White Blood Cell Classification Using Multi-Attention Data Augmentation and Regularization
Abstract
:1. Introduction
- The WBC classification task is considered as a fine-grained visual classification problem for which a multi-attention framework for efficient WBC classification has been developed. The presented method captures texture-aware information from shallow layers and deep features from deep layers to ensure that the model learns only discriminative features through attention-based augmentation and regularization mechanisms.
- The presented attention-based mechanism is composed of three main components: texture-aware/attention map generation blocks, attention regularization and attention-based data augmentation. The presented multi-attention framework is applicable to all other existing CNN-based models for WBC classification.
- An extensive set of experiments are conducted to assess the performance of the model from different perspectives. The obtained results demonstrated the surpassing performance of the model, achieving 99.69% classification accuracy, compared to existing state-of-the-art approaches.
2. Related Work
3. Methodology
3.1. Attention Generation
3.2. Attention Regularization
3.3. Attention-Based Data Augmentation
4. Evaluation Settings
4.1. Dataset
4.2. Baseline Architectures
4.3. Implementation Specifics
4.4. Evaluation Metrics
5. Results & Discussion
5.1. Attention-Based Data Augmentation
5.2. Comparison with Other SOTA Approaches
5.3. Limitation and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adewoyin, A. Peripheral blood film-a review. Ann. Ib. Postgrad. Med. 2014, 12, 71–79. [Google Scholar] [PubMed]
- Bonilla, M.A.; Menell, J.S. Disorders of white blood cells. In Lanzkowsky’s Manual of Pediatric Hematology and Oncology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 209–238. [Google Scholar]
- Gurcan, M.N.; Boucheron, L.E.; Can, A.; Madabhushi, A.; Rajpoot, N.M.; Yener, B. Histopathological image analysis: A review. IEEE Rev. Biomed. Eng. 2009, 2, 147–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, N.; Zhai, M.D.; Chang, J.F.; Wu, C.H. A self-adaptive approach for white blood cell classification towards point-of-care testing. Appl. Soft Comput. 2021, 111, 107709. [Google Scholar] [CrossRef]
- Xing, F.; Yang, L. Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: A comprehensive review. IEEE Rev. Biomed. Eng. 2016, 9, 234–263. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Sun, K.; Bu, X.; Zhao, C.; Jin, Y. Classification of white blood cells using weighted optimized deformable convolutional neural networks. Artif. Cells Nanomed. Biotechnol. 2021, 49, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Çınar, A.; Tuncer, S.A. Classification of lymphocytes, monocytes, eosinophils, and neutrophils on white blood cells using hybrid Alexnet-GoogleNet-SVM. SN Appl. Sci. 2021, 3, 503. [Google Scholar] [CrossRef]
- Cheuque, C.; Querales, M.; León, R.; Salas, R.; Torres, R. An Efficient Multi-Level Convolutional Neural Network Approach for White Blood Cells Classification. Diagnostics 2022, 12, 248. [Google Scholar] [CrossRef]
- Girdhar, A.; Kapur, H.; Kumar, V. Classification of White blood cell using Convolution Neural Network. Biomed. Signal Process. Control. 2022, 71, 103156. [Google Scholar] [CrossRef]
- Hegde, R.B.; Prasad, K.; Hebbar, H.; Singh, B.M.K.; Sandhya, I. Automated decision support system for detection of leukemia from peripheral blood smear images. J. Digit. Imaging 2020, 33, 361–374. [Google Scholar] [CrossRef]
- Gautam, A.; Singh, P.; Raman, B.; Bhadauria, H. Automatic classification of leukocytes using morphological features and naïve Bayes classifier. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; pp. 1023–1027. [Google Scholar]
- Acevedo, A.; Alférez, S.; Merino, A.; Puigví, L.; Rodellar, J. Recognition of peripheral blood cell images using convolutional neural networks. Comput. Methods Programs Biomed. 2019, 180, 105020. [Google Scholar]
- Hegde, R.B.; Prasad, K.; Hebbar, H.; Singh, B.M.K. Feature extraction using traditional image processing and convolutional neural network methods to classify white blood cells: A study. Australas. Phys. Eng. Sci. Med. 2019, 42, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Muhammad, K.; Hussain, T.; Baik, S.W. Conflux LSTMs network: A novel approach for multi-view action recognition. Neurocomputing 2021, 435, 321–329. [Google Scholar] [CrossRef]
- Mellado, D.; Saavedra, C.; Chabert, S.; Torres, R.; Salas, R. Self-improving generative artificial neural network for pseudorehearsal incremental class learning. Algorithms 2019, 12, 206. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Jin, K.; Zhou, D.; Kubota, N.; Ju, Z. Attention mechanism-based CNN for facial expression recognition. Neurocomputing 2020, 411, 340–350. [Google Scholar] [CrossRef]
- Niu, Z.; Zhong, G.; Yu, H. A review on the attention mechanism of deep learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Khan, S.; Sajjad, M.; Hussain, T.; Ullah, A.; Imran, A.S. A Review on Traditional Machine Learning and Deep Learning Models for WBCs Classification in Blood Smear Images. IEEE Access 2020, 9, 10657–10673. [Google Scholar] [CrossRef]
- Deshpande, N.M.; Gite, S.; Aluvalu, R. A review of microscopic analysis of blood cells for disease detection with AI perspective. PeerJ Comput. Sci. 2021, 7, e460. [Google Scholar] [CrossRef]
- Togacar, M.; Ergen, B.; Sertkaya, M.E. Subclass separation of white blood cell images using convolutional neural network models. Elektron. Elektrotechnika 2019, 25, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, J.; Zhou, M.; Li, Q.; Wen, Y.; Chu, J. A 3D attention networks for classification of white blood cells from microscopy hyperspectral images. Opt. Laser Technol. 2021, 139, 106931. [Google Scholar] [CrossRef]
- Basnet, J.; Alsadoon, A.; Prasad, P.; Aloussi, S.A.; Alsadoon, O.H. A novel solution of using deep learning for white blood cells classification: Enhanced loss function with regularization and weighted loss (ELFRWL). Neural Process. Lett. 2020, 52, 1517–1553. [Google Scholar] [CrossRef]
- Jiang, M.; Cheng, L.; Qin, F.; Du, L.; Zhang, M. White blood cells classification with deep convolutional neural networks. Int. J. Pattern Recognit. Artif. Intell. 2018, 32, 1857006. [Google Scholar] [CrossRef]
- Khan, A.; Eker, A.; Chefranov, A.; Demirel, H. White blood cell type identification using multi-layer convolutional features with an extreme-learning machine. Biomed. Signal Process. Control. 2021, 69, 102932. [Google Scholar] [CrossRef]
- Özyurt, F. A fused CNN model for WBC detection with MRMR feature selection and extreme learning machine. Soft Comput. 2020, 24, 8163–8172. [Google Scholar] [CrossRef]
- Patil, A.; Patil, M.; Birajdar, G. White blood cells image classification using deep learning with canonical correlation analysis. IRBM 2021, 42, 378–389. [Google Scholar] [CrossRef]
- Baghel, N.; Verma, U.; Nagwanshi, K.K. WBCs-Net: Type identification of white blood cells using convolutional neural network. Multimed. Tools Appl. 2021, 4, 1–17. [Google Scholar] [CrossRef]
- Kutlu, H.; Avci, E.; Özyurt, F. White blood cells detection and classification based on regional convolutional neural networks. Med. Hypotheses 2020, 135, 109472. [Google Scholar] [CrossRef]
- Chen, S.; Tan, X.; Wang, B.; Lu, H.; Hu, X.; Fu, Y. Reverse attention-based residual network for salient object detection. IEEE Trans. Image Process. 2020, 29, 3763–3776. [Google Scholar] [CrossRef]
- Imran Razzak, M.; Naz, S. Microscopic blood smear segmentation and classification using deep contour aware CNN and extreme machine learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 49–55. [Google Scholar]
- Yu, W.; Chang, J.; Yang, C.; Zhang, L.; Shen, H.; Xia, Y.; Sha, J. Automatic classification of leukocytes using deep neural network. In Proceedings of the 2017 IEEE 12th International Conference on ASIC (ASICON), Guiyang, China, 25–28 October 2017; pp. 1041–1044. [Google Scholar]
- Liang, G.; Hong, H.; Xie, W.; Zheng, L. Combining convolutional neural network with recursive neural network for blood cell image classification. IEEE Access 2018, 6, 36188–36197. [Google Scholar] [CrossRef]
- Hegde, R.B.; Prasad, K.; Hebbar, H.; Singh, B.M.K. Comparison of traditional image processing and deep learning approaches for classification of white blood cells in peripheral blood smear images. Biocybern. Biomed. Eng. 2019, 39, 382–392. [Google Scholar] [CrossRef]
- Huang, Q.; Li, W.; Zhang, B.; Li, Q.; Tao, R.; Lovell, N.H. Blood cell classification based on hyperspectral imaging with modulated Gabor and CNN. IEEE J. Biomed. Health Inform. 2019, 24, 160–170. [Google Scholar] [CrossRef]
- Abou El-Seoud, S.; Siala, M.; McKee, G. Detection and Classification of White Blood Cells Through Deep Learning Techniques. LearnTechLib 2020, 94–105. [Google Scholar] [CrossRef]
- Banik, P.P.; Saha, R.; Kim, K.D. An automatic nucleus segmentation and CNN model based classification method of white blood cell. Expert Syst. Appl. 2020, 149, 113211. [Google Scholar] [CrossRef]
- Baydilli, Y.Y.; Atila, Ü. Classification of white blood cells using capsule networks. Comput. Med. Imaging Graph. 2020, 80, 101699. [Google Scholar] [CrossRef] [PubMed]
- Hanselmann, H.; Yan, S.; Ney, H. Deep Fisher Faces. BMVC. 2017. Available online: https://d-nb.info/1194238424/34 (accessed on 17 September 2022).
- Behera, A.; Wharton, Z.; Hewage, P.R.; Bera, A. Context-aware attentional pooling (cap) for fine-grained visual classification. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021; Volume 35, pp. 929–937. [Google Scholar]
- Guo, M.H.; Xu, T.X.; Liu, J.J.; Liu, Z.N.; Jiang, P.T.; Mu, T.J.; Zhang, S.H.; Martin, R.R.; Cheng, M.M.; Hu, S.M. Attention mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [Google Scholar] [CrossRef]
- Mooney, P. Blood Cell Image. Available online: https://www.kaggle.com/datasets/paultimothymooney/blood-cells (accessed on 1 May 2022).
- Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Eecognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Nanchang China, 21–23 June 2019; pp. 6105–6114. [Google Scholar]
- Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. arXiv 2016, arXiv:1611.01578. [Google Scholar]
- Marques, G.; Agarwal, D.; de la Torre Díez, I. Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network. Appl. Soft Comput. 2020, 96, 106691. [Google Scholar] [CrossRef]
- Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1139–1147. [Google Scholar]
- Şengür, A.; Akbulut, Y.; Budak, Ü.; Cömert, Z. White blood cell classification based on shape and deep features. In Proceedings of the 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 21–22 September 2019; pp. 1–4. [Google Scholar]
Year | Authors | Model Description |
---|---|---|
2017 | Razzak [30] | CNN combined with ELM |
2017 | Yu et al. [31] | Ensemble of CNN’s |
2018 | Jiang et al. [23] | Residual convolution architecture |
2018 | Liang et al. [32] | Combination of Xception-LSTM |
2019 | Hegde et al. [33] | AlexNet and CNN model |
2019 | Huang et al. [34] | MFCNN CNN with hyperspectral imaging |
2019 | Togacar et al. [20] | AlexNet with QDA |
2020 | Abou et al. [35] | CNN model |
2020 | Banik et al. [36] | CNN with feature fusion |
2020 | Basnet et al. [22] | DCNN model with modified loss |
2020 | Baydilli et al. [37] | capsule networks |
2020 | Kutlu et al. [28] | Regional CNN with a Resnet50 |
2020 | Özyurt [25] | Ensemble of CNN models with ELM classifier. |
2021 | Baghel et al. [27] | CNN model |
2021 | Çinar et al. [7] | Ensemble of CNN models and SVM |
2021 | Khan et al. [24] | AlexNet model and ELM |
2021 | Yao et al. [6] | Deformable convolutional neural networks. |
2022 | Cheuque et al. [8] | Faster R-CNN with MobileNet model |
2022 | Girdhar et al. [9] | CNN model |
Cell Type | Distribution (%) | Exp. 1 (60/40) | Exp. 2 (70/30) | Exp. 3 (80/20) | |||
---|---|---|---|---|---|---|---|
Train | Test | Train | Test | Train | Test | ||
Eosinophil | 25.10 | 1872 | 1248 | 2184 | 936 | 2496 | 624 |
Lymphocytes | 24.93 | 1862 | 1240 | 2174 | 930 | 2482 | 620 |
Monocytes | 24.84 | 1855 | 1236 | 2164 | 927 | 2473 | 618 |
Neutrophils | 25.10 | 1874 | 1249 | 2187 | 936 | 2499 | 624 |
Total | 100 | 7463 | 4973 | 8707 | 3729 | 9950 | 2486 |
Backbone | Metrics | Class Specific Performance (%) | Ave. | |||
---|---|---|---|---|---|---|
Eosinophils | Lymphocytes | Monocytes | Neutrophils | |||
Xception | ACC | 98.71 | 99.43 | 99.11 | 98.71 | 98.99 |
Recall | 96.80 | 98.87 | 98.70 | 97.59 | 97.99 | |
F1 score | 97.42 | 98.87 | 98.22 | 97.44 | 97.99 | |
ResNet | ACC | 99.03 | 99.30 | 99.35 | 98.91 | 99.15 |
Recall | 97.76 | 98.38 | 98.86 | 98.23 | 98.31 | |
F1 score | 98.07 | 98.62 | 98.70 | 97.84 | 98.31 | |
EfficientNet | ACC | 99.51 | 99.95 | 99.75 | 99.55 | 99.69 |
Recall | 98.72 | 100.00 | 99.51 | 99.35 | 99.40 | |
F1 score | 99.03 | 99.91 | 99.51 | 99.12 | 99.39 |
Authors | Accuracy (%) | Recall (%) | F1 Score (%) |
---|---|---|---|
Abou et al. [35] | 96.8 | NI | NI |
Baghel et al. [27] | 98.9 | 97.7 | 97.6 |
Baydilli et al. [37] | 96.9 | 92.5 | 92.3 |
Banik et al. [36] | 97.9 | 98.6 | 97.0 |
Basnet et al. [22] | 98.9 | 97.8 | 97.7 |
Çinar et al. [7] | 99.7 | 99 | 99.0 |
Hegde et al. [33] | 98.7 | 99 | 99 |
Huang et al. [34] | 97.7 | NI | NI |
Jiang et al. [23] | 83.0 | NI | NI |
Khan et al. [24] | 99.1 | 99.0 | 99 |
Kutlu et al. [28] | 97 | 99.0 | 98 |
Liang et al. [32] | 95.4 | 96.9 | 94 |
Özyurt [25] | 96.03 | NI | NI |
Patil et al. [26] | 95.9 | 95.8 | 95.8 |
Razzak [30] | 98.8 | 95.9 | 96.4 |
Togacar et al. [20] | 97.8 | 95.7 | 95.6 |
Wang et al. [21] | 97.7 | NI | NI |
Yao et al. [6] | 95.7 | 95.7 | 95.7 |
Yu et al. [31] | 90.5 | 92.4 | 86.6 |
Cheuque et al. [8] | 98.4 | 98.4 | 98.4 |
Authors | Accuracy (%) | Recall (%) | F1 Score (%) |
Xception (Ours) | 98.99 | 97.99 | 97.99 |
ResNet (Ours) | 99.15 | 98.31 | 98.31 |
EfficientNet (Ours) | 99.69 | 99.40 | 99.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayat, N.; Davey, D.D.; Coathup, M.; Park, J.-H. White Blood Cell Classification Using Multi-Attention Data Augmentation and Regularization. Big Data Cogn. Comput. 2022, 6, 122. https://doi.org/10.3390/bdcc6040122
Bayat N, Davey DD, Coathup M, Park J-H. White Blood Cell Classification Using Multi-Attention Data Augmentation and Regularization. Big Data and Cognitive Computing. 2022; 6(4):122. https://doi.org/10.3390/bdcc6040122
Chicago/Turabian StyleBayat, Nasrin, Diane D. Davey, Melanie Coathup, and Joon-Hyuk Park. 2022. "White Blood Cell Classification Using Multi-Attention Data Augmentation and Regularization" Big Data and Cognitive Computing 6, no. 4: 122. https://doi.org/10.3390/bdcc6040122
APA StyleBayat, N., Davey, D. D., Coathup, M., & Park, J. -H. (2022). White Blood Cell Classification Using Multi-Attention Data Augmentation and Regularization. Big Data and Cognitive Computing, 6(4), 122. https://doi.org/10.3390/bdcc6040122