3 | 0.2282 | 0.4599 | 0.6878 | 0.9181 | 1.1479 | 0.7124 | 1.4477 | 2.1700 | 2.8934 | 3.6208 |
AERD of splitters (mg/s·mm2) × 10−12 | 0.1499 | 0.3237 | 0.4897 | 0.6483 | 0.8079 | 1.2495 | 2.4253 | 3.659 | 4.8609 | 6.0739 |
EMPH of splitters (mg/h) × 10−3 | 0.0382 | 0.0825 | 0.1247 | 0.1652 | 0.2058 | 0.3183 | 0.6179 | 0.9322 | 1.2384 | 1.5475 |
AERD of hub (mg/s·mm2) × 10−12 | 0.08909 | 0.1788 | 0.2674 | 0.3534 | 0.4401 | 0.5959 | 1.1820 | 1.7770 | 2.3740 | 2.9720 |
EMPH of hub (mg/h) × 10−3 | 0.0145 | 0.0292 | 0.0436 | 0.0577 | 0.0718 | 0.0973 | 0.1929 | 0.2901 | 0.3876 | 0.4852 |
AERD of impeller (mg/s·mm2) × 10−12 | 0.5398 | 1.0986 | 1.6456 | 2.1928 | 2.7398 | 2.1679 | 4.3405 | 5.1483 | 8.6854 | 10.865 |
EMPH of impeller (mg/h) × 10−3 | 0.2809 | 0.5716 | 0.85628 | 1.1410 | 1.4256 | 1.1280 | 2.2586 | 2.6789 | 4.5194 | 5.6535 |
AERD of casing plate (mg/s·mm2) × 10−12 | 0.1472 | 0.3078 | 0.4594 | 0.6121 | 0.7688 | 1.0180 | 2.0280 | 3.0170 | 4.0110 | 5.0030 |
EMPH of casing plate (mg/h) × 10−3 | 0.0245 | 0.0512 | 0.0764 | 0.1018 | 0.1278 | 0.1693 | 0.3373 | 0.5018 | 0.6671 | 0.8321 |
AERD of scroll (mg/s·mm2) × 10−12 | 0.6267 | 1.2430 | 1.8680 | 2.4870 | 3.1010 | 1.7910 | 3.6060 | 5.4060 | 7.2060 | 9.0480 |
EMPH of scroll (mg/h) × 10−3 | 0.3276 | 0.6497 | 0.9764 | 1.3000 | 1.6210 | 0.9362 | 1.8849 | 2.8258 | 3.7667 | 4.7296 |
Nominal Point (304.2 m3/h) | Maximum Discharge (533.2 m3/h) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Concentration (μg/m3) | Concentration (μg/m3) | |||||||||
100 | 200 | 300 | 400 | 500 | 100 | 200 | 300 | 400 | 500 | |
Particle mass rate (μg/s) | 8.4383 | 16.8766 | 25.3149 | 33.7533 | 42.1916 | 14.7906 | 29.3813 | 44.3719 | 59.1626 | 73.9553 |
AERD of full blades (mg/s·mm2) × 10−12 | 2.7890 | 5.485 | 8.205 | 11.012 | 14.130 | 5.885 | 11.970 | 19.040 | 24.380 | 30.730 |
EMPH of full blades (mg/h) × 10−3 | 0.2853 | 0.5612 | 0.8394 | 1.1254 | 1.4457 | 0.6021 | 1.2247 | 1.9480 | 2.4944 | 3.1440 |
AERD of splitters (mg/s·mm2) × 10−12 | 0.0958 | 0.1883 | 0.3126 | 0.4255 | 0.5607 | 0.4908 | 1.1091 | 1.6465 | 2.2040 | 2.6448 |
EMPH of splitters (mg/h) × 10−3 | 0.0244 | 0.0479 | 0.0796 | 0.1084 | 0.1428 | 0.1250 | 0.2825 | 0.4195 | 0.5615 | 0.6738 |
AERD of hub (mg/s·mm2) × 10−12 | 0.0945 | 0.1786 | 0.2769 | 0.3829 | 0.4742 | 0.4653 | 0.9189 | 1.3720 | 1.8570 | 2.3120 |
EMPH of hub (mg/h) × 10−3 | 0.0154 | 0.0291 | 0.0452 | 0.0625 | 0.0774 | 0.0759 | 0.1500 | 0.2239 | 0.3031 | 0.3774 |
AERD of impeller (mg/s·mm2) ×10−12 | 0.6249 | 1.2267 | 1.8532 | 2.4914 | 3.2016 | 1.5435 | 3.1849 | 4.9804 | 6.4554 | 8.0626 |
EMPH of impeller (mg/h) × 10−3 | 0.3252 | 0.6383 | 0.9643 | 1.2964 | 1.6659 | 0.8031 | 1.6573 | 2.5915 | 3.3591 | 4.1953 |
AERD of casing plate (mg/s·mm2) × 10−12 | 0.2335 | 0.5011 | 0.7709 | 1.0740 | 1.3470 | 1.4150 | 2.6560 | 3.7350 | 5.1030 | 6.6000 |
EMPH of casing plate (mg/h) × 10−3 | 0.0388 | 0.0833 | 0.1282 | 0.1786 | 0.2240 | 0.2353 | 0.4417 | 0.6212 | 0.8487 | 1.0977 |
AERD of scroll (mg/s·mm2) ×10−12 | 1.3000 | 2.7410 | 3.9970 | 5.4580 | 6.7940 | 3.3560 | 6.5630 | 9.7040 | 12.890 | 16.320 |
EMPH of scroll (mg/h) × 10−3 | 0.6795 | 1.4328 | 2.0893 | 2.8530 | 3.5514 | 1.7542 | 3.4306 | 5.0725 | 6.7379 | 8.5308 |
Saharan Dust | AC-Coarse Dust | |||
---|---|---|---|---|
Nominal Point | Maximum Discharge | Nominal Point | Maximum Discharge | |
EMPH of entire full blades (μg/h) | 1.1479 | 3.6208 | 1.4457 | 3.1440 |
EMPH of entire splitters (μg/h) | 0.2058 | 1.5475 | 0.1428 | 0.6738 |
EMPH of hub (μg/h) | 0.0718 | 0.4852 | 0.0774 | 0.3774 |
EMPH of impeller (μg/h) | 1.4256 | 5.6535 | 1.6659 | 4.1953 |
EMPH of casing plate (μg/h) | 0.1278 | 0.8321 | 0.2240 | 1.0977 |
EMPH of scroll (μg/h) | 1.6210 | 4.7296 | 3.5514 | 8.5308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Share and Cite
Ghenaiet, A. Predicting Erosion Damage in a Centrifugal Fan. Int. J. Turbomach. Propuls. Power 2024, 9, 23. https://doi.org/10.3390/ijtpp9020023
Ghenaiet A. Predicting Erosion Damage in a Centrifugal Fan. International Journal of Turbomachinery, Propulsion and Power. 2024; 9(2):23. https://doi.org/10.3390/ijtpp9020023
Chicago/Turabian StyleGhenaiet, Adel. 2024. "Predicting Erosion Damage in a Centrifugal Fan" International Journal of Turbomachinery, Propulsion and Power 9, no. 2: 23. https://doi.org/10.3390/ijtpp9020023
APA StyleGhenaiet, A. (2024). Predicting Erosion Damage in a Centrifugal Fan. International Journal of Turbomachinery, Propulsion and Power, 9(2), 23. https://doi.org/10.3390/ijtpp9020023