Artificial Intelligence in Pharmaceutical and Healthcare Research
Abstract
:1. Introduction
- Disease diagnosis;
- Digital therapy/personalized treatment:
- ○
- Radiotherapy;
- ○
- Retina;
- ○
- Cancer;
- ○
- Other chronic disorders.
- Drug discovery:
- ○
- Prediction of bioactivity and toxicity;
- ○
- Clinical trials:
- ▪
- Clinical trial design, patient identification, recruitment and enrolment;
- ▪
- Monitoring trial, patient adherence and endpoint detection.
- Forecasting of an epidemic/pandemic.
2. AI in Disease Diagnosis
3. AI in Digital Therapy/Personalized Treatment
3.1. AI in Radiotherapy
3.2. AI in Retina
3.3. AI in Cancer
3.4. AI in Other Chronic Diseases
4. AI in Drug Discovery
4.1. AI in Prediction of Bioactivity and Toxicity
4.2. AI in Clinical Trials
4.2.1. Clinical Trial Design, Patient Identification, Recruitment and Enrolment
4.2.2. Monitoring Trial, Patient Adherence and Endpoint Detection
5. AI in Forecasting of an Epidemic/Pandemic
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, M.; Decary, M. Artificial intelligence in healthcare: An essential guide for health leaders. In Healthcare Management Forum; SAGE Publications: Los Angeles, CA, USA, 2020. [Google Scholar]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Futur. Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef] [PubMed]
- Sunarti, S.; Rahman, F.F.; Naufal, M.; Risky, M.; Febriyanto, K.; Masnina, R. Artificial intelligence in healthcare: Opportunities and risk for future. Gac. Sanit. 2021, 35, S67–S70. [Google Scholar] [CrossRef]
- Toepper, M. Dissociating Normal Aging from Alzheimer’s Disease: A View from Cognitive Neuroscience. J. Alzheimer’s Dis. 2017, 57, 331–352. [Google Scholar] [CrossRef] [Green Version]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Futur. Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fakoor, R.; Ladhak, F.; Nazi, A.; Huber, M. Using deep learning to enhance cancer diagnosis and classification. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; ACM: New York, NY, USA, 2013; Volume 28, pp. 3937–3949. [Google Scholar]
- Vial, A.; Stirling, D.; Field, M.; Ros, M.; Ritz, C.; Carolan, M.; Holloway, L.; Miller, A.A. The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: A review. Transl. Cancer Res. 2018, 7, 803–816. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; Depristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Horgan, D.; Romao, M.; Morré, S.A.; Kalra, D. Artificial Intelligence: Power for Civilisation—And for Better Healthcare. Public Health Genom. 2019, 22, 145–161. [Google Scholar] [CrossRef]
- Hussain, A.; Malik, A.; Halim, M.U.; Ali, A.M. The use of robotics in surgery: A review. Int. J. Clin. Pract. 2014, 68, 1376–1382. [Google Scholar] [CrossRef]
- Khan, Z.H.; Siddique, A.; Lee, C.W. Robotics Utilization for Healthcare Digitization in Global COVID-19 Management. Int. J. Environ. Res. Public Health 2020, 17, 3819. [Google Scholar] [CrossRef]
- Ribeiro, J.; Lima, R.; Eckhardt, T.; Paiva, S. Robotic Process Automation and Artificial Intelligence in Industry 4.0—A Literature review. Procedia Comput. Sci. 2021, 181, 51–58. [Google Scholar] [CrossRef]
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021, 26, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, A. Artificial intelligence in managing clinical trial design and conduct: Man and machine still on the learning curve? Perspect. Clin. Res. 2021, 12, 1. [Google Scholar] [CrossRef]
- Sahu, A.; Mishra, J.; Kushwaha, N. Artificial Intelligence (AI) in Drugs and Pharmaceuticals. Comb. Chem. High Throughput Screen. 2022, 25, 1818–1837. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Mishra, A.P.; Panda, B.; Rodríguez, C.S.; Gaurav, I.; Majhi, B. Application of Artificial Intelligence in Pharmaceutical and Biomedical Studies. Curr. Pharm. Des. 2020, 26, 3569–3578. [Google Scholar] [CrossRef] [PubMed]
- Menschner, P.; Prinz, A.; Koene, P.; Köbler, F.; Altmann, M.; Krcmar, H.; Leimeister, J.M. Reaching into patients’ homes—Participatory designed AAL services: The case of a patient-centered nutrition tracking service. Electron. Mark. 2011, 21, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Okoli, C. A Guide to Conducting a Standalone Systematic Literature Review. Commun. Assoc. Inf. Syst. 2015, 37, 879–910. [Google Scholar] [CrossRef] [Green Version]
- Paré, G.; Trudel, M.-C.; Jaana, M.; Kitsiou, S. Synthesizing information systems knowledge: A typology of literature reviews. Inf. Manag. 2015, 52, 183–199. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- Ransohoff, D.F.; Feinstein, A.R. Problems of Spectrum and Bias in Evaluating the Efficacy of Diagnostic Tests. N. Engl. J. Med. 1978, 299, 926–930. [Google Scholar] [CrossRef]
- Jutel, A. Sociology of diagnosis: A preliminary review. Sociol. Health Illn. 2009, 31, 278–299. [Google Scholar] [CrossRef]
- Chang, C.L.; Hsu, M.Y. The study that applies artificial intelligence and logistic regression for assistance in differential diagnostic of pancreatic cancer. Expert Syst. Appl. 2009, 36, 10663–10672. [Google Scholar] [CrossRef]
- Obeng, O.; Paul, S. Understanding HIPAA compliance practice in healthcare organizations in a cultural context. In Proceedings of the 25th Americas Conference on Information Systems 2019, Cancún, Mexico, 15–17 August 2019. [Google Scholar]
- Spohrer, J.; Banavar, G. Cognition as a Service: An Industry Perspective. AI Mag. 2017, 36, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Nasirian, F.; Ahmadian, M.; Lee, O. AI-Based Voice Assistant Systems: Evaluating from the Interaction and Trust Perspectives. In Proceedings of the 23rd Americas Conference on Information Systems 2017, Boston, MA, USA, 10–12 August 2017. [Google Scholar]
- Dellermann, D.; Lipusch, N.; Ebel, P.; Leimeister, J.M. Design principles for a hybrid intelligence decision support system for business model validation. Electron. Mark. 2019, 29, 423–441. [Google Scholar] [CrossRef] [Green Version]
- Kersting, K. Machine Learning and Artificial Intelligence: Two Fellow Travelers on the Quest for Intelligent Behaviour in Machines. Front. Big Data 2018, 1, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauschert, S.; Raubenheimer, K.; Melton, P.E.; Huang, R.C. Machine learning and clinical epigenetics: A review of challenges for diagnosis and classification. Clin. Epigenetics 2020, 12, 51. [Google Scholar] [CrossRef] [Green Version]
- Bosse, S.; Maniry, D.; Muller, K.R.; Wiegand, T.; Samek, W. Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment. IEEE Trans. Image Process. 2018, 27, 206–219. [Google Scholar] [CrossRef] [Green Version]
- Mazzocco, T.; Hussain, A. Novel logistic regression models to aid the diagnosis of dementia. Expert Syst. Appl. 2012, 39, 3356–3361. [Google Scholar] [CrossRef]
- Lu, J.; Song, E.; Ghoneim, A.; Alrashoud, M. Machine learning for assisting cervical cancer diagnosis: An ensemble approach. Futur. Gener. Comput. Syst. 2020, 106, 199–205. [Google Scholar] [CrossRef]
- Solan, Z.; Horn, D.; Ruppin, E.; Edelman, S. Unsupervised learning of natural languages. Proc. Natl. Acad. Sci. USA 2005, 102, 11629–11634. [Google Scholar] [CrossRef] [Green Version]
- Karpischek, S.; Michahelles, F.; Fleisch, E. Detecting incorrect product names in online sources for product master data. Electron. Mark. 2014, 24, 151–160. [Google Scholar] [CrossRef]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alanazi, H.O.; Abdullah, A.H.; Qureshi, K.N. A Critical Review for Developing Accurate and Dynamic Predictive Models Using Machine Learning Methods in Medicine and Health Care. J. Med. Syst. 2017, 41, 69. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Mehta, J.C.; Anand, D.; Nath, P.; Pandey, B.; Khamparia, A. An intelligent hybrid approach for hepatitis disease diagnosis: Combining enhanced k -means clustering and improved ensemble learning. Expert Syst. 2020, 38, e12526. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning, 1st ed.; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Fogassi, L.; Ferrari, P.F.; Gesierich, B.; Rozzi, S.; Chersi, F.; Rizzolotti, G. Neuroscience: Parietal lobe: From action organization to intention understanding. Science 2005, 308, 662–667. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Mao, J.; Mohiuddin, K. Artificial neural networks: A tutorial. Computer 1996, 29, 31–44. [Google Scholar] [CrossRef] [Green Version]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Yamasaki, T.; Imaizumi, H. Supervised classification of Dermatological diseases by Deep learning. arXiv 2018, arXiv:1802.03752. [Google Scholar]
- Jin, Y.; Qin, C.; Huang, Y.; Zhao, W.; Liu, C. Multi-domain modeling of atrial fibrillation detection with twin attentional convo-lutional long short-term memory neural networks. Knowl.-Based Syst. 2020, 193, 105460. [Google Scholar] [CrossRef]
- Wong, T.T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit. 2015, 48, 2839–2846. [Google Scholar] [CrossRef]
- Ben-David, A. Comparison of classification accuracy using Cohen’s Weighted Kappa. Expert Syst. Appl. 2008, 34, 825–832. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Lin, R.H. An intelligent model for liver disease diagnosis. Artif. Intell. Med. 2009, 47, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Prashanth, R.; Roy, S.D.; Mandal, P.K.; Ghosh, S. High-Accuracy Detection of Early Parkinson’s Disease through Multimodal Features and Machine Learning. Int. J. Med. Inform. 2016, 90, 13–21. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, D.; Ding, S.; Gao, Z.; Feng, J.; Wan, S. Rib segmentation algorithm for X-ray image based on unpaired sample augmentation and multi-scale network. Neural Comput. Appl. 2021, 1–15. [Google Scholar] [CrossRef]
- Qaisar, S.M.; Khan, S.I.; Srinivasan, K.; Krichen, M. Arrhythmia classification using multirate processing metaheuristic optimization and variational mode decomposition. J. King Saud Univ.—Comput. Inf. Sci. 2022; in press. [Google Scholar]
- Hrizi, O.; Gasmi, K.; Ben Ltaifa, I.; Alshammari, H.; Karamti, H.; Krichen, M.; Ben Ammar, L.; Mahmood, M.A. Tuberculosis Disease Diagnosis Based on an Optimized Machine Learning Model. J. Heal. Eng. 2022, 2022, 8950243. [Google Scholar] [CrossRef]
- Ramesh, A.N.; Kambhampati, C.; Monson, J.R.; Drew, P.J. Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 2004, 86, 334. [Google Scholar] [CrossRef] [Green Version]
- Albu, A.; Ungureanu, L. Artificial neural network in medicine. Telemed. J. e-Health 2012, 18, 446–453. [Google Scholar]
- Hopfield, J.J. Artificial neural networks. IEEE Circuits Syst. Mag. 1988, 4, 3–10. [Google Scholar] [CrossRef]
- Mandal, L.; Jana, N.D. Prediction of Active Drug Molecule using Back-Propagation Neural Network. In Proceedings of the 8th International Conference System Modeling and Advancement in Research Trends (SMART) 2019, Moradabad, India, 22–23 November 2019; pp. 22–26. [Google Scholar]
- Hanson III, C.W.; Marshall, B.E. Artificial intelligence applications in the intensive care unit. Crit. Care Med. 2001, 29, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Fogel, D.B. What is evolutionary computation? IEEE Spectr. 2000, 37, 26–32. [Google Scholar] [CrossRef]
- Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [Google Scholar] [CrossRef]
- Moore, K.L. Automated radiotherapy treatment planning. In Seminars in Radiation Oncology; WB Saunders: Philadelphia, PA, USA, 2019; Volume 29, pp. 209–218. [Google Scholar]
- Troulis, M.; Everett, P.; Seldin, E.; Kikinis, R.; Kaban, L. Development of a three-dimensional treatment planning system based on computed tomographic data. Int. J. Oral Maxillofac. Surg. 2002, 31, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Arimura, H.; Soufi, M.; Kamezawa, H.; Ninomiya, K.; Yamada, M. Radiomics with artificial intelligence for precision medicine in radiation therapy. J. Radiat. Res. 2019, 60, 150–157. [Google Scholar] [CrossRef]
- Schmidt-Erfurth, U.; Sadeghipour, A.; Gerendas, B.S.; Waldstein, S.M.; Bogunović, H. Artificial intelligence in retina. Prog. Retin. Eye Res. 2018, 67, 1–29. [Google Scholar] [CrossRef]
- Carreras, J.; Hamoudi, R. Artificial Neural Network Analysis of Gene Expression Data Predicted Non-Hodgkin Lymphoma Subtypes with High Accuracy. Mach. Learn. Knowl. Extr. 2021, 3, 720–739. [Google Scholar] [CrossRef]
- Carreras, J.; Nakamura, N.; Hamoudi, R. Artificial Intelligence Analysis of Gene Expression Predicted the Overall Survival of Mantle Cell Lymphoma and a Large Pan-Cancer Series. Healthcare 2022, 10, 155. [Google Scholar] [CrossRef]
- Carreras, J.; Hiraiwa, S.; Kikuti, Y.Y.; Miyaoka, M.; Tomita, S.; Ikoma, H.; Ito, A.; Kondo, Y.; Roncador, G.; Garcia, J.F.; et al. Artificial Neural Networks Predicted the Overall Survival and Molecular Subtypes of Diffuse Large B-Cell Lymphoma Using a Pancancer Immune-Oncology Panel. Cancers 2021, 13, 6384. [Google Scholar] [CrossRef]
- Carreras, J.; Kikuti, Y.Y.; Miyaoka, M.; Hiraiwa, S.; Tomita, S.; Ikoma, H.; Kondo, Y.; Ito, A.; Nakamura, N.; Hamoudi, R. Artificial Intelligence Analysis of the Gene Expression of Follicular Lymphoma Predicted the Overall Survival and Correlated with the Immune Microenvironment Response Sig-natures. Mach. Learn. Knowl. Extr. 2020, 2, 647–671. [Google Scholar] [CrossRef]
- Xu-Monette, Z.Y.; Zhang, H.; Zhu, F.; Tzankov, A.; Bhagat, G.; Visco, C.; Dybkaer, K.; Chiu, A.; Tam, W.; Zu, Y.; et al. A refined cell-of-origin classifier with targeted NGS and artificial intelligence shows robust predictive value in DLBCL. Blood Adv. 2020, 4, 3391–3404. [Google Scholar] [CrossRef]
- Hasani, N.; Paravastu, S.; Farhadi, F.; Yousefirizi, F.; Morris, M.; Rahmim, A.; Roschewski, M.; Summers, R.; Saboury, B. Artificial Intelligence in Lymphoma PET Imaging: A Scoping Review (Current Trends and Future Directions). PET Clin. 2022, 17, 145–174. [Google Scholar] [CrossRef] [PubMed]
- Mitsala, A.; Tsalikidis, C.; Pitiakoudis, M.; Simopoulos, C.; Tsaroucha, A. Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. Curr. Oncol. 2021, 28, 1581–1607. [Google Scholar] [CrossRef] [PubMed]
- Bang, C.S.; Lee, J.J.; Baik, G.H. Artificial Intelligence for the Prediction of Helicobacter Pylori Infection in Endoscopic Images: Systematic Review and Meta-Analysis Of Diagnostic Test Accuracy. J. Med. Internet Res. 2020, 22, e21983. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. Artificial intelligence-assisted endoscopic detection of esophageal neoplasia in early stage: The next step? World J. Gastroenterol. 2021, 27, 1392–1405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, T.; Huang, L.; Li, J.; Wang, P. Immune gene prognostic signature for disease free survival of gastric cancer: Translational research of an artificial intelligence survival predictive system. Comput. Struct. Biotechnol. J. 2021, 19, 2329–2346. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.J.; Cho, B.-J.; Lee, M.-J.; Kim, J.H.; Lim, H.; Bang, C.S.; Jeong, H.M.; Hong, J.T.; Baik, G.H. Automated Classification of Colorectal Neoplasms in White-Light Colonoscopy Images via Deep Learning. J. Clin. Med. 2020, 9, 1593. [Google Scholar] [CrossRef]
- Joy Mathew, C.; David, A.M.; Joy Mathew, C.M. Artificial Intelligence and its future potential in lung cancer screening. EXCLI J. 2020, 19, 1552–1562. [Google Scholar]
- Hunter, B.; Hindocha, S.; Lee, R.W. The Role of Artificial Intelligence in Early Cancer Diagnosis. Cancers 2022, 14, 1524. [Google Scholar] [CrossRef]
- Arlova, A.; Jin, C.; Wong-Rolle, A.; Chen, E.S.; Lisle, C.; Brown, G.T.; Lay, N.; Choyke, P.L.; Turkbey, B.; Harmon, S.; et al. Artificial Intelligence-based Tumor Segmentation in Mouse Models of Lung Adenocarcinoma. J. Pathol. Inform. 2022, 13, 100007. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Furukawa, T.; Lami, K.; Pham, H.H.N.; Uegami, W.; Kuroda, K.; Kawai, M.; Sakanashi, H.; Cooper, L.A.D.; Bychkov, A.; et al. A narrative review of digital pathology and artificial intelligence: Focusing on lung cancer. Transl. Lung Cancer Res. 2020, 9, 2255–2276. [Google Scholar] [CrossRef]
- Espinoza, J.L.; Dong, L.T. Artificial Intelligence Tools for Refining Lung Cancer Screening. J. Clin. Med. 2020, 9, 3860. [Google Scholar] [CrossRef]
- Ye, M.; Tong, L.; Zheng, X.; Wang, H.; Zhou, H.; Zhu, X.; Zhou, C.; Zhao, P.; Wang, Y.; Wang, Q.; et al. A Classifier for Improving Early Lung Cancer Diagnosis Incorpo-rating Artificial Intelligence and Liquid Biopsy. Front. Oncol. 2022, 12, 853801. [Google Scholar] [CrossRef] [PubMed]
- Trebeschi, S.; Bodalal, Z.; Boellaard, T.N.; Bucho, T.M.T.; Drago, S.G.; Kurilova, I.; Calin-Vainak, A.M.; Pizzi, A.D.; Muller, M.; Hummelink, K.; et al. Prognostic Value of Deep Learning-Mediated Treatment Monitoring in Lung Cancer Patients Receiving Immunotherapy. Front. Oncol. 2021, 11, 609054. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.Y.; Chao, H.S.; Chen, Y.M. Application of Artificial Intelligence in Lung Cancer. Cancers 2022, 14, 1370. [Google Scholar] [CrossRef]
- Chen, S. Models of Artificial Intelligence-Assisted Diagnosis of Lung Cancer Pathology Based on Deep Learning Algorithms. J. Healthc. Eng. 2022, 2022, 3972298. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.M.; Yin, M.; Yu, M.H.; Yu, J.; Zeng, S.E.; Lv, W.Z.; Li, J.; Ye, H.R.; Cui, X.W.; Dietrich, C.F. Artificial Intelligence in Medical Imaging of the Breast. Front. Oncol. 2021, 11, 2892. [Google Scholar] [CrossRef]
- Poortmans, P.M.; Takanen, S.; Marta, G.N.; Meattini, I.; Kaidar-Person, O. Winter is over: The use of Artificial Intelligence to individualise radiation therapy for breast cancer. Breast 2020, 49, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Ji, Y.; Li, H.; Edwards, A.V.; Papaioannou, J.; Ma, W.; Liu, P.; Giger, M.L. Independent validation of machine learning in diagnosing breast Cancer on magnetic resonance imaging within a single institution. Cancer Imaging 2019, 19, 64. [Google Scholar] [CrossRef] [Green Version]
- Lo Gullo, R.; Eskreis-Winkler, S.; Morris, E.A.; Pinker, K. Machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy. Breast 2020, 49, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Chan, H.P.; Samala, R.K.; Hadjiiski, L.M. CAD and AI for breast cancer—Recent development and challenges. Br. J. Radiol. 2020, 93, 20190580. [Google Scholar] [CrossRef]
- Posner, M.I.; Rothbart, M.K. Research on Attention Networks as a Model for the Integration of Psychological Science. Annu. Rev. Psychol. 2007, 58, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haag, M.; Maylein, L.; Leven, F.J.; Tönshoff, B.; Haux, R. Web-based training: A new paradigm in computer-assisted instruction in medicine. Int. J. Med. Inform. 1999, 53, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, H.; Du, X.; Zhang, P.; Hu, G.; Xie, G.; Guo, S.; Xu, M.; Xie, X. Integrated Machine Learning Approaches for Predicting Ischemic Stroke and Thromboembolism in Atrial Fibrillation. In AMIA Annual Symposium Proceedings; American Medical Informatics Association: Chicago, IL, USA, 2016; Volume 2016, p. 799. [Google Scholar]
- Ellahham, S. Artificial Intelligence: The Future for Diabetes Care. Am. J. Med. 2020, 133, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.K.; Pichika, M.R. Artificial intelligence in drug development: Present status and future prospects. Drug Discov. Today 2019, 24, 773–780. [Google Scholar] [CrossRef]
- Vyas, M. Artificial intelligence: The beginning of a new era in pharmacy profession. Asian J. Pharm. 2018, 12, 72–76. [Google Scholar]
- Zhu, H. Big Data and Artificial Intelligence Modeling for Drug Discovery. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 573–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciallella, H.L.; Zhu, H. Advancing Computational Toxicology in the Big Data Era by Artificial Intelligence: Data-Driven and Mechanism-Driven Modeling for Chemical Toxicity. Chem. Res. Toxicol. 2019, 32, 536–547. [Google Scholar] [CrossRef]
- Chan, H.C.S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing Drug Discovery via Artificial Intelligence. Trends Pharmacol. Sci. 2019, 40, 592–604. [Google Scholar] [CrossRef]
- Firth, N.C.; Atrash, B.; Brown, N.; Blagg, J. MOARF, an Integrated Workflow for Multiobjective Optimization: Implementation, Synthesis, and Biological Evaluation. J. Chem. Inf. Model. 2015, 55, 1169–1180. [Google Scholar] [CrossRef]
- Zhang, L.; Tan, J.; Han, D.; Zhu, H. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discov. Today 2017, 22, 1680–1685. [Google Scholar] [CrossRef]
- Jain, N.; Gupta, S.; Sapre, N.; Sapre, N.S. In silico de novo design of novel NNRTIs: A bio-molecular modelling approach. RSC Adv. 2015, 5, 14814–14827. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Y.; Kuang, Q.; Pu, X.; Ji, Y.; Zhang, Z.; Li, M. A comparative study of family-specific protein–ligand complex affinity prediction based on random forest approach. J. Comput. Mol. Des. 2014, 29, 349–360. [Google Scholar] [CrossRef] [PubMed]
- King, R.D.; Hirst, J.; Sternberg, M. Comparison of Artificial Intelligence Methods for Modeling Pharmaceutical QSARs. Appl. Artif. Intell. 1995, 9, 213–233. [Google Scholar] [CrossRef]
- Zang, Q.; Mansouri, K.; Williams, A.J.; Judson, R.S.; Allen, D.G.; Casey, W.M.; Kleinstreuer, N.C. In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning. J. Chem. Inf. Model. 2017, 57, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Hessler, G.; Baringhaus, K.-H. Artificial Intelligence in Drug Design. Molecules 2018, 23, 2520. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wang, Y.; Byrne, R.; Schneider, G.; Yang, S. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chem. Rev. 2019, 119, 10520–10594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lusci, A.; Pollastri, G.; Baldi, P. Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules. J. Chem. Inf. Model. 2013, 53, 1563–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Sharma, A.; Siddiqui, M.H.; Tiwari, R.K. Prediction of human intestinal absorption of compounds using artificial in-telligence techniques. Curr. Drug Discov. Technol. 2017, 14, 244–254. [Google Scholar] [CrossRef]
- Chai, S.; Liu, Q.; Liang, X.; Guo, Y.; Zhang, S.; Xu, C.; Du, J.; Yuan, Z.; Zhang, L.; Gani, R. A grand product design model for crystallization solvent design. Comput. Chem. Eng. 2020, 135, 106764. [Google Scholar] [CrossRef]
- Öztürk, H.; Özgür, A.; Ozkirimli, E. Deep DTA: Deep drug–target binding affinity prediction. Bioinformatics 2018, 34, i821–i829. [Google Scholar] [CrossRef] [Green Version]
- Lounkine, E.; Keiser, M.J.; Whitebread, S.; Mikhailov, D.; Hamon, J.; Jenkins, J.L.; Lavan, P.; Weber, E.; Doak, A.K.; Côté, S.; et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012, 486, 361–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Q.; Dueva, E.; Cherkasov, A.; Ester, M. Padme: A deep learning-based framework for drug-target interaction prediction. arXiv 2018, arXiv:1807.09741. [Google Scholar]
- Lysenko, A.; Sharma, A.; A Boroevich, K.; Tsunoda, T. An integrative machine learning approach for prediction of toxicity-related drug safety. Life Sci. Alliance 2018, 1, e201800098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gayvert, K.M.; Madhukar, N.S.; Elemento, O. A Data-Driven Approach to Predicting Successes and Failures of Clinical Trials. Cell Chem. Biol. 2016, 23, 1294–1301. [Google Scholar] [CrossRef]
- Wan, F.; Zeng, J. Deep learning with feature embedding for compound—Protein interaction prediction. bioRxiv 2016, 086033. [Google Scholar]
- Mehta, C.H.; Narayan, R.; Nayak, U.Y. Computational modeling for formulation design. Drug Discov. Today 2018, 24, 781–788. [Google Scholar] [CrossRef]
- Zhao, C.; Jain, A.; Hailemariam, L.; Suresh, P.; Akkisetty, P.; Joglekar, G.; Venkatasubramanian, V.; Reklaitis, G.V.; Morris, K.; Basu, P. Toward intelligent decision support for pharma-ceutical product development. J. Pharm. Innov. 2006, 1, 23–35. [Google Scholar] [CrossRef]
- Meziane, F.; Vadera, S.; Kobbacy, K.; Proudlove, N. Intelligent systems in manufacturing: Current developments and future prospects. Integr. Manuf. Syst. 2000, 11, 218–238. [Google Scholar] [CrossRef]
- Huss, R. The high price of failed clinical trials: Time to rethink the model. Clinical Leader, 3 October 2016. Available online: https://www.clinicalleader.com/doc/the-high-price-of-failed-clinical-trials-time-to-rethink-the-model-0001 (accessed on 10 November 2022).
- Wong, C.H.; Siah, K.W.; Lo, A.W. Estimation of clinical trial success rates and related parameters. Biostatistics 2019, 20, 273–286. [Google Scholar] [CrossRef]
- Thorlund, K.; Haggstrom, J.; Park, J.J.; Mills, E.J. Key design considerations for adaptive clinical trials: A primer for clinicians. BMJ 2018, 360, k698. [Google Scholar] [CrossRef] [Green Version]
- Goldsack, J. Synthetic Control Arms Can Save Time and Money in Clinical Trials. 2019. Available online: https://www.statnews.com/2019/02/05/synthetic-control-arms-clinical-trials/ (accessed on 5 November 2021).
- Unger, J.M.; Vaidya, R.; Hershman, D.L.; Minasian, L.M.; E Fleury, M. Systematic Review and Meta-Analysis of the Magnitude of Structural, Clinical, and Physician and Patient Barriers to Cancer Clinical Trial Participation. Gynecol. Oncol. 2019, 111, 245–255. [Google Scholar] [CrossRef]
- Kolluri, S.; Lin, J.; Liu, R.; Zhang, Y.; Zhang, W. Machine Learning and Artificial Intelligence in Pharmaceutical Research and Development: A Review. AAPS J. 2022, 24, 19. [Google Scholar] [CrossRef] [PubMed]
- Harrer, S.; Shah, P.; Antony, B.; Hu, J. Artificial Intelligence for Clinical Trial Design. Trends Pharmacol. Sci. 2019, 40, 577–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Liu, R.; Lin, J.; Bunn, V.; Zhao, H. Bayesian Semi-parametric Design (BSD) for adaptive dose-finding with multiple strata. J. Biopharm. Stat. 2020, 30, 806–820. [Google Scholar] [CrossRef]
- Liu, R.; Lin, J.; Li, P. Design considerations for phase I/II dose finding clinical trials in Immuno-oncology and cell therapy. Contemp. Clin. Trials 2020, 96, 106083. [Google Scholar] [CrossRef] [PubMed]
- Madhav, N.; Oppenheim, B.; Gallivan, M.; Mulembakani, P.; Rubin, E.; Wolfe, N. Pandemics: Risks, Impacts, and Mitigation. Disease Control Priorities: Improving Health and Reducing Poverty, 3rd ed.; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2017; Volume 9, pp. 315–345. [Google Scholar]
- Steele, L.; Orefuwa, E.; Bino, S.; Singer, S.R.; Lutwama, J.; Dickmann, P. Earlier Outbreak Detection—A Generic Model and Novel Methodology to Guide Earlier Detection Supported by Data from Low- and Mid-Income Countries. Front. Public Health 2020, 8, 452. [Google Scholar] [CrossRef]
- Gopinath, N. Artificial intelligence: Potential tool to subside SARS-CoV-2 pandemic. Process Biochem. 2021, 110, 94–99. [Google Scholar] [CrossRef]
- Burke, R.M.; Shah, M.P.; E Wikswo, M.; Barclay, L.; Kambhampati, A.; Marsh, Z.; Cannon, J.L.; Parashar, U.D.; Vinjé, J.; Hall, A.J. The Norovirus Epidemiologic Triad: Predictors of Severe Outcomes in US Norovirus Outbreaks, 2009–2016. J. Infect. Dis. 2018, 219, 1364–1372. [Google Scholar] [CrossRef] [Green Version]
- Carlson, C.J.; Dougherty, E.; Boots, M.; Getz, W.; Ryan, S.J. Consensus and conflict among ecological forecasts of Zika virus out-breaks in the United States. Sci. Rep. 2018, 8, 4921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleiven, E.F.; Henden, J.-A.; Ims, R.A.; Yoccoz, N.G. Seasonal difference in temporal transferability of an ecological model: Near-term predictions of lemming outbreak abundances. Sci. Rep. 2018, 8, 15252. [Google Scholar] [CrossRef] [Green Version]
- OECD. Artificial Intelligence in Society; OECD: Paris, France, 2019. [Google Scholar]
- Su, K.; Xu, L.; Li, G.; Ruan, X.; Li, X.; Deng, P.; Li, X.; Li, Q.; Chen, X.; Xiong, Y.; et al. Forecasting influenza activity using self-adaptive AI model and multi-source data in Chongqing, China. Ebiomedicine 2019, 47, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.-Y.; Wu, Y.-C.; Lin, M.-H.; Liu, Y.-L.; Tsai, Y.-Y.; Wu, J.-H.; Pan, K.-H.; Ke, C.-J.; Chen, C.-M.; Liu, D.-P.; et al. Applying Machine Learning Models with An Ensemble Approach for Accurate Real-Time Influenza Forecasting in Taiwan: Development and Validation Study. J. Med. Internet Res. 2020, 22, e15394. [Google Scholar] [CrossRef]
- Khan, M.A.; Abidi, W.U.H.; Al Ghamdi, M.A.; Almotiri, S.H.; Saqib, S.; Alyas, T.; Khan, K.M.; Mahmood, N. Forecast the influenza pandemic using machine learning. Comput. Mater. Contin. 2021, 66, 331–340. [Google Scholar]
- Venkatramanan, S.; Sadilek, A.; Fadikar, A.; Barrett, C.L.; Biggerstaff, M.; Chen, J.; Dotiwalla, X.; Eastham, P.; Gipson, B.; Higdon, D.; et al. Forecasting Influenza Activity Using Machine-Learned Mobility Map. Nat. Commun. 2021, 12, 726. [Google Scholar] [CrossRef] [PubMed]
- Soni, U.; Gupta, N.; Sakshi. An Artificial Intelligence Approach for Forecasting Ebola Disease. J. Physics: Conf. Ser. 2021, 1950, 012038. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, B.; Ma, L.; Li, Z.; Song, Z.; Duan, W.; Qiu, X. The Large Scale Machine Learning in an Artificial Society: Prediction of the Ebola Outbreak in Beijing. Comput. Intell. Neurosci. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, M.; Kraemer, M.U.G.; Gardner, L.M. A dynamic neural network model for predicting risk of Zika in real time. BMC Med. 2019, 17, 171. [Google Scholar] [CrossRef] [PubMed]
- Kostkova, P.; Pinheiro dos Santos, W.; Massoni, T. ZIKA: Improved surveillance and forecast of Zika virus in Brazil. Eur. J. Public Health 2019, 29 (Suppl. 4), ckz186-085. [Google Scholar] [CrossRef]
- Hemedan, A.A.; Abd Elaziz, M.; Jiao, P.; Alavi, A.H.; Bahgat, M.; Ostaszewski, M.; Schneider, R.; Ghazy, H.A.; Ewees, A.A.; Lu, S. Prediction of the Vaccine-derived Poliovirus Outbreak Incidence: A Hybrid Machine Learning Approach. Sci. Rep. 2020, 10, 5058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, J.L.; Sewell, W.C.; Balzer, L.B.; Krakower, D.S. Artificial Intelligence and Machine Learning for HIV Prevention: Emerging Approaches to Ending the Epidemic. Curr. HIV/AIDS Rep. 2020, 17, 171–179. [Google Scholar] [CrossRef]
- Guo, P.; Liu, T.; Zhang, Q.; Wang, L.; Xiao, J.; Zhang, Q.; Luo, G.; Li, Z.; He, J.; Zhang, Y.; et al. Developing a dengue forecast model using machine learning: A case study in China. PLOS Neglected Trop. Dis. 2017, 11, e0005973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salim, N.A.M.; Wah, Y.B.; Reeves, C.; Smith, M.; Yaacob, W.F.W.; Mudin, R.N.; Dapari, R.; Sapri, N.N.F.F.; Haque, U. Prediction of dengue outbreak in Selangor Malaysia using machine learning techniques. Sci. Rep. 2021, 11, 939. [Google Scholar] [CrossRef]
- Raja, D.B.; Mallol, R.; Ting, C.Y.; Kamaludin, F.; Ahmad, R.; Ismail, S.; Jayaraj, V.J.; Sundram, B.M. Artificial Intelligence Model as Predictor for Dengue Outbreaks. Malays. J. Public Health Med. 2019, 19, 103–108. [Google Scholar] [CrossRef]
- Khan, M.T.; Kaushik, A.C.; Ji, L.; Malik, S.I.; Ali, S.; Wei, D.-Q. Artificial Neural Networks for Prediction of Tuberculosis Disease. Front. Microbiol. 2019, 10, 395. [Google Scholar] [CrossRef]
- Xiong, Y.; Ba, X.; Hou, A.; Zhang, K.; Chen, L.; Li, T. Automatic detection of mycobacterium tuberculosis using artificial intelligence. J. Thorac. Dis. 2018, 10, 1936–1940. [Google Scholar] [CrossRef] [Green Version]
- Amadin, F.I.; Bello, M.E. Prediction of yellow fever using multilayer perceptron neural network classifier. J. Emerg. Trends Eng. Appl. Sci. 2018, 9, 282–286. [Google Scholar]
- Sinha, A.; Rathi, M. COVID-19 prediction using AI analytics for South Korea. Appl. Intell. 2021, 51, 8579–8597. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Ge, Q.; Li, S.; Jin, S.; Xiong, M. Artificial Intelligence Forecasting of COVID-19 in China. arXiv 2020, arXiv:2002.07112. [Google Scholar] [CrossRef]
- Fong, S.J.; Li, G.; Dey, N.; Crespo, R.G.; Herrera-Viedma, E. Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction. Appl. Soft Comput. 2020, 93, 106282. [Google Scholar] [CrossRef]
- Fong, S.J.; Li, G.; Dey, N.; Gonzalez-Crespo, R.; Herrera-Viedma, E. Finding an Accurate Early Forecasting Model from Small Dataset: A Case of 2019-nCoV Novel Coronavirus Outbreak. Int. J. Interact. Multimedia Artif. Intell. 2020, 6, 132. [Google Scholar] [CrossRef]
- Huang, C.J.; Chen, Y.H.; Ma, Y.; Kuo, P.H. Multiple-Input Deep Convolutional Neural Network Model for COVID-19 Forecasting in China. medRxiv 2020. medRxiv:2020.03.23.20041608. [Google Scholar]
- Marini, M.; Chokani, N.; Abhari, R.S. COVID-19 Epidemic in Switzerland: Growth Prediction and Containment Strategy Using Artificial Intelligence and Big Data. medRxiv 2020. medRxiv:2020.03.30.20047472. [Google Scholar]
- Yu, C.S.; Chang, S.S.; Chang, T.H.; Wu, J.L.; Lin, Y.J.; Chien, H.F.; Chen, R.J. A COVID-19 Pandemic Artificial Intelligence–Based System with Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study. J. Med. Internet Res. 2021, 23, e27806. [Google Scholar] [CrossRef] [PubMed]
Sectors | AI Technologies | Applications | Limitations/Challenges |
---|---|---|---|
Disease diagnosis [43,44,48,50] | Deep learning Neural networking Unsupervised learning | Cancer, Dementia, Dermatological diseases, Arial fibrillation |
|
Digital therapy and personalized treatment [53,57,62,63,91,92] | ANN Evolutionary computational Fuzzy expert systems Hybrid intelligent system Automated treatment planning Radiomics | Image analysis, Data interpretation Administration of vasodilator and anesthesia Radiotherapy Prediction of outcomes and toxicity of radiation therapy |
|
Virtual medical assistants Case-based reasoning Vector regression technique | Monitoring chronic diseases | ||
Clinical decision support Intelligent computer-assisted instruction | Management of Diabetes | ||
Drug discovery [105,106,110,112,113,123,124] | QSPR (Estimation program interface suite) | Determination of physicochemical properties of small molecules |
|
SMILES | Forecast drug-receptor binding | ||
Deep learning Neural networks with ADMET predictor and ALGOPS programme | Lipophilicity and solubility prediction | ||
Chem Mapper Deep learning | Drug-target interaction |
| |
Deep Tox, eTOXPred, Targe Tox | Drug toxicity prediction | ||
PrOCTOR | Predict if drug would fail in clinical trial due to toxicity | ||
BNMs Dirichlet process mixture model mTPI, MCMC | CT design, dose selection |
| |
OCR, NLP | Patient identification and characterization for CT |
| |
RBM, AI-enabled wearable device | CT monitoring |
| |
Video monitoring Wearable sensors | Patient adherence | ||
Forecasting epidemic/pandemic [135,136,137,140,153,154,155,156] | Deep learning SAAIM MSDII-FFNN ML-AMM | Forecast of seasonal influenza |
|
HNN | Prediction of Ebola | ||
DNN | Prediction of Zika |
| |
RVFL networks with WOA | Prediction of VDPV outbreak | ||
SVR BNM | Prediction and tracking of dengue outbreak | ||
ANN, CNN TB-AI | Rapid diagnosis of TB suspects Identify TB bacillus | ||
MPNN | Diagnosis of yellow fever | ||
Deep learning CMC in combination with Fuzzy rule PNN + CF CNN Deep neural networks Enterpol combined with bigdata | COVID-19 prediction | ||
ARIMA | Investigate the dynamic pattern of COVID-19 |
| |
MLP | Investigate the dynamic pattern of COVID-19 |
| |
FNN | Investigate the dynamic pattern of COVID-19 |
| |
LSTM | Investigate the dynamic pattern of COVID-19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattamisra, S.K.; Banerjee, P.; Gupta, P.; Mayuren, J.; Patra, S.; Candasamy, M. Artificial Intelligence in Pharmaceutical and Healthcare Research. Big Data Cogn. Comput. 2023, 7, 10. https://doi.org/10.3390/bdcc7010010
Bhattamisra SK, Banerjee P, Gupta P, Mayuren J, Patra S, Candasamy M. Artificial Intelligence in Pharmaceutical and Healthcare Research. Big Data and Cognitive Computing. 2023; 7(1):10. https://doi.org/10.3390/bdcc7010010
Chicago/Turabian StyleBhattamisra, Subrat Kumar, Priyanka Banerjee, Pratibha Gupta, Jayashree Mayuren, Susmita Patra, and Mayuren Candasamy. 2023. "Artificial Intelligence in Pharmaceutical and Healthcare Research" Big Data and Cognitive Computing 7, no. 1: 10. https://doi.org/10.3390/bdcc7010010
APA StyleBhattamisra, S. K., Banerjee, P., Gupta, P., Mayuren, J., Patra, S., & Candasamy, M. (2023). Artificial Intelligence in Pharmaceutical and Healthcare Research. Big Data and Cognitive Computing, 7(1), 10. https://doi.org/10.3390/bdcc7010010