Big Data and the United Nations Sustainable Development Goals (UN SDGs) at a Glance
Abstract
:1. Introduction
2. Big Data under the Technological Revolution
3. Values of Big Data to the United Nations Sustainable Development Goals
3.1. Big Data and No Poverty
3.2. Big Data and Zero Hunger
3.3. Big Data and Good Health and Well-Being
3.4. Big Data and Quality Education
3.5. Big Data and Gender Equality
3.6. Big Data and Clean Water and Sanitation
3.7. Big Data and Affordable and Clean Energy
3.8. Big Data and Decent Work and Economic Growth
3.9. Big Data and Industry, Innovation and Infrastructure
3.10. Big Data and Reduced Inequality
3.11. Big Data and Sustainable Cities and Communities
3.12. Big Data and Responsible Consumption and Production
3.13. Big Data and Climate Action
3.14. Big Data and Life below Water
3.15. Big Data and Life on Land
3.16. Big Data and Peace, Justice and Strong Institutions
3.17. Big Data and Partnerships for the Goals
4. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN. The MDGs Report 2015. 2015. Available online: https://www.un.org/millenniumgoals (accessed on 24 December 2019).
- Lele, S.M. Sustainable development: A critical review. World Dev. 1991, 19, 607–621. [Google Scholar] [CrossRef]
- UNSSC. The 2030 Agenda for Sustainable Development. 2017. Available online: https://www.unssc.org/news-and-insights/news/watch-explainer-video-understanding-dimensions-sustainable-development/ (accessed on 27 December 2019).
- MacFeely, S. Measuring the Sustainable Development Goal Indicators: An Unprecedented Statistical Challenge. J. Off. Stat. 2020, 36, 36–378. [Google Scholar] [CrossRef]
- DOMO. The Data Never Sleeps 6.0 Report by DOMO. 2018. Available online: https://www.domo.com/learn/data-never-sleeps-6 (accessed on 28 December 2019).
- Hassani, H.; Silva, E.S. Forecasting with Big Data: A Review. Ann. Data Sci. 2015, 2, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.; Crawford, K. Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Inf. Commun. Soc. 2012, 15, 662–679. [Google Scholar] [CrossRef]
- MacFeely, S. The Big (Data) Bang: What will It Mean for Compiling SDG Indicators? UNCTAD Research Paper, No. 23. 2018. Available online: https://unctad.org/webflyer/big-data-bang-what-will-it-mean-compiling-sdg-indicators (accessed on 10 May 2021).
- Kharrazi, A.; Qin, H.; Zhang, Y. Urban big data and sustainable development goals: Challenges and opportunities. Sustainability 2016, 8, 1293. [Google Scholar] [CrossRef] [Green Version]
- Alkire, S.; Samman, E. Mobilising the Household Data Required to Progress toward the SDGs; OPHI Working Paper: 72; Oxford University: Oxford, UK, 2014. [Google Scholar]
- Guo, H.; Qiu, Y.; Massimo, M.; Chen, F.; Zhang, L.; Ishwaran, N.; Liang, D. DBAR: International Science Program for sustainable development of the belt and road region using Big Earth Data. Bull. Chin. Acad. Sci. 2017, 32, 2–9. [Google Scholar]
- Metternicht, G.; Mueller, N.; Lucas, R. Digital Earth for Sustainable Development Goals. In Manual of Digital Earth; Springer: Singapore, 2020; pp. 443–471. [Google Scholar]
- Hassani, H.; Huang, X.; Silva, E.S. Fusing Big Data, Blockchain, and Cryptocurrency: Their Individual and Combined Importance in the Digital Economy; Palgrave Pivot: Cham, Switzerland, 2019. [Google Scholar]
- Chen, H.; Chiang, R.H.; Storey, V.C. Business intelligence and analytics: From big data to big impact. MIS Q. 2012, 36, 1165–1188. [Google Scholar] [CrossRef]
- UN Global Issues. Big Data for Sustainable Development. Available online: https://www.un.org/en/sections/issues-depth/big-data-sustainable-development/index.html (accessed on 29 December 2019).
- SDGs Knowledge Platform. Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/?menu=1300 (accessed on 30 December 2019).
- United Nations Global Pulse. Harnessing Big Data for Development and Humanitarian Action. Available online: https://www.unglobalpulse.org/about-new (accessed on 31 December 2019).
- UNBigData. United Nations Big Data Programme. Available online: https://unstats.un.org/bigdata/ (accessed on 10 May 2021).
- UNBigData. Task Teams. Available online: https://unstats.un.org/bigdata/task-teams/index.cshtml (accessed on 10 May 2021).
- UN ESCAP. Why Big Data are All the Buzz for Statisticians. Available online: https://www.unescap.org/blog/why-big-data-all-buzz-statisticians (accessed on 10 May 2021).
- UN ESCAP. Big Data for the SDGs—Country Examples in Compiling SDG Indicators Using Non-Traditional Data Sources. Working Paper Series. 2021. Available online: https://www.unescap.org/kp/2021/working-paperseries-sdwp12january-2021-big-data-sdgs-country-examples-compiling-sdg (accessed on 10 May 2021).
- UN Statistics Division. SDG Indicators Metadata Repository. Available online: https://unstats.un.org/sdgs/metadata/ (accessed on 30 December 2019).
- Macfeely, S. Measuring the Sustainable Development Goals: What does it mean for Ireland? Administration 2017, 65, 41–71. [Google Scholar] [CrossRef] [Green Version]
- CCSA. How COVID-19 is Changing the World: A Statistical Perspective. Committee for the Coordination of Statistical Activities. 2021. Available online: https://unstats.un.org/unsd/ccsa/documents/covid19-report-ccsa.pdf (accessed on 19 May 2021).
- Ballivian, A.; Jansen, R.; Sutton, M.T. Big Data and the Sustainable Development Goals. In Proceedings of the International Conference on Big Data for Official Statistics, Abu Dhabi, United Arab Emirates, 20–22 October 2015. [Google Scholar]
- Blumenstock, J.; Cadamuro, G.; On, R. Predicting poverty and wealth from mobile phone metadata. Science 2015, 350, 1073–1076. [Google Scholar] [CrossRef] [Green Version]
- Njuguna, C.; McSharry, P. Constructing spatiotemporal poverty indices from big data. J. Bus. Res. 2017, 70, 318–327. [Google Scholar] [CrossRef]
- Jean, N.; Burke, M.; Xie, M.; Davis, W.M.; Lobell, D.B.; Ermon, S. Combining satellite imagery and machine learning to predict poverty. Science 2016, 353, 790–794. [Google Scholar] [CrossRef] [Green Version]
- Engstrom, R.; Hersh, J.; Newhouse, D. Poverty in HD: What Does High Resolution Satellite Imagery Reveal about Economic Welfare. Working Paper. 2016. Available online: https://www.semanticscholar.org/paper/Poverty-in-HD-%3A-What-Does-High-Resolution-Satellite-Engstrom-Hersh/3939c042caa8412fe273fee63232535c8d894791 (accessed on 10 May 2021).
- Zhou, Y.; Liu, Y. The geography of poverty: Review and research prospects. J. Rural. Stud. 2019. [Google Scholar] [CrossRef]
- Tan, W.P. China’s Approach to Reduce Poverty: Taking Targeted Measures to Lift People out of Poverty. International Poverty Reduction Center in China. Addis Ababa, April 18, 2018. Available online: https://openknowledge.worldbank.org/handle/10986/29075 (accessed on 10 May 2021).
- Ang, Y.Y. How China Escaped the Poverty Trap; Cornell University Press: Ithaca, NY, USA, 2016. [Google Scholar]
- Xinhua Net. China Focus: Smart Technologies Hone Poverty Alleviation Targeting. Xinhua Net. 2019. Available online: http://www.xinhuanet.com/english/2019-07/23/c_138250700.htm (accessed on 10 May 2021).
- Hassani, H.; Huang, X.; Silva, E. Big Data and Climate Change. Big Data Cogn. Comput. 2019, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Lokers, R.; Knapen, R.; Janssen, S.; van Randen, Y.; Jansen, J. Analysis of Big Data technologies for use in agro-environmental science. Environ. Model. Softw. 2016, 84, 494–504. [Google Scholar] [CrossRef] [Green Version]
- Coble, K.H.; Mishra, A.K.; Ferrell, S.; Griffin, T. Big data in agriculture: A challenge for the future. Appl. Econ. Perspect. Policy 2018, 40, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big data in smart farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Popović, T.; Latinović, N.; Pešić, A.; Zečević, Ž.; Krstajić, B.; Djukanović, S. Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: A case study. Comput. Electron. Agric. 2017, 140, 255–265. [Google Scholar] [CrossRef]
- Magnin, C. How Big Data will Revolutionize the Global Food Chain. Digital McKinsey. 2016. Available online: https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/how-big-data-will-revolutionize-the-global-food-chain (accessed on 10 May 2021).
- Akhtar, P.; Tse, Y.K.; Khan, Z.; Rao-Nicholson, R. Data-driven and adaptive leadership contributing to sustainability: Global agri-food supply chains connected with emerging markets. Int. J. Prod. Econ. 2016, 181, 392–401. [Google Scholar] [CrossRef] [Green Version]
- Evans, B. Using Big Data to Achieve Food Security. In Big Data Challenges; Palgrave: London, UK, 2016; pp. 127–135. [Google Scholar]
- Mock, N.; Morrow, N.; Papendieck, A. From complexity to food security decision-support: Novel methods of assessment and their role in enhancing the timeliness and relevance of food and nutrition security information. Glob. Food Secur. 2013, 2, 41–49. [Google Scholar] [CrossRef]
- Marvin, H.J.; Janssen, E.M.; Bouzembrak, Y.; Hendriksen, P.J.; Staats, M. Big data in food safety: An overview. Crit. Rev. Food Sci. Nutr. 2017, 57, 2286–2295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, D.; Glusman, G.; Price, N.D. Personalized nutrition through big data. Nat. Biotechnol. 2016, 34, 152. [Google Scholar] [CrossRef] [PubMed]
- Irani, Z.; Sharif, A.M.; Lee, H.; Aktas, E.; Topaloğlu, Z.; va not Wout, T.; Huda, S. Managing food security through food waste and loss: Small data to big data. Comput. Oper. Res. 2018, 98, 367–383. [Google Scholar] [CrossRef]
- Jin, X.; Wah, B.W.; Cheng, X.; Wang, Y. Significance and challenges of big data research. Big Data Res. 2015, 2, 59–64. [Google Scholar] [CrossRef]
- Khoury, M.J.; Ioannidis, J.P. Big data meets public health. Science 2014, 346, 1054–1055. [Google Scholar] [CrossRef] [Green Version]
- Mooney, S.J.; Pejaver, V. Big data in public health: Terminology, machine learning, and privacy. Annu. Rev. Public Health 2018, 39, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Chawla, N.V.; Davis, D.A. Bringing big data to personalized healthcare: A patient-centered framework. J. Gen. Intern. Med. 2013, 28, 660–665. [Google Scholar] [CrossRef] [Green Version]
- Murdoch, T.B.; Detsky, A.S. The inevitable application of big data to health care. JAMA 2013, 309, 1351–1352. [Google Scholar] [CrossRef]
- Sun, J.; Reddy, C.K. Big data analytics for healthcare. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; p. 1525. [Google Scholar]
- Raghupathi, W.; Raghupathi, V. Big data analytics in healthcare: Promise and potential. Health Inf. Sci. Syst. 2014, 2, 3. [Google Scholar] [CrossRef]
- Bates, D.W.; Saria, S.; Ohno–Machado, L.; Shah, A.; Escobar, G. Big data in health care: Using analytics to identify and manage high-risk and high-cost patients. Health Aff. 2014, 33, 1123–1131. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Wu, M.; Gopukumar, D.; Zhao, Y. Big data application in biomedical research and health care: A literature review. Biomed. Inform. Insights 2016, 8, BII-S31559. [Google Scholar] [CrossRef] [Green Version]
- Ginsberg, J.; Mohebbi, M.H.; Patel, R.S.; Brammer, L.; Smolinski, M.S.; Brilliant, L. Detecting influenza epidemics using search engine query data. Nature 2009, 457, 1012. [Google Scholar] [CrossRef]
- Hay, S.I.; George, D.B.; Moyes, C.L.; Brownstein, J.S. Big data opportunities for global infectious disease surveillance. PLoS Med. 2013, 10, e1001413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conway, M.; O’Connor, D. Social media, big data, and mental health: Current advances and ethical implications. Curr. Opin. Psychol. 2016, 9, 77–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shatte, A.B.; Hutchinson, D.M.; Teague, S.J. Machine learning in mental health: A scoping review of methods and applications. Psychol. Med. 2019, 49, 1426–1448. [Google Scholar] [CrossRef] [Green Version]
- Khoury, M.J.; Iademarco, M.F.; Riley, W.T. Precision public health for the era of precision medicine. Am. J. Prev. Med. 2016, 50, 398. [Google Scholar] [CrossRef] [Green Version]
- Alyass, A.; Turcotte, M.; Meyre, D. From big data analysis to personalized medicine for all: Challenges and opportunities. BMC Med Genom. 2015, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Obermeyer, Z.; Emanuel, E.J. Predicting the future—Big data, machine learning, and clinical medicine. N. Engl. J. Med. 2016, 375, 1216. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Ge, D.; He, M. Big data analytics for genomic medicine. Int. J. Mol. Sci. 2017, 18, 412. [Google Scholar] [CrossRef] [Green Version]
- Patil, H.K.; Seshadri, R. Big data security and privacy issues in healthcare. In Proceedings of the 2014 IEEE International Congress on Big Data, Washington, DC, USA, 27–30 October 2014; pp. 762–765. [Google Scholar]
- Huda, M.; Maseleno, A.; Atmotiyoso, P.; Siregar, M.; Ahmad, R.; Jasmi, K.; Muhamad, N. Big data emerging technology: Insights into innovative environment for online learning resources. Int. J. Emerg. Technol. Learn. 2018, 13, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.S. Big Data and Education; Teachers College, Columbia University: New York, NY, USA, 2015. [Google Scholar]
- Daniel, B. Big Data and analytics in higher education: Opportunities and challenges. Br. J. Educ. Technol. 2015, 46, 904–920. [Google Scholar] [CrossRef]
- Daniel, B.K. Big Data and data science: A critical review of issues for educational research. Br. J. Educ. Technol. 2019, 50, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Ellaway, R.H.; Pusic, M.V.; Galbraith, R.M.; Cameron, T. Developing the role of big data and analytics in health professional education. Med. Teach. 2014, 36, 216–222. [Google Scholar] [CrossRef]
- Olayinka, O.; Kekeh, M.; Sheth-Chandra, M.; Akpinar-Elci, M. Big Data knowledge in global health education. Ann. Glob. Health 2017, 83, 676–681. [Google Scholar] [CrossRef]
- Vaitsis, C.; Hervatis, V.; Zary, N. Introduction to Big Data in education and its contribution to the quality improvement processes. Big Data Real-World Appl. 2016, 113, 58. [Google Scholar]
- Williamson, B. Big Data in Education: The Digital Future of Learning, Policy and Practice. Sage. 2017. Available online: https://uk.sagepub.com/en-gb/eur/big-data-in-education/book249086 (accessed on 10 May 2021).
- Dishon, G. New data, old tensions: Big data, personalized learning, and the challenges of progressive education. Theory Res. Educ. 2017, 15, 272–289. [Google Scholar] [CrossRef]
- Thompson, G. Computer adaptive testing, big data and algorithmic approaches to education. Br. J. Sociol. Educ. 2017, 38, 827–840. [Google Scholar] [CrossRef] [Green Version]
- Huda, M.; Anshari, M.; Almunawar, M.N.; Shahrill, M.; Tan, A.; Jaidin, J.H.; Masri, M. Innovative Teaching in Higher Education: The Big Data Approach. TOJET. 2016. Available online: https://www.researchgate.net/publication/315665897_Innovative_Teaching_In_Higher_Education_The_Big_Data_Approach (accessed on 10 May 2021).
- Ciolacu, M.; Tehrani, A.F.; Beer, R.; Popp, H. Education 4.0—Fostering student’s performance with machine learning methods. In Proceedings of the 2017 IEEE 23rd International Symposium for Design and Technology in Electronic Packaging (SIITME), Constanta, Romania, 26–29 October 2017; pp. 438–443. [Google Scholar]
- Oztekin, A.; Delen, D.; Turkyilmaz, A.; Zaim, S. A machine learning-based usability evaluation method for eLearning systems. Decis. Support Syst. 2013, 56, 63–73. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Y.; Yu, S. Teaching Performance Evaluation in Smart Campus. IEEE Access 2018, 6, 77754–77766. [Google Scholar] [CrossRef]
- Mohammed, A.; Kumar, S.; Singh, S.P.; Sharma, R.P. Enhancing Teaching and Learning in Educational Institutes Using the Concept of Big Data Technology. In Proceedings of the 2018 International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, 28–29 September 2018; pp. 1038–1041. [Google Scholar]
- Liu, H.; Jiao, N. Research on Students’ Campus Behavior Analysis and Warning System Based on Big Data. In The International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery; Springer: Cham, Switzerland, 2019; pp. 392–400. [Google Scholar]
- Anshari, M.; Alas, Y.; Guan, L.S. Developing online learning resources: Big data, social networks, and cloud computing to support pervasive knowledge. Educ. Inf. Technol. 2016, 21, 1663–1677. [Google Scholar] [CrossRef]
- Liang, J.; Yang, J.; Wu, Y.; Li, C.; Zheng, L. Big data application in education: Dropout prediction in edx MOOCs. In Proceedings of the 2016 IEEE Second International Conference on Multimedia Big Data (BigMM), Taipei, Taiwan, 20–22 April 2016; pp. 440–443. [Google Scholar]
- Márquez-Vera, C.; Cano, A.; Romero, C.; Noaman, A.Y.M.; Mousa Fardoun, H.; Ventura, S. Early dropout prediction using data mining: A case study with high school students. Expert Syst. 2016, 33, 107–124. [Google Scholar] [CrossRef]
- Chung, J.Y.; Lee, S. Dropout early warning systems for high school students using machine learning. Child. Youth Serv. Rev. 2019, 96, 346–353. [Google Scholar] [CrossRef]
- UN Women. Infographic: Why Gender Equality Matters to Achieving All 17 SDGs. 2018. Available online: https://www.unwomen.org/en/digital-library/multimedia/2018/7/infographic-why-gender-equality-matters-to-achieving-all-17-sdgs (accessed on 1 January 2020).
- UN Women. Turing Promises into Action: Gender Equality in the 2030 Agenda for Sustainable Development. 2018. Available online: https://www.unwomen.org/en/digital-library/publications/2018/2/gender-equality-in-the-2030-agenda-for-sustainable-development-2018 (accessed on 1 January 2020).
- Hamaguchi, N.; Kondo, K. What does AI Mean for Gender Equality? World Economic Forum. 2019. Available online: https://www.weforum.org/agenda/2019/04/ai-technology-and-gender-inequality (accessed on 2 January 2020).
- UN Women; Global Pulse. Gender Equality and Big Data: Making Gender Data Visible. 2018. Available online: https://www.unwomen.org/en/digital-library/publications/2018/1/gender-equality-and-big-data (accessed on 2 January 2020).
- Teigland, J. Why We Need to Solve the Issue of Gender Bias before AI Makes It Worse. EY. 2019. Available online: https://www.ey.com/en_gl/diversity-inclusiveness/which-is-the-bigger-issue-for-women-leaders-the-glass-ceiling-or-the-glass-cliff (accessed on 3 January 2020).
- Dillon, S.; Collett, C. AI and Gender: Four Proposals for Future Research. Cambridge: The Leverhulme Centre for the Future of Intelligence. 2019. Available online: https://doi.org/10.17863/CAM.41459 (accessed on 3 January 2020).
- Data2x. Big Data, Big Impact? Towards Gender-Sensitive Data Systems. 2019. Available online: https://data2x.org/wp-content/uploads/2019/11/BigDataBigImpact-Report-WR.pdf (accessed on 3 January 2020).
- Brandtzaeg, P.B. Facebook is no “Great equalizer” A big data approach to gender differences in civic engagement across countries. Soc. Sci. Comput. Rev. 2017, 35, 103–125. [Google Scholar] [CrossRef]
- Garcia, D.; Kassa, Y.M.; Cuevas, A.; Cebrian, M.; Moro, E.; Rahwan, I.; Cuevas, R. Analyzing gender inequality through large-scale Facebook advertising data. Proc. Natl. Acad. Sci. USA 2018, 115, 6958–6963. [Google Scholar] [CrossRef] [Green Version]
- WHO/UNICEF JMP. Water, Sanitation, and Hygiene in Health Care Facilities: Practical Steps to Achieve Universal Access for Quality Care. 2019. Available online: https://www.unwater.org/publications/ (accessed on 18 August 2020).
- Nhamo, G.; Nhemachena, C.; Nhamo, S. Is 2030 too soon for Africa to achieve the water and sanitation sustainable development goal? Sci. Total Environ. 2019, 669, 129–139. [Google Scholar] [CrossRef]
- Geetha, S.; Gouthami, S. Internet of things enabled real time water quality monitoring system. Smart Water 2016, 2, 1. [Google Scholar] [CrossRef]
- Arridha, R.; Sukaridhoto, S.; Pramadihanto, D.; Funabiki, N. Classification extension based on IoT-big data analytic for smart environment monitoring and analytic in real-time system. Int. J. Space-Based Situated Comput. 2017, 7, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Andres, L.; Boateng, K.; Borja-Vega, C.; Thomas, E. A review of in situ and remote sensing technologies to monitor water and sanitation interventions. Water 2018, 10, 756. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Xu, L.; He, C.; Zhu, L.; Yang, X.; Jiang, T.; Nie, J.H.; Zhong, W.; Wang, Z.L. High-performance triboelectric nanogenerators for self-powered, in situ and real-time water quality mapping. Nano Energy 2019, 66, 104117. [Google Scholar] [CrossRef]
- Chowdury, M.S.U.; Emran, T.B.; Ghosh, S.; Pathak, A.; Alam, M.M.; Absar, N.; Andersson, K.; Hossain, M.S. IoT based real-time river water quality monitoring system. Procedia Comput. Sci. 2019, 155, 161–168. [Google Scholar] [CrossRef]
- Amitrano, D.; Martino, G.D.; Iodice, A.; Mitidieri, F.; Papa, M.N.; Riccio, D.; Ruello, G. Sentinel-1 for monitoring reservoirs: A performance analysis. Remote. Sens. 2014, 6, 10676–10693. [Google Scholar] [CrossRef] [Green Version]
- García, L.; Rodríguez, D.; Wijnen, M.; Pakulski, I. (Eds.) Earth Observation for Water Resources Management: Current Use and Future Opportunities for the Water Sector; The World Bank: Washinton, DC, USA, 2016. [Google Scholar]
- Yaroshenko, I.; Kirsanov, D.; Marjanovic, M.; Lieberzeit, P.A.; Korostynska, O.; Mason, A.; Frau, I.; Legin, A. Real-Time Water Quality Monitoring with Chemical Sensors. Sensors 2020, 20, 3432. [Google Scholar] [CrossRef]
- Meyer, A.M.; Klein, C.; Fünfrocken, E.; Kautenburger, R.; Beck, H.P. Real-time monitoring of water quality to identify pollution pathways in small and middle scale rivers. Sci. Total Environ. 2019, 651, 2323–2333. [Google Scholar] [CrossRef]
- Liu, P.; Wang, J.; Sangaiah, A.K.; Xie, Y.; Yin, X. Analysis and prediction of water quality using LSTM deep neural networks in IoT environment. Sustainability 2019, 11, 2058. [Google Scholar] [CrossRef] [Green Version]
- Rahim, M.S.; Nguyen, K.A.; Stewart, R.A.; Giurco, D.; Blumenstein, M. Machine Learning and Data Analytic Techniques in Digital Water Metering: A Review. Water 2020, 12, 294. [Google Scholar] [CrossRef] [Green Version]
- Ponce Romero, J.M.; Hallett, S.H.; Jude, S. Leveraging big data tools and technologies: Addressing the challenges of the water quality sector. Sustainability 2017, 9, 2160. [Google Scholar] [CrossRef] [Green Version]
- Ghernaout, D.; Aichouni, M.; Alghamdi, A. Applying big data in water treatment industry: A new era of advance. Int. J. Adv. Appl. Sci. 2018, 5, 89–97. [Google Scholar] [CrossRef]
- Fu, H.; Li, Z.; Liu, Z.; Wang, Z. Research on big data digging of hot topics about recycled water use on micro-blog based on particle swarm optimization. Sustainability 2018, 10, 2488. [Google Scholar] [CrossRef] [Green Version]
- Hassani, H.; Yeganegi, M.R.; Beneki, C.; Unger, S.; Moradghaffari, M. Big Data and Energy Poverty Alleviation. Big Data Cogn. Comput. 2019, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- Zhou, K.; Fu, C.; Yang, S. Big data driven smart energy management: From big data to big insights. Renew. Sustain. Energy Rev. 2016, 56, 215–225. [Google Scholar] [CrossRef]
- Tu, C.; He, X.; Shuai, Z.; Jiang, F. Big data issues in smart grid—A review. Renew. Sustain. Energy Rev. 2017, 79, 1099–1107. [Google Scholar] [CrossRef]
- Hossain, E.; Khan, I.; Un-Noor, F.; Sikander, S.S.; Sunny, M.S.H. Application of big data and machine learning in smart grid, and associated security concerns: A review. IEEE Access 2019, 7, 13960–13988. [Google Scholar] [CrossRef]
- Munshi, A.A.; Yasser, A.R.M. Big data framework for analytics in smart grids. Electr. Power Syst. Res. 2017, 151, 369–380. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, S. Understanding household energy consumption behavior: The contribution of energy big data analytics. Renew. Sustain. Energy Rev. 2016, 56, 810–819. [Google Scholar] [CrossRef]
- Wen, L.; Zhou, K.; Yang, S.; Li, L. Compression of smart meter big data: A survey. Renew. Sustain. Energy Rev. 2018, 91, 59–69. [Google Scholar] [CrossRef]
- Asad, Z.; Chaudhry, M.A.R. A two-way street: Green big data processing for a greener smart grid. IEEE Syst. J. 2016, 11, 784–795. [Google Scholar] [CrossRef]
- Bibri, S.E. The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustain. Cities Soc. 2018, 38, 230–253. [Google Scholar] [CrossRef]
- Chui, K.T.; Lytras, M.D.; Visvizi, A. Energy sustainability in smart cities: Artificial intelligence, smart monitoring, and optimization of energy consumption. Energies 2018, 11, 2869. [Google Scholar] [CrossRef] [Green Version]
- Allam, Z.; Tegally, H.; Thondoo, M. Redefining the use of big data in urban health for increased liveability in smart cities. Smart Cities 2019, 2, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Bertini, F.; Bergami, G.; Montesi, D.; Veronese, G.; Marchesini, G.; Pandolfi, P. Predicting frailty condition in elderly using multidimensional socioclinical databases. Proc. IEEE 2018, 106, 723–737. [Google Scholar] [CrossRef]
- Layard, R. ‘Happiness: New Lessons’ in Interview with Andrew Marr. 2011. Available online: https://www.youtube.com/watch?v=4VkQsL73SgE (accessed on 5 February 2021).
- MacFeely, S. The Big (data) Bang: Opportunities and challenges for compiling SDG indicators. Glob. Policy 2019, 10, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Takayasu, H.; Takayasu, M. Estimation of economic indicator announced by government from social big data. Entropy 2018, 20, 852. [Google Scholar] [CrossRef] [Green Version]
- Elshendy, M.; Fronzetti Colladon, A. Big data analysis of economic news: Hints to forecast macroeconomic indicators. Int. J. Eng. Bus. Manag. 2017, 9, 1847979017720040. [Google Scholar] [CrossRef]
- Li, B.; Gao, S.; Liang, Y.; Kang, Y.; Prestby, T.; Gao, Y.; Xiao, R. Estimation of regional economic development indicator from transportation network analytics. Sci. Rep. 2020, 10, 2647. [Google Scholar] [CrossRef] [PubMed]
- Varian, H.R. Big data: New tricks for econometrics. J. Econ. Perspect. 2014, 28, 3–28. [Google Scholar] [CrossRef] [Green Version]
- Götz, T.B.; Knetsch, T.A. Google data in bridge equation models for German GDP. Int. J. Forecast. 2019, 35, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, L.; Simoni, A. When are Google Data Useful to Nowcast GDP? An Approach via Pre-Selection and Shrinkage. 2019. Available online: https://ideas.repec.org/p/crs/wpaper/2019-04.html (accessed on 10 May 2021).
- Blazquez, D.; Domenech, J. Web data mining for monitoring business export orientation. Technol. Econ. Dev. Econ. 2018, 24, 406–428. [Google Scholar] [CrossRef]
- Sheehan, E.; Meng, C.; Tan, M.; Uzkent, B.; Jean, N.; Burke, M.; Ermon, S. Predicting economic development using geolocated wikipedia articles. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2698–2706. [Google Scholar]
- Sobolevsky, S.; Massaro, E.; Bojic, I.; Arias, J.M.; Ratti, C. Predicting regional economic indices using big data of individual bank card transactions. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017. [Google Scholar]
- Kim, T.Y.; Oh, K.J.; Sohn, I.; Hwang, C. Usefulness of artificial neural networks for early warning system of economic crisis. Expert Syst. Appl. 2004, 26, 583–590. [Google Scholar] [CrossRef]
- Hopp, D. Economic Nowcasting with Long Short-term Memory Artificial Neural Networks (LSTM) - UNCTAD Research Paper No. 62, UNCTAD/SER.RP/2021/5. Available online: https://unctad.org/webflyer/economic-nowcasting-long-short-term-memory-artificial-neural-networks-lstm (accessed on 17 June 2021).
- Bok, B.; Caratelli, D.; Giannone, D.; Sbordone, A.M.; Tambalotti, A. Macroeconomic nowcasting and forecasting with big data. Annu. Rev. Econ. 2018, 10, 615–643. [Google Scholar] [CrossRef] [Green Version]
- Lomakin, N.; Shokhnekh, A.; Sazonov, S.; Maramygin, M.; Tkachenko, D.; Angel, O. Digital Ai “Decision Tree” for Predicting Russian GDP Value Based on Big Data Mining to Ensure Balanced and Sustainable Economic Growth. In Proceedings of the 2019 International SPBPU Scientific Conference on Innovations in Digital Economy, New York, NY, USA, 24–25 October 2019; pp. 1–6. [Google Scholar]
- Henrique, B.M.; Sobreiro, V.A.; Kimura, H. Literature review: Machine learning techniques applied to financial market prediction. Expert Syst. Appl. 2019, 124, 226–251. [Google Scholar] [CrossRef]
- Hazen, B.T.; Skipper, J.B.; Ezell, J.D.; Boone, C.A. Big data and predictive analytics for supply chain sustainability: A theory-driven research agenda. Comput. Ind. Eng. 2016, 101, 592–598. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, X.; Tang, O.; Price, L.; Zhang, S.; Zhu, W. Supply chain collaboration for sustainability: A literature review and future research agenda. Int. J. Prod. Econ. 2017, 194, 73–87. [Google Scholar] [CrossRef]
- Tiwari, S.; Wee, H.M.; Daryanto, Y. Big data analytics in supply chain management between 2010 and 2016: Insights to industries. Comput. Ind. Eng. 2018, 115, 319–330. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Papadopoulos, T.; Luo, Z.; Wamba, S.F.; Roubaud, D. Can big data and predictive analytics improve social and environmental sustainability? Technol. Forecast. Soc. Chang. 2019, 144, 534–545. [Google Scholar] [CrossRef]
- Chalmeta, R.; Santos-deLeon, N.J. Sustainable Supply Chain in the Era of Industry 4.0 and Big Data: A Systematic Analysis of Literature and Research. Sustainability 2020, 12, 4108. [Google Scholar] [CrossRef]
- Zimon, D.; Tyan, J.; Sroufe, R. Implementing Sustainable Supply Chain Management: Reactive, Cooperative, and Dynamic Models. Sustainability 2019, 11, 7227. [Google Scholar] [CrossRef] [Green Version]
- Macfeely, S.; Duune, J. Joining up public service information: The rationale for a national data infrastructure. Administration 2014, 61, 93–107. [Google Scholar]
- UNCTAD. Development and Globalization: Facts and Figures 2016. Available online: https://stats.unctad.org/Dgff2016/ (accessed on 17 June 2021).
- Beier, G.; Niehoff, S.; Xue, B. More sustainability in industry through industrial internet of things? Appl. Sci. 2018, 8, 219. [Google Scholar] [CrossRef]
- Papadopoulos, T.; Gunasekaran, A.; Dubey, R.; Altay, N.; Childe, S.J.; Fosso-Wamba, S. The role of Big Data in explaining disaster resilience in supply chains for sustainability. J. Clean. Prod. 2017, 142, 1108–1118. [Google Scholar] [CrossRef] [Green Version]
- Mani, V.; Delgado, C.; Hazen, B.T.; Patel, P. Mitigating supply chain risk via sustainability using big data analytics: Evidence from the manufacturing supply chain. Sustainability 2017, 9, 608. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.J.; Liao, C.J.; Tseng, M.L.; Lim, M.K.; Hu, J.; Tan, K. Toward sustainability: Using big data to explore the decisive attributes of supply chain risks and uncertainties. J. Clean. Prod. 2017, 142, 663–676. [Google Scholar] [CrossRef]
- Kumar, A.; Shankar, R.; Thakur, L.S. A big data driven sustainable manufacturing framework for condition-based maintenance prediction. J. Comput. Sci. 2018, 27, 428–439. [Google Scholar] [CrossRef]
- Xu, L.D.; Duan, L. Big data for cyber physical systems in industry 4.0: A survey. Enterp. Inf. Syst. 2019, 13, 148–169. [Google Scholar] [CrossRef]
- Bag, S.; Wood, L.C.; Xu, L.; Dhamija, P.; Kayikci, Y. Big data analytics as an operational excellence approach to enhance sustainable supply chain performance. Resour. Conserv. Recycl. 2020, 153, 104559. [Google Scholar] [CrossRef]
- Kayikci, Y. Sustainability impact of digitization in logistics. Procedia Manuf. 2018, 21, 782–789. [Google Scholar] [CrossRef]
- Jin, D.H.; Kim, H.J. Integrated understanding of big data, big data analysis, and business intelligence: A case study of logistics. Sustainability 2018, 10, 3778. [Google Scholar] [CrossRef] [Green Version]
- Wamba, S.F.; Gunasekaran, A.; Papadopoulos, T.; Ngai, E. Big data analytics in logistics and supply chain management. Int. J. Logist. Manag. 2018, 29, 478–484. [Google Scholar] [CrossRef]
- Hussain, M.; Khan, M.; Al-Aomar, R. A framework for supply chain sustainability in service industry with Confirmatory Factor Analysis. Renew. Sustain. Energy Rev. 2016, 55, 1301–1312. [Google Scholar] [CrossRef]
- Belaud, J.P.; Prioux, N.; Vialle, C.; Sablayrolles, C. Big data for agri-food 4.0: Application to sustainability management for by-products supply chain. Comput. Ind. 2019, 111, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Zhang, Y.; Liu, Y.; Sakao, T.; Huisingh, D.; Almeida, C.M. A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: A framework, challenges and future research directions. J. Clean. Prod. 2019, 210, 1343–1365. [Google Scholar] [CrossRef] [Green Version]
- Sung, T.K. Industry 4.0: A Korea perspective. Technol. Forecast. Soc. Chang. 2018, 132, 40–45. [Google Scholar] [CrossRef]
- Bauer, W.; Schlund, S.; Hornung, T.; Schuler, S. Digitalization of industrial value chains-a review and evaluation of existing use cases of Industry 4.0 in Germany. LogForum 2018, 14, 331–340. [Google Scholar] [CrossRef]
- Li, L. China’s manufacturing locus in 2025: With a comparison of “Made-in-China 2025” and “Industry 4.0”. Technol. Forecast. Soc. Chang. 2018, 135, 66–74. [Google Scholar] [CrossRef]
- Iyer, A. Moving from Industry 2.0 to Industry 4.0: A case study from India on leapfrogging in smart manufacturing. Procedia Manuf. 2018, 21, 663–670. [Google Scholar] [CrossRef]
- Lutz, C. Digital inequalities in the age of artificial intelligence and big data. Hum. Behav. Emerg. Technol. 2019, 1, 141–148. [Google Scholar] [CrossRef] [Green Version]
- UNCTAD. Inequality in Focus. SDG Pulse 2019. Available online: https://sdgpulse.unctad.org/in-focus-inequality/ (accessed on 17 June 2021).
- Shelton, T.; Poorthuis, A.; Zook, M. Social media and the city: Rethinking urban socio-spatial inequality using user-generated geographic information. Landsc. Urban Plan. 2015, 142, 198–211. [Google Scholar] [CrossRef]
- Burnap, P.; Williams, M.L. Cyber hate speech on twitter: An application of machine classification and statistical modeling for policy and decision making. Policy Internet 2015, 7, 223–242. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, A.G. The Rise of Big Data Policing: Surveillance, Race, and the Future of Law Enforcement; NYU Press: New York, NY, USA, 2019. [Google Scholar]
- Steele, J.E.; Sundsoy, P.R.; Pezzulo, C.; Alegana, V.A.; Bird, T.J.; Blumenstock, J.; Hadiuzzaman, K.N. Mapping poverty using mobile phone and satellite data. J. R. Soc. Interface 2017, 14, 20160690. [Google Scholar] [CrossRef]
- Asongu, S.A.; Odhiambo, N.M. Mobile banking usage, quality of growth, inequality and poverty in developing countries. Inf. Dev. 2019, 35, 303–318. [Google Scholar] [CrossRef]
- Sorensen, L.C. “Big Data” in Educational Administration: An Application for Predicting School Dropout Risk. Educ. Adm. Q. 2019, 55, 404–446. [Google Scholar] [CrossRef]
- Chetty, R. Improving Equality of Opportunity: New Insights from Big Data. Contemporary Economic Policy. 2020. Available online: https://onlinelibrary.wiley.com/doi/epdf/10.1111/coep.12478 (accessed on 10 May 2021).
- Hashem, I.A.T.; Chang, V.; Anuar, N.B.; Adewole, K.; Yaqoob, I.; Gani, A.; Chiroma, H. The role of big data in smart city. Int. J. Inf. Manag. 2016, 36, 748–758. [Google Scholar] [CrossRef] [Green Version]
- Al Nuaimi, E.; Al Neyadi, H.; Mohamed, N.; Al-Jaroodi, J. Applications of big data to smart cities. J. Internet Serv. Appl. 2015, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Bibri, S.E.; Krogstie, J. Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustain. Cities Soc. 2017, 31, 183–212. [Google Scholar] [CrossRef]
- Kong, L.; Liu, Z.; Wu, J. A systematic review of big data-based urban sustainability research: State-of-the-science and future directions. J. Clean. Prod. 2020, 273, 123142. [Google Scholar] [CrossRef]
- Thakuriah, P.V.; Tilahun, N.Y.; Zellner, M. Big data and urban informatics: Innovations and challenges to urban planning and knowledge discovery. In Seeing Cities through Big Data; Springer: Cham, Switzerland, 2017; pp. 11–45. [Google Scholar]
- Rathore, M.M.; Ahmad, A.; Paul, A.; Rho, S. Urban planning and building smart cities based on the internet of things using big data analytics. Comput. Netw. 2016, 101, 63–80. [Google Scholar] [CrossRef]
- Ghofrani, F.; He, Q.; Goverde, R.M.; Liu, X. Recent applications of big data analytics in railway transportation systems: A survey. Transp. Res. Part C Emerg. Technol. 2018, 90, 226–246. [Google Scholar] [CrossRef]
- Mehmood, R.; Meriton, R.; Graham, G.; Hennelly, P.; Kumar, M. Exploring the influence of big data on city transport operations: A Markovian approach. Int. J. Oper. Prod. Manag. 2017, 37, 75–104. [Google Scholar] [CrossRef]
- Lakshmanaprabu, S.K.; Shankar, K.; Rani, S.S.; Abdulhay, E.; Arunkumar, N.; Ramirez, G.; Uthayakumar, J. An effect of big data technology with ant colony optimization based routing in vehicular ad hoc networks: Towards smart cities. J. Clean. Prod. 2019, 217, 584–593. [Google Scholar] [CrossRef]
- Zhang, Y.; Mi, Z. Environmental benefits of bike sharing: A big data-based analysis. Appl. Energy 2018, 220, 296–301. [Google Scholar] [CrossRef]
- Wang, G.; Gunasekaran, A.; Ngai, E.W.; Papadopoulos, T. Big data analytics in logistics and supply chain management: Certain investigations for research and applications. Int. J. Prod. Econ. 2016, 176, 98–110. [Google Scholar] [CrossRef]
- Ji, S.; Sun, Q. Low-carbon planning and design in B&R logistics service: A case study of an e-commerce big data platform in China. Sustainability 2017, 9, 2052. [Google Scholar]
- Kaur, H.; Singh, S.P. Heuristic modeling for sustainable procurement and logistics in a supply chain using big data. Comput. Oper. Res. 2018, 98, 301–321. [Google Scholar] [CrossRef]
- Williams, M.L.; Burnap, P.; Sloan, L. Crime sensing with big data: The affordances and limitations of using open-source communications to estimate crime patterns. Br. J. Criminol. 2017, 57, 320–340. [Google Scholar] [CrossRef] [Green Version]
- Feng, M.; Zheng, J.; Ren, J.; Hussain, A.; Li, X.; Xi, Y.; Liu, Q. Big data analytics and mining for effective visualization and trends forecasting of crime data. IEEE Access 2019, 7, 106111–106123. [Google Scholar] [CrossRef]
- Brayne, S. Big data surveillance: The case of policing. Am. Sociol. Rev. 2017, 82, 977–1008. [Google Scholar] [CrossRef] [Green Version]
- Silva, B.N.; Khan, M.; Han, K. Integration of Big Data analytics embedded smart city architecture with RESTful web of things for efficient service provision and energy management. Future Gener. Comput. Syst. 2020, 107, 975–987. [Google Scholar] [CrossRef]
- Chen, Y.; Han, D. Water quality monitoring in smart city: A pilot project. Autom. Constr. 2018, 89, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, J.M.; Jensen, M.; Henius, M.; Riaz, T. Smart waste collection system based on location intelligence. Procedia Comput. Sci. 2015, 61, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Gu, F.; Ma, B.; Guo, J.; Summers, P.A.; Hall, P. Internet of things and Big Data as potential solutions to the problems in waste electrical and electronic equipment management: An exploratory study. Waste Manag. 2017, 68, 434–448. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Luo, Z.; Wamba, S.F.; Roubaud, D.; Foropon, C. Examining the role of big data and predictive analytics on collaborative performance in context to sustainable consumption and production behaviour. J. Clean. Prod. 2018, 196, 1508–1521. [Google Scholar] [CrossRef]
- Tseng, M.L.; Tan, R.R.; Chiu, A.S.; Chien, C.F.; Kuo, T.C. Circular economy meets industry 4.0: Can big data drive industrial symbiosis? Resour. Conserv. Recycl. 2018, 131, 146–147. [Google Scholar] [CrossRef]
- Nturambirwe, J.F.I.; Opara, U.L. Machine learning applications to non-destructive defect detection in horticultural products. Biosyst. Eng. 2020, 189, 60–83. [Google Scholar] [CrossRef]
- Garre, A.; Ruiz, M.C.; Hontoria, E. Application of Machine Learning to support production planning of a food industry in the context of waste generation under uncertainty. Oper. Res. Perspect. 2020, 7, 100147. [Google Scholar] [CrossRef]
- Li, J.; Tao, F.; Cheng, Y.; Zhao, L. Big data in product lifecycle management. Int. J. Adv. Manuf. Technol. 2015, 81, 667–684. [Google Scholar] [CrossRef]
- Herman, J.; Herman, H.; Mathews, M.J.; Vosloo, J.C. Using big data for insights into sustainable energy consumption in industrial and mining sectors. J. Clean. Prod. 2018, 197, 1352–1364. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, M.; Wang, Y.; Song, M.; Li, S.; Daziano, R.A.; Zhang, B. Big data: New tend to sustainable consumption research. J. Clean. Prod. 2019, 236, 117499. [Google Scholar] [CrossRef]
- Young, W.; Hwang, K.; McDonald, S.; Oates, C.J. Sustainable consumption: Green consumer behaviour when purchasing products. Sustain. Dev. 2010, 18, 20–31. [Google Scholar] [CrossRef]
- Menaka, E.; Kumar, S.S.; Bharathi, M. Change detection in deforestation using high resolution satellite image with Haar wavelet transforms. In Proceedings of the 2013 International Conference on Green High Performance Computing (ICGHPC), Nagercoil, India, 14–15 March 2013; pp. 1–7. [Google Scholar]
- Lu, M.; Hamunyela, E.; Verbesselt, J.; Pebesma, E. Dimension reduction of multi-spectral satellite image time series to improve deforestation monitoring. Remote. Sens. 2017, 9, 1025. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, P.; Sathish, B.S.; Sajiv, G. A comparative approach of identification and segmentation of forest fire region in high resolution satellite images. In Proceedings of the 2016 World Conference on Futuristic Trends in Research and Innovation for Social Welfare (Startup Conclave), Coimbatore, India, 29 February–1 March 2016; pp. 1–6. [Google Scholar]
- Hasan, S.S.; Zhang, Y.; Chu, X.; Teng, Y. The role of big data in China’s sustainable forest management. For. Econ. Rev. 2019, 1, 96–105. [Google Scholar] [CrossRef]
- Zou, W.; Jing, W.; Chen, G.; Lu, Y.; Song, H. A survey of big data analytics for smart forestry. IEEE Access 2019, 7, 46621–46636. [Google Scholar] [CrossRef]
- Kang, G.K.; Gao, J.Z.; Chiao, S.; Lu, S.; Xie, G. Air quality prediction: Big data and machine learning approaches. Int. J. Environ. Sci. Dev. 2018, 9, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.Y.; Sun, C.; Li, V.O. An extended spatio-temporal granger causality model for air quality estimation with heterogeneous urban big data. IEEE Trans. Big Data 2017, 3, 307–319. [Google Scholar] [CrossRef]
- Xiaojun, C.; Xianpeng, L.; Peng, X. IOT-based air pollution monitoring and forecasting system. In Proceedings of the 2015 International Conference on Computer and Computational Sciences (ICCCS), Reykjavík, Iceland, 1–3 June 2015; pp. 257–260. [Google Scholar]
- Ma, J.; Ding, Y.; Cheng, J.C.; Jiang, F.; Tan, Y.; Gan, V.J.; Wan, Z. Identification of high impact factors of air quality on a national scale using big data and machine learning techniques. J. Clean. Prod. 2020, 244, 118955. [Google Scholar] [CrossRef]
- Honarvar, A.R.; Sami, A. Towards sustainable smart city by particulate matter prediction using urban big data, excluding expensive air pollution infrastructures. Big Data Res. 2019, 17, 56–65. [Google Scholar] [CrossRef]
- Lee, S.; Tae, S. Development of a Decision Support Model Based on Machine Learning for Applying Greenhouse Gas Reduction Technology. Sustainability 2020, 12, 3582. [Google Scholar] [CrossRef]
- Hamrani, A.; Akbarzadeh, A.; Madramootoo, C.A. Machine learning for predicting greenhouse gas emissions from agricultural soils. Sci. Total Environ. 2020, 741, 140338. [Google Scholar] [CrossRef]
- Lee, K.H.; Noh, J.; Khim, J.S. The Blue Economy and the United Nations’ sustainable development goals: Challenges and opportunities. Environ. Int. 2020, 137, 105528. [Google Scholar] [CrossRef]
- Eikeset, A.M.; Mazzarella, A.B.; Davíosdóttir, B.; Klinger, D.H.; Levin, S.A.; Rovenskaya, E.; Stenseth, N.C. What is blue growth? The semantics of “Sustainable Development” of marine environments. Mar. Policy 2018, 87, 177–179. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, M.; Liu, C.; Guo, Z. Big data challenges in ocean observation: A survey. Pers. Ubiquitous Comput. 2017, 21, 55–65. [Google Scholar] [CrossRef]
- Huang, D.; Song, W.; Zou, G. Marine Big Data; World Scientific: Singapore, 2019. [Google Scholar]
- Baird, D.J.; Van den Brink, P.J.; Chariton, A.A.; Dafforn, K.A.; Johnston, E.L. New diagnostics for multiply stressed marine and freshwater ecosystems: Integrating models, ecoinformatics and big data. Mar. Freshw. Res. 2016, 67, 391–392. [Google Scholar] [CrossRef] [Green Version]
- Thayer, J.A.; Hazen, E.L.; Garcia-Reyes, M.; Szoboszlai, A.; Sydeman, W.J. Implementing ecosystem considerations in forage fisheries: San Francisco Bay herring case study. Mar. Policy 2020, 118, 103884. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. National Centers for Environmental Information: Marine/Ocean Data. Available online: https://www.ncdc.noaa.gov/data-access/marineocean-data (accessed on 15 September 2020).
- Moore, C.; Drazen, J.C.; Radford, B.T.; Kelley, C.; Newman, S.J. Improving essential fish habitat designation to support sustainable ecosystem-based fisheries management. Mar. Policy 2016, 69, 32–41. [Google Scholar] [CrossRef]
- Sabeur, Z.; Correndo, G.; Veres, G.; Arbab-Zavar, B.; Neumann, G.; Ivall, T.D.; Lorenzo, J. EO big data analytics for the discovery of new trends of marine species habitats in a changing global climate. In Publications Office of the European Union; European Union: Brussels, Belgium, 2017; pp. 445–448. [Google Scholar]
- Kroodsma, D.A.; Mayorga, J.; Hochberg, T.; Miller, N.A.; Boerder, K.; Ferretti, F.; Woods, P. Tracking the global footprint of fisheries. Science 2018, 359, 904–908. [Google Scholar] [CrossRef] [Green Version]
- Probst, W.N. How emerging data technologies can increase trust and transparency in fisheries. ICES J. Mar. Sci. 2020, 77, 1286–1294. [Google Scholar] [CrossRef]
- Ray, C.; Camossi, E.; Dréo, R.; Jousselme, A.L.; Iphar, C.; Zocholl, M.; Hadzagic, M. Use case design and big data analytics evaluation for fishing monitoring. In Proceedings of the OCEANS 2019-Marseille, Marseille, France, 17–20 June 2019; pp. 1–8. [Google Scholar]
- Hays, G.C.; Bailey, H.; Bograd, S.J.; Bowen, W.D.; Campagna, C.; Carmichael, R.H.; de Bruyn, P.N. Translating marine animal tracking data into conservation policy and management. Trends Ecol. Evol. 2019, 34, 459–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hazen, E.L.; Abrahms, B.; Brodie, S.; Carroll, G.; Jacox, M.G.; Savoca, M.S.; Bograd, S.J. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 2019, 17, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Hindell, M.A.; Reisinger, R.R.; Ropert-Coudert, Y.; Huckstädt, L.A.; Trathan, P.N.; Bornemann, H.; Lea, M.A. Tracking of marine predators to protect Southern Ocean ecosystems. Nature 2020, 580, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Sequeira, A.M. Predators on track for ocean protection around Antarctica. Nature 2020, 580, 34–35. [Google Scholar] [CrossRef] [Green Version]
- Yaojie, Y.; Min, L.; Lin, W.; A-Xing, Z. A data-mining-based approach for aeolian desertification susceptibility assessment: A case-study from Northern China. Land Degrad. Dev. 2019, 30, 1968–1983. [Google Scholar] [CrossRef]
- Christian, B.A.; Dhinwa, P.S. Long term monitoring and assessment of desertification processes using medium high resolution satellite data. Appl. Geogr. 2018, 97, 10–24. [Google Scholar] [CrossRef]
- Salvati, L.; Kosmas, C.; Kairis, O.; Karavitis, C.; Acikalin, S.; Belgacem, A.; Gungor, H. Unveiling soil degradation and desertification risk in the Mediterranean basin: A data mining analysis of the relationships between biophysical and socioeconomic factors in agro-forest landscapes. J. Environ. Plan. Manag. 2015, 58, 1789–1803. [Google Scholar] [CrossRef]
- Zhang, Z.; Huisingh, D. Combating desertification in China: Monitoring, control, management and revegetation. J. Clean. Prod. 2018, 182, 765–775. [Google Scholar] [CrossRef]
- Giuliani, G.; Mazzetti, P.; Santoro, M.; Nativi, S.; Van Bemmelen, J.; Colangeli, G.; Lehmann, A. Knowledge generation using satellite earth observations to support sustainable development goals (SDG): A use case on Land degradation. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102068. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; da Silva, M.R.; Montanarella, L. Monitoring soil for sustainable development and land degradation neutrality. Environ. Monit. Assess. 2018, 190, 57. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, G.; Chatenoux, B.; Benvenuti, A.; Lacroix, P.; Santoro, M.; Mazzetti, P. Monitoring land degradation at national level using satellite Earth Observation time-series data to support SDG15—Exploring the potential of data cube. Big Earth Data 2020, 4, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Camara, G. On the semantics of big Earth observation data for land classification. J. Spat. Inf. Sci. 2020, 2020, 21–34. [Google Scholar]
- Ayaz, M.; Ammad-Uddin, M.; Sharif, Z.; Mansour, A.; Aggoune, E.H.M. Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk. IEEE Access 2019, 7, 129551–129583. [Google Scholar] [CrossRef]
- Choi, S.; Bae, B. The real-time monitoring system of social big data for disaster management. In Computer Science and Its Applications; Springer: Berlin/Heidelberg, Germany, 2015; pp. 809–815. [Google Scholar]
- Ragini, J.R.; Anand, P.R.; Bhaskar, V. Big data analytics for disaster response and recovery through sentiment analysis. Int. J. Inf. Manag. 2018, 42, 13–24. [Google Scholar] [CrossRef]
- Akter, S.; Wamba, S.F. Big data and disaster management: A systematic review and agenda for future research. Ann. Oper. Res. 2019, 283, 939–959. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Yang, C.; Li, Y. Big data in natural disaster management: A review. Geosciences 2018, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Shan, S.; Zhao, F.; Wei, Y.; Liu, M. Disaster management 2.0: A real-time disaster damage assessment model based on mobile social media data—A case study of Weibo (Chinese Twitter). Saf. Sci. 2019, 115, 393–413. [Google Scholar] [CrossRef]
- La Salle, J.; Williams, K.J.; Moritz, C. Biodiversity analysis in the digital era. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150337. [Google Scholar] [CrossRef] [Green Version]
- Hallgren, W.; Beaumont, L.; Bowness, A.; Chambers, L.; Graham, E.; Holewa, H.; Vanderwal, J. The biodiversity and climate change virtual laboratory: Where ecology meets big data. Environ. Model. Softw. 2016, 76, 182–186. [Google Scholar] [CrossRef] [Green Version]
- König, C.; Weigelt, P.; Schrader, J.; Taylor, A.; Kattge, J.; Kreft, H. Biodiversity data integration—The significance of data resolution and domain. PLoS Biol. 2019, 17, e3000183. [Google Scholar] [CrossRef]
- Hassani, H.; Huang, X.; Silva, E.S.; Ghodsi, M. A review of data mining applications in crime. Stat. Anal. Data Min. ASA Data Sci. J. 2016, 9, 139–154. [Google Scholar] [CrossRef]
- Simmons, R. Big Data, Machine Judges, and the Legitimacy of the Criminal Justice System. UCDL Rev. 2018, 52, 1067. [Google Scholar] [CrossRef]
- Završnik, A. Algorithmic justice: Algorithms and big data in criminal justice settings. Eur. J. Criminol. 2019, 1477370819876762. [Google Scholar] [CrossRef] [Green Version]
- Sarker, M.N.I.; Wu, M.; Hossin, M.A. Smart governance through big data: Digital transformation of public agencies. In Proceedings of the 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD), Chengdu, China, 26–28 May 2018; pp. 62–70. [Google Scholar]
- Goldsmith, S.; Crawford, S. The Responsive City: Engaging Communities through Data-Smart Governance; John Wiley Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Janssen, M.; Kuk, G. The challenges and limits of big data algorithms in technocratic governance. Gov. Inf. Q. 2016, 3, 371–377. [Google Scholar] [CrossRef]
- Johnston, E.W.; Hansen, D.L. Design lessons for smart governance infrastructures. In Transforming American Governance: Rebooting the Public Square; Taylor and Francis: Oxfordshire, UK, 2011; pp. 197–212. [Google Scholar]
- Barns, S. Smart cities and urban data platforms: Designing interfaces for smart governance. City Cult. Soc. 2018, 12, 5–12. [Google Scholar] [CrossRef]
- Al-Badi, A.; Tarhini, A.; Khan, A.I. Exploring big data governance frameworks. Procedia Comput. Sci. 2018, 141, 271–277. [Google Scholar] [CrossRef]
- Lin, Y. A comparison of selected Western and Chinese smart governance: The application of ICT in governmental management, participation and collaboration. Telecommun. Policy 2018, 42, 800–809. [Google Scholar] [CrossRef]
- Pereira, G.V.; Parycek, P.; Falco, E.; Kleinhans, R. Smart governance in the context of smart cities: A literature review. Inf. Polity 2018, 23, 143–162. [Google Scholar] [CrossRef] [Green Version]
- Meijer, A.; Bolívar, M.P.R. Governing the smart city: A review of the literature on smart urban governance. Int. Rev. Adm. Sci. 2016, 82, 392–408. [Google Scholar] [CrossRef]
- Ju, J.; Liu, L.; Feng, Y. Citizen-centered big data analysis-driven governance intelligence framework for smart cities. Telecommun. Policy 2018, 42, 881–896. [Google Scholar] [CrossRef]
- Chen, F.; Neill, D.B. Human rights event detection from heterogeneous social media graphs. Big Data 2015, 3, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Aldhaheri, A.; Lee, J. Event detection on large social media using temporal analysis. In Proceedings of the 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 9–11 June 2017; pp. 1–6. [Google Scholar]
- Suma, S.; Mehmood, R.; Albeshri, A. Automatic event detection in smart cities using big data analytics. In International Conference on Smart Cities, Infrastructure, Technologies and Applications; Springer: Cham, Switzerland, 2017; pp. 111–122. [Google Scholar]
- Shi, L.; Wu, Y.; Liu, L.; Sun, X.; Jiang, L. Event detection and identification of influential spreaders in social media data streams. Big Data Min. Anal. 2018, 1, 34–46. [Google Scholar]
- Ceron, A.; Curini, L.; Iacus, S.M. Politics and Big Data: Nowcasting and Forecasting Elections with Social Media; Taylor Francis: Abingdon, UK, 2016. [Google Scholar]
- Bae, J.H.; Son, J.E.; Song, M. Analysis of twitter for 2012 South Korea presidential election by text mining techniques. J. Intell. Inf. Syst. 2013, 19, 141–156. [Google Scholar]
- Sudhahar, S.; Veltri, G.A.; Cristianini, N. Automated analysis of the US presidential elections using Big Data and network analysis. Big Data Soc. 2015, 2, 2053951715572916. [Google Scholar] [CrossRef] [Green Version]
- Budiharto, W.; Meiliana, M. Prediction and analysis of Indonesia Presidential election from Twitter using sentiment analysis. J. Big Data 2018, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Naz, M.; Al-zahrani, F.A.; Khalid, R.; Javaid, N.; Qamar, A.M.; Afzal, M.K.; Shafiq, M. A secure data sharing platform using blockchain and interplanetary file system. Sustainability 2019, 11, 7054. [Google Scholar] [CrossRef] [Green Version]
- Kewell, B.; Adams, R.; Parry, G. Blockchain for good? Strateg. Chang. 2017, 26, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.; Kewell, B.; Parry, G. Blockchain for good? Digital ledger technology and sustainable development goals. In Handbook of Sustainability and Social Science Research; Springer: Cham, Switzerland, 2018; pp. 127–140. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassani, H.; Huang, X.; MacFeely, S.; Entezarian, M.R. Big Data and the United Nations Sustainable Development Goals (UN SDGs) at a Glance. Big Data Cogn. Comput. 2021, 5, 28. https://doi.org/10.3390/bdcc5030028
Hassani H, Huang X, MacFeely S, Entezarian MR. Big Data and the United Nations Sustainable Development Goals (UN SDGs) at a Glance. Big Data and Cognitive Computing. 2021; 5(3):28. https://doi.org/10.3390/bdcc5030028
Chicago/Turabian StyleHassani, Hossein, Xu Huang, Steve MacFeely, and Mohammad Reza Entezarian. 2021. "Big Data and the United Nations Sustainable Development Goals (UN SDGs) at a Glance" Big Data and Cognitive Computing 5, no. 3: 28. https://doi.org/10.3390/bdcc5030028
APA StyleHassani, H., Huang, X., MacFeely, S., & Entezarian, M. R. (2021). Big Data and the United Nations Sustainable Development Goals (UN SDGs) at a Glance. Big Data and Cognitive Computing, 5(3), 28. https://doi.org/10.3390/bdcc5030028