An Overview of Big Data Analytics for Cultural Heritage
Conflicts of Interest
References
- Vassilakis, C.; Kotis, K.; Spiliotopoulos, D.; Margaris, D.; Kasapakis, V.; Anagnostopoulos, C.-N.; Santipantakis, G.; Vouros, G.A.; Kotsilieris, T.; Petukhova, V.; et al. A Semantic Mixed Reality Framework for Shared Cultural Experiences Ecosystems. Big Data Cogn. Comput. 2020, 4, 6. [Google Scholar] [CrossRef]
- Deligiannis, K.; Raftopoulou, P.; Tryfonopoulos, C.; Platis, N.; Vassilakis, C. Hydria: An Online Data Lake for Multi-Faceted Analytics in the Cultural Heritage Domain. Big Data Cogn. Comput. 2020, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Spiliotopoulos, D.; Margaris, D.; Vassilakis, C. Data-Assisted Persona Construction Using Social Media Data. Big Data Cogn. Comput. 2020, 4, 21. [Google Scholar] [CrossRef]
- Konstantakis, M.; Alexandridis, G.; Caridakis, G. A Personalized Heritage-Oriented Recommender System Based on Extended Cultural Tourist Typologies. Big Data Cogn. Comput. 2020, 4, 12. [Google Scholar] [CrossRef]
- Konstantakis, M.; Christodoulou, Y.; Aliprantis, J.; Caridakis, G. ACUX Recommender: A Mobile Recommendation System for Multi-Profile Cultural Visitors Based on Visiting Preferences Classification. Big Data Cogn. Comput. 2022, 6, 144. [Google Scholar] [CrossRef]
- Drivas, I.C.; Sakas, D.P.; Giannakopoulos, G.A.; Kyriaki-Manessi, D. Big Data Analytics for Search Engine Optimization. Big Data Cogn. Comput. 2020, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Vargianniti, I.; Karpouzis, K. Using Big and Open Data to Generate Content for an Educational Game to Increase Student Performance and Interest. Big Data Cogn. Comput. 2020, 4, 30. [Google Scholar] [CrossRef]
- Drakopoulos, G.; Voutos, Y.; Mylonas, P. Annotation-Assisted Clustering of Player Profiles in Cultural Games: A Case for Tensor Analytics in Julia. Big Data Cogn. Comput. 2020, 4, 39. [Google Scholar] [CrossRef]
- Morales-i-Gras, J.; Orbegozo-Terradillos, J.; Larrondo-Ureta, A.; Peña-Fernández, S. Networks and Stories. Analyzing the Transmission of the Feminist Intangible Cultural Heritage on Twitter. Big Data Cogn. Comput. 2021, 5, 69. [Google Scholar] [CrossRef]
- Poulopoulos, V.; Wallace, M. Digital Technologies and the Role of Data in Cultural Heritage: The Past, the Present, and the Future. Big Data Cogn. Comput. 2022, 6, 73. [Google Scholar] [CrossRef]
- Wallace, M.; Poulopoulos, V.; Antoniou, A.; López-Nores, M. Special Issue “Big Data Analytics for Cultural Heritage, Volume II”. Big Data Cogn. Comput. 2023. in preparation. Available online: https://www.mdpi.com/journal/BDCC/special_issues/6CLOF63BOQ (accessed on 1 December 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wallace, M.; Poulopoulos, V.; Antoniou, A.; López-Nores, M. An Overview of Big Data Analytics for Cultural Heritage. Big Data Cogn. Comput. 2023, 7, 14. https://doi.org/10.3390/bdcc7010014
Wallace M, Poulopoulos V, Antoniou A, López-Nores M. An Overview of Big Data Analytics for Cultural Heritage. Big Data and Cognitive Computing. 2023; 7(1):14. https://doi.org/10.3390/bdcc7010014
Chicago/Turabian StyleWallace, Manolis, Vassilis Poulopoulos, Angeliki Antoniou, and Martín López-Nores. 2023. "An Overview of Big Data Analytics for Cultural Heritage" Big Data and Cognitive Computing 7, no. 1: 14. https://doi.org/10.3390/bdcc7010014
APA StyleWallace, M., Poulopoulos, V., Antoniou, A., & López-Nores, M. (2023). An Overview of Big Data Analytics for Cultural Heritage. Big Data and Cognitive Computing, 7(1), 14. https://doi.org/10.3390/bdcc7010014