Impactful Digital Twin in the Healthcare Revolution
Abstract
:1. Introduction
2. Digital Twin: An Old Concept with a New Major Boost
2.1. Digital Twin: Development History
2.2. Digital Twin: Common Misconceptions
2.3. Digital Twin Functionalities in the Emerging Metaverse
3. Healthcare Upgrading via a Digital Twin
3.1. Five Dimensions of the Digital Twin Model in Healthcare
3.2. Digital Twin: Supporting Healthcare in Different Life Stages
3.2.1. Preconception Care
3.2.2. Lifetime Healthcare
3.2.3. Afterlife Stage
3.3. Digital Twinning Everything as a Healthcare Service
4. Discussion
4.1. Strengths and Challenges
4.1.1. Digital Twin Helps to Combat Healthcare Inequality
4.1.2. Digital Twin Assists with Achieving Sustainable and Efficient Healthcare Facility Management
4.1.3. Digital Twin Accelerates Advances in Healthcare Research
4.2. Conclusions and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassani, H.; Huang, X.; Silva, E. The human digitalisation journey: Technology first at the expense of humans? Information 2021, 12, 267. [Google Scholar] [CrossRef]
- ReportLinker. Global Digital Twin Market, By Type, By Technology, By Application, By End User, By Region, Competition, Forecast Opportunities, 2017–2027F. Available online: https://www.reportlinker.com/p05778901/Global-Digital-Twin-MarketBy-Application-By-End-User-Sector-By-Region-Competition-Forecast-Opportunities.html (accessed on 27 April 2022).
- Tao, F.; Qi, Q. Make more digital twins. Nature 2019, 573, 490–491. [Google Scholar] [CrossRef] [Green Version]
- Angulo, C.; Ortega, J.A.; Gonzalez-Abril, L. Towards a Healthcare Digital Twin. In Artificial Intelligence Research and Development; IOS Press: Amsterdam, The Netherlands, 2019; pp. 312–315. [Google Scholar]
- Van Deursen, A.J.; Van Dijk, J.A. The first-level digital divide shifts from inequalities in physical access to inequalities in material access. New Media Soc. 2019, 21, 354–375. [Google Scholar] [CrossRef] [Green Version]
- Scheerder, A.; Van Deursen, A.; Van Dijk, J. Determinants of Internet skills, uses and outcomes. A systematic review of the second-and third-level digital divide. Telemat. Inform. 2017, 34, 1607–1624. [Google Scholar] [CrossRef]
- Rogers, S.E. Bridging the 21st century digital divide. TechTrends 2016, 60, 197–199. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F. Digital twin and big data towards smart manufacturing and industry 4.0: 360-degree comparison. IEEE Access 2018, 6, 3585–3593. [Google Scholar] [CrossRef]
- Aheleroff, S.; Xu, X.; Zhong, R.Y.; Lu, Y. Digital Twin as a Service (DTaaS) in Industry 4.0: An Architecture Reference Model. Adv. Eng. Inform. 2020, 47, 101225. [Google Scholar] [CrossRef]
- Grieves, M. Digital twin: Manufacturing excellence through virtual factory replication. White Pap. 2014, 1, 1–7. [Google Scholar]
- Glaessgen, E.; Stargel, D. The digital twin paradigm for future NASA and US Air Force vehicles. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, 23–26 April 2012; p. 1818. [Google Scholar]
- Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A.Y.C. Enabling technologies and tools for digital twin. J. Manuf. Syst. 2021, 58, 3–21. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Tao, F.; Liu, W.; Zhang, M.; Hu, T.; Qi, Q.; Zhang, H.; Sui, F.; Wang, T.; Xu, H.; Huang, Z. Five-dimension digital twin model and its ten applications. Comput. Integr. Manuf. Syst. 2019, 25, 1–18. [Google Scholar]
- Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2021, 58, 346–361. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y. Digital twin in industry: State-of-the-art. IEEE Trans. Ind. Inform. 2018, 15, 2405–2415. [Google Scholar] [CrossRef]
- Pires, F.; Cachada, A.; Barbosa, J.; Moreira, A.P.; Leitão, P. Digital twin in industry 4.0: Technologies, applications and challenges. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; IEEE: Piscataway, NJ, USA, 2019; Volume 1, pp. 721–726. [Google Scholar]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital twin: Enabling technologies, challenges and open research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Pang, T.Y.; Pelaez Restrepo, J.D.; Cheng, C.T.; Yasin, A.; Lim, H.; Miletic, M. Developing a digital twin and digital thread framework for an ‘Industry 4.0’ Shipyard. Appl. Sci. 2021, 11, 1097. [Google Scholar] [CrossRef]
- Yu, L.; Zhao, Y.; Tang, L.; Yang, Z. Online big data-driven oil consumption forecasting with Google trends. Int. J. Forecast. 2019, 35, 213–223. [Google Scholar] [CrossRef]
- Silva, E.S.; Hassani, H.; Madsen, D.Ø.; Gee, L. Googling fashion: Forecasting fashion consumer behaviour using google trends. Soc. Sci. 2019, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Karimi, H.R.; Kaynak, O.; Yin, S. Developments of digital twin technologies in industrial, smart city and healthcare sectors: A survey. Complex Eng. Syst. 2021, 1, 3. [Google Scholar] [CrossRef]
- Van Dijk, J. The Digital Divide; John Wiley Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Boschert, S.; Rosen, R. Digital twin—the simulation aspect. In Mechatronic Futures; Springer: Cham, Switzerland, 2016; pp. 59–74. [Google Scholar]
- Sepasgozar, S.M. Differentiating digital twin from digital shadow: Elucidating a paradigm shift to expedite a smart, sustainable built environment. Buildings 2021, 11, 151. [Google Scholar] [CrossRef]
- Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital twin: Origin to future. Appl. Syst. Innov. 2021, 4, 36. [Google Scholar] [CrossRef]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine 2018, 51, 1016–1022. [Google Scholar] [CrossRef]
- Siedlak, D.J.; Pinon, O.J.; Schlais, P.R.; Schmidt, T.M.; Mavris, D.N. A digital thread approach to support manufacturing-influenced conceptual aircraft design. Res. Eng. Des. 2018, 29, 285–308. [Google Scholar] [CrossRef]
- Miskinis, C. What Does a Digital Thread Mean and How It Differes from Digital Twin. Challenge Advisory. Available online: https://www.challenge.org/insights/digital-twin-anddigital-thread/ (accessed on 1 May 2022).
- West, T.D.; Blackburn, M. Is digital thread/digital twin affordable? A systemic assessment of the cost of DoD’s latest manhattan project. Procedia Comput. Sci. 2017, 114, 47–56. [Google Scholar] [CrossRef]
- Zhang, Z.; Guan, Z.; Gong, Y.; Luo, D.; Yue, L. Improved multi-fidelity simulation-based optimisation: Application in a digital twin shop floor. Int. J. Prod. Res. 2022, 60, 1016–1035. [Google Scholar] [CrossRef]
- Chetan, M.; Yao, S.; Griffith, D.T. Multi-fidelity digital twin structural model for a sub-scale downwind wind turbine rotor blade. Wind. Energy 2021, 24, 1368–1387. [Google Scholar] [CrossRef]
- Huang, S.; Wang, G.; Yan, Y. Building blocks for digital twin of reconfigurable machine tools from design perspective. Int. J. Prod. Res. 2022, 60, 942–956. [Google Scholar] [CrossRef]
- Yu, Q.; Ren, J.; Fu, Y.; Li, Y.; Zhang, W. Cybertwin: An origin of next generation network architecture. IEEE Wirel. Commun. 2019, 26, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, T.K.; Liu, J.; Kato, N. Application of cybertwin for offloading in mobile multiaccess edge computing for 6G networks. IEEE Internet Things J. 2021, 8, 16231–16242. [Google Scholar] [CrossRef]
- Adhikari, M.; Munusamy, A.; Kumar, N.; Srirama, S.N. Cybertwin-Driven Resource Provisioning for IoE Applications at 6G-Enabled Edge Networks. IEEE Trans. Ind. Inform. 2021, 18, 4850–4858. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, P.; Jiang, W. Web-based digital twin modeling and remote control of cyber-physical production systems. Robot. Comput. Manuf. 2020, 64, 101956. [Google Scholar] [CrossRef]
- Ammar, M.; Russello, G.; Crispo, B. Internet of Things: A survey on the security of IoT frameworks. J. Inf. Secur. Appl. 2018, 38, 8–27. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, A.; Sharma, V.; Raj, G. IoT based car pollution detection using AWS. In Proceedings of the 2018 International Conference on Advances in Computing and Communication Engineering (ICACCE), Paris, France, 22–23 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 306–311. [Google Scholar]
- Fagbola, F.I.; Venter, H.S. Smart Digital Forensic Readiness Model for Shadow IoT Devices. Appl. Sci. 2022, 12, 730. [Google Scholar] [CrossRef]
- Pierleoni, P.; Concetti, R.; Belli, A.; Palma, L. Amazon, Google and Microsoft Solutions for IoT: Architectures and a Performance Comparison. IEEE Access 2019, 8, 5455–5470. [Google Scholar] [CrossRef]
- Rasheed, A.; San, O.; Kvamsdal, T. Digital Twin: Values, Challenges and Enablers from a Modeling Perspective. IEEE Access 2020, 8, 21980–22012. [Google Scholar] [CrossRef]
- Mystakidis, S. Metaverse. Encyclopedia 2022, 2, 486–497. [Google Scholar] [CrossRef]
- Erol, T.; Mendi, A.F.; Dogan, D. The Digital Twin Revolution in Healthcare. In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 22–24 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7. [Google Scholar]
- Croatti, A.; Gabellini, M.; Montagna, S.; Ricci, A. On the Integration of Agents and Digital Twins in Healthcare. J. Med. Syst. 2020, 44, 1–8. [Google Scholar] [CrossRef]
- Laubenbacher, R.; Sluka, J.P.; Glazier, J.A. Using digital twins in viral infection. Science 2021, 371, 1105–1106. [Google Scholar] [CrossRef]
- Bruynseels, K.; Santoni de Sio, F.; Van den Hoven, J. Digital twins in healthcare: Ethical implications of an emerging engineering paradigm. Front. Genet. 2018, 9, 31. [Google Scholar] [CrossRef]
- Pentecost, M.; Meloni, M. “It’s Never Too Early”: Preconception Care and Postgenomic Models of Life. Front. Sociol. 2020, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, P.; Hempstead, M.B.; Ring, L.; Bickmore, T.; Yinusa-Nyahkoon, L.; Tran, H.; Paasche-Orlow, M.; Damus, K.; Jack, B. Reaching Women through Health Information Technology: The Gabby Preconception Care System. Am. J. Health Promot. 2013, 27, eS11–eS20. [Google Scholar] [CrossRef]
- Jack, B.; Bickmore, T.; Hempstead, M.; Yinusa-Nyahkoon, L.; Sadikova, E.; Mitchell, S.; Gardiner, P.; Adigun, F.; Penti, B.; Schulman, D.; et al. Reducing Preconception Risks Among African American Women with Conversational Agent Technology. J. Am. Board Fam. Med. 2015, 28, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, M.R.; Oostingh, E.C.; Koster, M.P.H.; Willemsen, S.P.; Laven, J.S.E.; Steegers-Theunissen, R.P.M. The use of the mHealth program Smarter Pregnancy in preconception care: Rationale, study design and data collection of a randomized controlled trial. BMC Pregnancy Childbirth 2017, 17, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, L.; Boland, M.R. Enabling pregnant women and their physicians to make informed medication decisions using artificial intelligence. J. Pharmacokinet. Pharmacodyn. 2020, 47, 305–318. [Google Scholar] [CrossRef] [Green Version]
- Davidson, L.; Boland, M.R. Towards deep phenotyping pregnancy: A systematic review on artificial intelligence and machine learning methods to improve pregnancy outcomes. Briefings Bioinform. 2021, 22, bbaa369. [Google Scholar] [CrossRef]
- Oprescu, A.M.; Miro-Amarante, G.; Garcia-Diaz, L.; Rey, V.E.; Chimenea-Toscano, A.; Mart´ınez-Martinez, R.; Romero-Ternero, M.C. Towards a data collection methodology for Responsible Artificial Intelligence in health: A prospective and qualitative study in pregnancy. Inf. Fusion 2022, 83, 53–78. [Google Scholar] [CrossRef]
- Rousian, M.; Koster, M.P.H.; Mulders, A.G.; Koning, A.H.J.; Steegers-Theunissen, R.P.M.; Steegers, E.A.P. Virtual reality imaging techniques in the study of embryonic and early placental health. Placenta 2018, 64, S29–S35. [Google Scholar] [CrossRef]
- Rousian, M.; Schoenmakers, S.; Eggink, A.J.; Gootjes, D.V.; Koning, A.H.J.; Koster, M.P.; Mulders, A.G.M.G.J.; Baart, E.B.; Reiss, I.K.M.; E Laven, J.S.; et al. Cohort Profile Update: The Rotterdam Periconceptional Cohort and embryonic and fetal measurements using 3D ultrasound and virtual reality techniques. Int. J. Epidemiol. 2021, 50, 1426–1427l. [Google Scholar] [CrossRef]
- Di Guardo, F.; Palumbo, M. Immersive virtual reality as tool to reduce anxiety during embryo transfer. J. Obstet. Gynaecol. 2022, 4, 1–7. [Google Scholar] [CrossRef]
- The Human Genome Project. (n.d.); The Human Genome Project. National Human Genome Research Institute. Available online: https://www.genome.gov/human-genomeproject (accessed on 12 May 2022).
- 100,000 Genomes Project. (n.d.) 100,000 Genomes Project. Genomics England. Available online: https://www.genomicsengland.co.uk/initiatives/100000-genomes-project (accessed on 14 May 2022).
- Newborn Genomes Programme. (n.d.) Newborn Genomes Programme. Genomics England. Available online: https://www.genomicsengland.co.uk/initiatives/newborns (accessed on 14 May 2022).
- Project Baseline. (n.d.) Project Baseline. Available online: https://www.projectbaseline.com/ (accessed on 15 May 2022).
- Kuwabara, A.; Su, S.; Krauss, J. Utilizing Digital Health Technologies for Patient Education in Lifestyle Medicine. Am. J. Lifestyle Med. 2020, 14, 137–142. [Google Scholar] [CrossRef]
- Comito, C.; Pizzuti, C. Artificial intelligence for forecasting and diagnosing COVID-19 pandemic: A focused review. Artif. Intell. Med. 2022, 128, 102286. [Google Scholar] [CrossRef]
- Comito, C. How COVID-19 Information Spread in U.S.? The Role of Twitter as Early Indicator of Epidemics. IEEE Trans. Serv. Comput. 2021, 15, 1193–1205. [Google Scholar] [CrossRef]
- De Moraes Lopes, M.H.B.; Ferreira, D.D.; Ferreira, A.C.B.H.; da Silva, G.R.; Caetano, A.S.; Braz, V.N. Use of artificial intelligence in precision nutrition and fitness. In Artificial Intelligence in Precision Health; Academic Press: Cambridge, MA, USA, 2020; pp. 465–496. [Google Scholar]
- Boulos, M.K.; Zhang, P. Digital Twins: From Personalised Medicine to Precision Public Health. J. Pers. Med. 2021, 11, 745. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, S.; Bamidis, P.D.; Zary, N. (Eds.) Digital Innovations in Healthcare Education and Training; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Bracq, M.S.; Michinov, E.; Jannin, P. Virtual reality simulation in nontechnical skills training for healthcare professionals: A systematic review. Simul. Healthc. 2019, 14, 188–194. [Google Scholar] [CrossRef]
- Dolianiti, F.; Tsoupouroglou, I.; Antoniou, P.; Konstantinidis, S.; Anastasiades, S.; Bamidis, P. Chatbots in healthcare curricula: The case of a conversational virtual patient. In International Conference on Brain Function Assessment in Learning; Springer: Cham, Switzerland, 2020; pp. 137–147. [Google Scholar]
- Kyaw, B.M.; Saxena, N.; Posadzki, P.; Vseteckova, J.; Nikolaou, C.K.; George, P.P.; Divakar, U.; Masiello, I.; Kononowicz, A.A.; Zary, N.; et al. Virtual reality for health professions education: Systematic review and meta-analysis by the digital health education collaboration. J. Med. Internet Res. 2019, 21, e12959. [Google Scholar] [CrossRef] [Green Version]
- Pottle, J. Virtual reality and the transformation of medical education. Future Health J. 2019, 6, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavez, O.L.; Rodríguez, L.F.; Gutierrez-Garcia, J.O. A comparative case study of 2D, 3D and immersive-virtual-reality applications for healthcare education. Int. J. Med. Inform. 2020, 141, 104226. [Google Scholar] [CrossRef]
- Gamez Diaz, R.; Yu, Q.; Ding, Y.; Laamarti, F.; El Saddik, A. Digital twin coaching for physical activities: A survey. Sensors 2020, 20, 5936. [Google Scholar] [CrossRef]
- Gkouskou, K.; Vlastos, I.; Karkalousos, P.; Chaniotis, D.; Sanoudou, D.; Eliopoulos, A.G. The “virtual digital twins” concept in precision nutrition. Adv. Nutr. 2020, 11, 1405–1413. [Google Scholar] [CrossRef]
- Barricelli, B.R.; Casiraghi, E.; Gliozzo, J.; Petrini, A.; Valtolina, S. Human digital twin for fitness management. IEEE Access 2020, 8, 26637–26664. [Google Scholar] [CrossRef]
- Ogunseiju, O.R.; Olayiwola, J.; Akanmu, A.A.; Nnaji, C. Digital twin-driven framework for improving self-management of ergonomic risks. Smart Sustain. Built Environ. 2021, 10, 403–419. [Google Scholar] [CrossRef]
- Rivera, L.F.; Jimenez, M.; Angara, P.; Villegas, N.M.; Tamura, G.; Müller, H.A. Towards continuous monitoring in personalized healthcare through digital twins. In Proceedings of the 29th Annual International Conference on Computer Science and Software Engineering, Markham, ON, Canada, 4–6 November 2019; pp. 329–335. [Google Scholar]
- Shamanna, P.; Saboo, B.; Damodharan, S.; Mohammed, J.; Mohamed, M.; Poon, T.; Kleinman, N.; Thajudeen, M. Reducing HbA1c in Type 2 Diabetes Using Digital Twin Technology-Enabled Precision Nutrition: A Retrospective Analysis. Diabetes Ther. 2020, 11, 2703–2714. [Google Scholar] [CrossRef] [PubMed]
- Shamanna, P.; Dharmalingam, M.; Sahay, R.; Mohammed, J.; Mohamed, M.; Poon, T.; Kleinman, N.; Thajudeen, M. Retrospective study of glycemic variability, BMI, and blood pressure in diabetes patients in the Digital Twin Precision Treatment Program. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Sarijaloo, F.B.; Prakash, A.; Park, J.; Huang, C.; Barwise, A.; Herasevich, V.; Gajic, O.; Pickering, B.; Dong, Y. A multidisciplinary approach to the development of digital twin models of critical care delivery in intensive care units. Int. J. Prod. Res. 2022, 60, 4197–4213. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Yang, Y.; Zhou, L.; Ren, L.; Wang, F.; Liu, R.; Pang, Z.; Deen, M.J. A Novel Cloud-Based Framework for the Elderly Healthcare Services Using Digital Twin. IEEE Access 2019, 7, 49088–49101. [Google Scholar] [CrossRef]
- Voigt, I.; Inojosa, H.; Dillenseger, A.; Haase, R.; Akgun, K.; Ziemssen, T. Digital twins for multiple sclerosis. Front. Immunol. 2021, 12, 1556. [Google Scholar] [CrossRef]
- Chakshu, N.K.; Sazonov, I.; Nithiarasu, P. Towards enabling a cardiovascular digital twin for human systemic circulation using inverse analysis. Biomech. Modeling Mechanobiol. 2021, 20, 449–465. [Google Scholar] [CrossRef]
- Barbiero, P.; Torne, R.V.; Lio, P. Graph Representation Forecasting of Patient’s Medical Conditions: Toward a Digital Twin. Front. Genet. 2021, 12, 1289. [Google Scholar] [CrossRef]
- Elayan, H.; Aloqaily, M.; Guizani, M. Digital twin for intelligent context-aware iot healthcare systems. IEEE Internet Things J. 2021, 8, 16749–16757. [Google Scholar] [CrossRef]
- Lal, A.; Li, G.; Cubro, E.; Chalmers, S.; Li, H.; Herasevich, V.; Dong, Y.; Pickering, B.W.; Kilickaya, O.; Gajic, O. Development and verification of a digital twin patient model to predict specific treatment response during the first 24 hours of sepsis. Crit. Care Explor. 2020, 2, e0249. [Google Scholar] [CrossRef]
- Mourtzis, D.; Angelopoulos, J.; Panopoulos, N.; Kardamakis, D. A Smart IoT Platform for Oncology Patient Diagnosis based on AI: Towards the Human Digital Twin. Procedia CIRP 2021, 104, 1686–1691. [Google Scholar] [CrossRef]
- Corral-Acero, J.; Margara, F.; Marciniak, M.; Rodero, C.; Loncaric, F.; Feng, Y.; Gilbert, A.; Fernandes, J.F.; Bukhari, H.A.; Wajdan, A.; et al. The ‘Digital Twin’ to enable the vision of precision cardiology. Eur. Heart J. 2020, 41, 4556–4564. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Lin, G.; Fang, D.; Tai, Y.; Huang, J. Cyber resilience in healthcare digital twin on lung cancer. IEEE Access 2020, 8, 201900–201913. [Google Scholar] [CrossRef]
- Zhang, J.; Tai, Y. Secure medical digital twin via human-centric interaction and cyber vulnerability resilience. Connect. Sci. 2021, 34, 895–910. [Google Scholar] [CrossRef]
- Mao, R.Q.; Lan, L.; Kay, J.; Lohre, R.; Ayeni, O.R.; Goel, D.P. Immersive virtual reality for surgical training: A systematic review. J. Surg. Res. 2021, 268, 40–58. [Google Scholar] [CrossRef] [PubMed]
- Bjelland, Q.; Rasheed, B.; Schaathun, H.G.; Pedersen, M.D.; Steinert, M.; Hellevik, A.I.; Bye, R.T. Towards a Digital Twin for Arthroscopic Knee Surgery: A Systematic Review. IEEE Access 2022, 10, 45029–45052. [Google Scholar] [CrossRef]
- Laaki, H.; Miche, Y.; Tammi, K. Prototyping a digital twin for real time remote control over mobile networks: Application of remote surgery. IEEE Access 2019, 7, 20325–20336. [Google Scholar] [CrossRef]
- Zinchenko, K.; Song, K.T. Autonomous Endoscope Robot Positioning Using Instrument Segmentation with Virtual Reality Visualization. IEEE Access 2021, 9, 72614–72623. [Google Scholar] [CrossRef]
- Karakra, A.; Fontanili, F.; Lamine, E.; Lamothe, J. HospiT’Win: A predictive simulation-based digital twin for patients pathways in hospital. In Proceedings of the 2019 IEEE EMBS international conference on biomedical health informatics (BHI), Chicago, IL, USA, 19–22 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
- Lu, Q.; Xie, X.; FANG, Z.; Chen, L.; Ye, Z.; Pitt, M. An inter-hospital digital twin for response to COVID-19 pandemic based on blockchain–A proof of concept. Sustain. Cities Soc. 2021, in press. [Google Scholar]
- Peng, Y.; Zhang, M.; Yu, F.; Xu, J.; Gao, S. Digital Twin Hospital Buildings: An Exemplary Case Study through Continuous Lifecycle Integration. Adv. Civ. Eng. 2020, 2020, 8846667. [Google Scholar] [CrossRef]
- Farsi, M.; Daneshkhah, A.; Hosseinian-Far, A.; Jahankhani, H. (Eds.) Digital Twin Technologies and Smart Cities; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Shahat, E.; Hyun, C.T.; Yeom, C. City digital twin potentials: A review and research agenda. Sustainability 2021, 13, 3386. [Google Scholar] [CrossRef]
- Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. Towards a semantic Construction Digital Twin: Directions for future research. Autom. Constr. 2020, 114, 103179. [Google Scholar] [CrossRef]
- Sacks, R.; Brilakis, I.; Pikas, E.; Xie, H.S.; Girolami, M. Construction with digital twin information systems. Data-Centric Eng. 2020, 1, e14. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.H.; Masoud, N.; Krishnan, M.S.; Li, V.C. Integrated digital twin and blockchain framework to support accountable information sharing in construction projects. Autom. Constr. 2021, 127, 103688. [Google Scholar] [CrossRef]
- Hu, X.; Cao, H.; Shi, J.; Dai, Y.; Dai, W. Study of hospital emergency resource scheduling based on digital twin technology. In Proceedings of the 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 17–19 December 2021; IEEE: Piscataway, NJ, USA, 2021; Volume 2, pp. 1059–1063. [Google Scholar]
- Song, Y.; Li, Y. Digital Twin Aided Healthcare Facility Management: A Case Study of Shanghai Tongji Hospital. In Construction Research Congress 2022; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2022; pp. 1145–1155. [Google Scholar]
- Zhao, J.; Feng, H.; Chen, Q.; de Soto, B.G. Developing a conceptual framework for the application of digital twin technologies to revamp building operation and maintenance processes. J. Build. Eng. 2022, 49, 104028. [Google Scholar] [CrossRef]
- Burlacu, A.; Iftene, A.; Jugrin, D.; Popa, I.V.; Lupu, P.M.; Vlad, C.; Covic, A. Using Artificial Intelligence Resources in Dialysis and Kidney Transplant Patients: A Literature Review. Biomed. Res. Int. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Wingfield, L.R.; Ceresa, C.; Thorogood, S.; Fleuriot, J.; Knight, S. Using Artificial Intelligence for Predicting Survival of Individual Grafts in Liver Transplantation: A Systematic Review. Liver Transplant. 2020, 26, 922–934. [Google Scholar] [CrossRef]
- Briceno, J.; Calleja, R.; Hervás, C. Artificial intelligence and liver transplantation: Looking for the best donor-recipient pairing. Hepatobiliary Pancreat. Dis. Int. 2022, 21, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gutiérrez, A.; Díez-González, J.; Ferrero-Guillén, R.; Verde, P.; Álvarez, R.; Perez, H. Digital Twin for Automatic Transportation in Industry 4.0. Sensors 2021, 21, 3344. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Qian, S.; Li, Z.; Wang, P.; Wang, F.; He, Q. Digital Twin and Its Application in Transportation Infrastructure. In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), Beijing, China, 15 July–15 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 298–301. [Google Scholar]
- Wright, N. Death and the Internet: The implications of the digital afterlife. First Monday 2014, 19. [Google Scholar] [CrossRef]
- Moreman, C.M.; Lewis, A.D. (Eds.) Digital Death: Mortality and beyond in the Online Age: Mortality and beyond in the Online Age; ABC-CLIO: Santa Barbara, CA, USA, 2014. [Google Scholar]
- Stokes, P. Deletion as second death: The moral status of digital remains. Ethics Inf. Technol. 2015, 17, 237–248. [Google Scholar] [CrossRef]
- Javaid, S.; Zeadally, S.; Fahim, H.; He, B. Medical Sensors and Their Integration in Wireless Body Area Networks for Pervasive Healthcare Delivery: A Review. IEEE Sens. J. 2022, 22, 3860–3877. [Google Scholar] [CrossRef]
- Patrone, C.; Lattuada, M.; Galli, G.; Revetria, R. The role of Internet of Things and digital twin in healthcare digitalization process. In The World Congress on Engineering and Computer Science; Springer: Singapore, 2018; pp. 30–37. [Google Scholar]
- Wu, Q.; Liu, J.; Wang, X.; Feng, L.; Wu, J.; Zhu, X.; Wen, W.; Gong, X. Organon-a-chip: Recent breakthroughs and future prospects. Biomed. Eng. Online 2020, 19, 9. [Google Scholar] [CrossRef] [Green Version]
- Baillargeon, B.; Rebelo, N.; Fox, D.D.; Taylor, R.L.; Kuhl, E. The Living Heart Project: A robust and integrative simulator for human heart function. Eur. J. Mech. A/Solids 2014, 48, 38–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Velazquez, R.; Gamez, R.; El Saddik, A. Cardio Twin: A Digital Twin of the human heart running on the edge. In Proceedings of the 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Istanbul, Turkey, 26–28 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Subramanian, K. Digital Twin for Drug Discovery and Development—The Virtual Liver. J. Indian Inst. Sci. 2020, 100, 653–662. [Google Scholar] [CrossRef]
- Coorey, G.; Figtree, G.A.; Fletcher, D.F.; Redfern, J. The health digital twin: Advancing precision cardiovascular medicine. Nat. Rev. Cardiol. 2021, 18, 803–804. [Google Scholar] [CrossRef] [PubMed]
- Barnabas, J.; Raj, P. The human body: A digital twin of the cyber physical systems. In Advances in Computers; Elsevier: Amsterdam, The Netherlands, 2020; Volume 117, pp. 219–246. [Google Scholar]
- Shengli, W. Is human digital twin possible? Comput. Methods Programs Biomed. Update 2021, 1, 100014. [Google Scholar] [CrossRef]
- Lamb, K.; Barrett, M.; Pilosof, N.; Fenby-Taylor, H.; Walters, A. Digital Twin Journeys: The Journey to the Smart Hospital of the Future; Centre for Digital Built Britain: Cambridge, UK, 2021. [Google Scholar]
- Hassani, H.; Huang, X.; Silva, E. Digitalisation and Big Data Mining in Banking. Big Data Cogn. Comput. 2018, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Hassani, H.; Huang, X.; Silva, E. Big data and climate change. Big Data Cogn. Comput. 2019, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Hassani, H.; Yeganegi, M.R.; Beneki, C.; Unger, S.; Moradghaffari, M. Big data and energy poverty alleviation. Big Data Cogn. Comput. 2019, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- Hassani, H.; Huang, X.; MacFeely, S.; Entezarian, M.R. Big data and the united nations sustainable development goals (UN SDGs) at a glance. Big Data Cogn. Comput. 2021, 5, 28. [Google Scholar] [CrossRef]
- Comito, C.; Forestiero, A.; Zumpano, E. (Eds.) Integrating Artificial Intelligence and IoT for Advanced Health Informatics: AI in the Healthcare Sector; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Comito, C.; Falcone, D.; Forestiero, A. AI-Driven Clinical Decision Support: Enhancing Disease Diagnosis Exploiting Patients Similarity. IEEE Access 2022, 10, 6878–6888. [Google Scholar] [CrossRef]
Term | Reasons and Differences |
---|---|
Digital shadow | A digital shadow contains a physically existing product and its virtual twin, but it has only a unidirectional data connection from the physical entity to its virtual representative, meaning the virtual twin only digitally reflects the physical product [26,27,28]. |
Digital modelling | Modelling is the essential aspect of a digital twin but is not an alternative term to represent digital twin as a whole. There are bi-directional data connections between the physical product and its virtual twin; however, the data is exchanged manually [27,28], meaning the virtual twin represents a certain status of the physical product with the manually controlled process of synthesis. |
Digital thread | The digital thread represents the continuous lifetime digital/traceable record of a physical product, starting from its innovation and designing stage to the end of its lifespan, and it plays an important role in the digitalisation process and functions as the enablers of interdisciplinary information exchange [29,30,31]. |
Simulation | Simulation refers to the important imitating functionality of digital twin technology from the virtual twin’s perspective, and simulation indicates a broader range of models; it is an essential aspect of the digital twin rather than an alternative term representing digital twin, as it does not consider the real-time data exchange in between the physically existing object [16,25]. |
Fidelity model/ Simulation | Fidelity refers to the level of imitation state of a simulation model compared with the physical product it is reproducing. It is common to find terms like high/low/core/multi fidelity model/simulation, which describe different fidelity levels or considerations while building up the simulation model [16,32]. It is also frequently found that researchers use high fidelity or even ultrahigh fidelity to describe the common feature of the digital twin considering its real-time dynamic data exchange between the physical object and virtual twin [14,33,34]. |
Cyber twin | Some researchers referred to cyber twin and digital twin interchangeably as a result of understanding “cyber” as another alternative term for “digital”. It is also common to see terms like cyber digital twin, cyber twin simulation, cyber-physical system, and so on. The key aspect the cyber twin or cyber-physical system would like to address is a network (internet architecture), closely related to the advancements and implementations of IoE (Internet of Everything) [35,36,37,38]. It is also common to mix the cyber twin or cyber-physical system network architecture with a digital thread. |
Device shadow | It is common to find research on device shadow in areas of cloud computing platforms and the Internet of Things (IoT). Device shadow highlights the virtual representation of the physically existing object; in brief, it refers to the service of maintaining a copy of information extracted from the physical object, which is connected to IoT [39,40,41,42]. |
Digital Twin Model Element | Description in the Healthcare Context |
---|---|
Physical entity | Human/patient in the healthcare context |
Virtual twin | Digital representative of human/patient |
Digital twin data | Fusion of information including data collected from the patient (both historical and real-time), analytical data from a digital model, simulation, validation and prediction supported by research, computational modelling, Big Data mining, and machine learning. |
Services | Collective functionalities and services provided via applying the digital twin, i.e., monitoring, modelling, simulation, validation, optimisation, and analytics, in the healthcare context; for instance, monitoring patient health status, timely diagnosis, effective and personalised treatment, operational efficiency improvement of healthcare institutions, and so on. |
Data connection | The data exchanging channels between humans and the digi-representative; the fusion of digital twin data and services. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassani, H.; Huang, X.; MacFeely, S. Impactful Digital Twin in the Healthcare Revolution. Big Data Cogn. Comput. 2022, 6, 83. https://doi.org/10.3390/bdcc6030083
Hassani H, Huang X, MacFeely S. Impactful Digital Twin in the Healthcare Revolution. Big Data and Cognitive Computing. 2022; 6(3):83. https://doi.org/10.3390/bdcc6030083
Chicago/Turabian StyleHassani, Hossein, Xu Huang, and Steve MacFeely. 2022. "Impactful Digital Twin in the Healthcare Revolution" Big Data and Cognitive Computing 6, no. 3: 83. https://doi.org/10.3390/bdcc6030083
APA StyleHassani, H., Huang, X., & MacFeely, S. (2022). Impactful Digital Twin in the Healthcare Revolution. Big Data and Cognitive Computing, 6(3), 83. https://doi.org/10.3390/bdcc6030083