How Cyber Security Enhances Trust and Commitment to Customer Retention: The Mediating Role of Robotic Service Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Background and Hypotheses
2.1.1. Service Bots in Marketing
2.1.2. Customer Retention
2.1.3. Trust
2.1.4. Commitment
2.1.5. Robotic Service Quality
2.1.6. Mediating Role of RSQ
2.2. Research Methods
2.2.1. Measures
2.2.2. Procedure
3. Results
3.1. Sample Profile
3.2. Finite Mixture Partial Least Squares (FIMIX-PLS)
3.3. Analysing the Measurement Model
3.4. Analysing the Structural Model Evaluation
3.5. Hypotheses Testing
3.5.1. Direct Relationships
3.5.2. Mediation Effect
3.6. Explanatory Power of the Model
3.7. PLSPredict
4. Discussion
4.1. Discussion of Key Findings
4.2. Theoretical Implications
4.3. Managerial Implications
5. Conclusions
5.1. General Conclusions
5.2. Limitations and Future Research Avenues
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Items, Outer Loadings, and VIF
Items | Outer Loadings | VIF |
Trust (willing to use)—drawn from Soh et al. [84] | ||
I am willing to rely on using robotic services when making purchase-related decisions. | 0.940 | 3.804 |
I am willing to make important purchase-related decisions based on robotic services. | 0.915 | 3.153 |
I am willing to recommend the services that I have bought in robotic services to my friends or family. | 0.905 | 2.655 |
Commitment—drawn from Meyer and Allen [85] and Moreira and Silva [86] | ||
Even if I could, I would not stop using this service bot provider because I like the relationship I have with service bots. | 0.814 | 2.116 |
I want to remain as a part of the group of customers who resorts to this service bots due to my rewarding relationship with service bots | 0.858 | 2.217 |
My emotional connection with this service bot provider is the main reason why I keep using its services | 0.763 | 3.202 |
My affective connection with this service bot provider is the main reason why I keep using its services | 0.713 | 3.034 |
Robotic Service Quality—Automation drawn from Prentice and Nguyen [8] | ||
Robots operate reliably | 0.835 | 1.667 |
Robots perform effectively | 0.876 | 1.854 |
Robots function dependably | 0.741 | 1.342 |
Customer Retention—drawn from Bahri-Ammari and Bilgihan [87]; Hennig-Thurau [88]; and Zeithaml et al. [89] | ||
In the future, I will use robotic services | 0.834 | 2.202 |
I am a loyal customer to robotic services | 0.869 | 2.422 |
I feel that I should continue my relationship with this robotic service | 0.908 | 3.189 |
This robotic service is my first choice when it comes to purchasing services | 0.691 * | 1.407 |
* Retained for further analysis. |
References
- Ghouri, A.M.; Mani, V.; Haq, M.A.; Kamble, S.S. The micro foundations of social media use: Artificial intelligence integrated routine model. J. Bus. Res. 2022, 144, 80–92. [Google Scholar] [CrossRef]
- Noor, N.; Rao Hill, S.; Troshani, I. Recasting service quality for AI-based service. Australas. Mark. J. 2022, 30, 297–312. [Google Scholar] [CrossRef]
- Perez-Vega, R.; Kaartemo, V.; Lages, C.R.; Razavi, N.B.; Männistö, J. Reshaping the contexts of online customer engagement behaviour via artificial intelligence: A conceptual framework. J. Bus. Res. 2021, 129, 902–910. [Google Scholar] [CrossRef]
- Prentice, C. Emotional Intelligence and Marketing; World Scientific: Singapore, 2019. [Google Scholar]
- Cambra-Fierro, J.; Gao, L.X.; Melero-Polo, I.; Trifu, A. How do firms handle variability in customer experience? A dynamic approach to better understanding customer retention. J. Retail. Consum. Serv. 2021, 61, 102578. [Google Scholar] [CrossRef]
- Huang, M.H.; Rust, R.T. Engaged to a robot? The role of AI in service. J. Serv. Res. 2021, 24, 30–41. [Google Scholar] [CrossRef]
- Mozafari, N.; Weiger, W.H.; Hammerschmidt, M. Trust me, I’m a bot–repercussions of chatbot disclosure in different service frontline settings. J. Serv. Manag. 2022, 33, 221–245. [Google Scholar] [CrossRef]
- Prentice, C.; Nguyen, M. Robotic service quality—scale development and validation. J. Retail. Consum. Serv. 2021, 62, 102661. [Google Scholar] [CrossRef]
- Marinova, D.; De Ruyter, K.; Huang, M.H.; Meuter, M.L.; Challagalla, G. Getting smart: Learning from technology-empowered frontline interactions. J. Serv. Res. 2017, 20, 29–42. [Google Scholar] [CrossRef]
- West, A.; Clifford, J.; Atkinson, D. “Alexa, build me a brand” An investigation into the impact of artificial intelligence on branding. Bus. Manag. Rev. 2018, 9, 321–330. [Google Scholar]
- Bindra, S.; Jain, R. Artificial intelligence in medical science: A review. Ir. J. Med. Sci. 2024, 193, 1419–1429. [Google Scholar] [CrossRef]
- Rouhiainen, L. How AI and data could personalise higher education. Harv. Bus. Rev. 2019, 14, 2–6. [Google Scholar]
- Harknett, R.J.; Stever, J.A. The cybersecurity triad: Government, private sector partners, and the engaged cybersecurity citizen. J. Homel. Secur. Emerg. Manag. 2009, 6, 1–14. [Google Scholar] [CrossRef]
- Pleshakova, E.; Osipov, A.; Gataullin, S.; Gataullin, T.; Vasilakos, A. Next gen cybersecurity paradigm towards artificial general intelligence: Russian market challenges and future global technological trends. J. Comput. Virol. Hacking Technol. 2024, 20, 429–440. [Google Scholar] [CrossRef]
- Mizinov, P.V.; Konnova, N.S.; Basarab, M.A.; Pleshakova, E.S. Parametric study of hand dorsal vein biometric recognition vulnerability to spoofing attacks. J. Comput. Virol. Hacking Technol. 2024, 20, 383–396. [Google Scholar] [CrossRef]
- Chan, L.; Morgan, I.; Hayden, S.; Alshaban, F.; Ober, D.; Gentry, J.; Min, D.; Cao, R. Survey of AI in Cybersecurity for Information Technology Management. In Proceedings of the 2019 IEEE Technology & Engineering Management Conference (TEMSCON), Atlanta, GA, USA, 12–14 June 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J. Runtime verification-based safe MARL for optimised safety policy generation for multi-robot systems. Big Data Cogn. Comput. 2024, 8, 49. [Google Scholar] [CrossRef]
- Zhang, Z.; Hamadi HAl Damiani, E.; Yeun, C.Y.; Taher, F. Explainable artificial intelligence applications in cyber security: State-of-the-art in research. IEEE Access 2022, 10, 93104–93139. [Google Scholar] [CrossRef]
- Wirtz, J.; Lovelock, C. Developing Service Products and Brands; World Scientific: Singapore, 2018; pp. 102–134. [Google Scholar]
- Kaplan, A.; Haenlein, M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 2019, 62, 15–25. [Google Scholar] [CrossRef]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson Education Limited: London, UK, 2021. [Google Scholar]
- Przegalinska, A.; Ciechanowski, L.; Stroz, A.; Gloor, P.; Mazurek, G. In bot we trust: A new methodology of chatbot performance measures. Bus. Horiz. 2019, 62, 785–797. [Google Scholar] [CrossRef]
- Morgan, R.; Hunt, S. The commitment-trust theory of relationship marketing. J. Mark. 1994, 58, 20–38. [Google Scholar] [CrossRef]
- El-Said, O.; Al Hajri, S. Are customers happy with robot service? Investigating satisfaction with robot service restaurants during the COVID-19 pandemic. Heliyon 2022, 8, e08986. [Google Scholar] [CrossRef]
- Kattara, H.S.; El-Said, O.A. Customers’ preferences for new technology-based self-services versus human interaction services in hotels. Tour. Hosp. Res. 2013, 13, 67–82. [Google Scholar] [CrossRef]
- Shin, H.H.; Jeong, M. Guests’ perceptions of robot concierge and their adoption intentions. Int. J. Contemp. Hosp. Manag. 2020, 32, 2613–2633. [Google Scholar] [CrossRef]
- Nie, X.; Huang, J. Robots make no effort! Service evaluation and consumer mindset. J. Consum. Behav. 2023, 22, 365–377. [Google Scholar] [CrossRef]
- Sachdev, R. Towards security and privacy for edge AI in IoT/IoE based digital marketing environments. In Proceedings of the IEEE 2020 Fifth International Conference on Fog and Mobile Edge Computing (FMEC), Paris, France, 20–23 April 2020; pp. 341–346. [Google Scholar] [CrossRef]
- Söderlund, M. Service robots with (perceived) theory of mind: An examination of humans’ reactions. J. Retail. Consum. Serv. 2022, 67, 102999. [Google Scholar] [CrossRef]
- Kim, K.J.; Park, E.; Sundar, S.S. Caregiving role inhuman–robot interaction: A study of the mediating effects of perceived benefit and social presence. Comput. Hum. Behav. 2013, 29, 1799–1806. [Google Scholar] [CrossRef]
- Smith, N.A.; Martinez, L.R.; Sabat, I.E. Weight and gender in service jobs: The importance of warmth in predicting customer satisfaction. Cornell Hosp. Q. 2016, 57, 314–328. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, Q.; Zhou, S.; Dong, Y.; Liu, J. The impact of service robots in retail: Exploring the effect of novelty priming on consumer behaviour. J. Retail. Consum. Serv. 2022, 68, 103002. [Google Scholar] [CrossRef]
- Xiong, X.; Wong, I.A.; Yang, F.X. Are we behaviourally immune to COVID-19 through robots? Ann. Tour. Res. 2021, 91, 103312. [Google Scholar] [CrossRef]
- European Union Agency for Cybersecurity. Securing Machine Learning Algorithms; European Union Agency for Cybersecurity: Athens, Greece, 2021. [Google Scholar]
- Pansari, A.; Kumar, V. Customer engagement: The construct, antecedents, and consequences. J. Acad. Mark. Sci. 2017, 45, 294–311. [Google Scholar] [CrossRef]
- Petit, O.; Velasco, C.; Spence, C. Digital sensory marketing: Integrating new technologies into multisensory online experience. J. Interact. Mark. 2019, 45, 42–61. [Google Scholar] [CrossRef]
- Magatef, S.G.; Tomalieh, E.F. The impact of customer loyalty programs on customer retention. Int. J. Bus. Soc. Sci. 2015, 6, 78–93. [Google Scholar]
- Verhoef, P.C.; Broekhuizen, T.; Bart, Y.; Bhattacharya, A.; Dong, J.Q.; Fabian, N.; Haenlein, M. Digital transformation: A multidisciplinary reflection and research agenda. J. Bus. Res. 2021, 122, 889–901. [Google Scholar] [CrossRef]
- Prentice, C.; Lopes, S.D.; Wang, X. The impact of artificial intelligence and employee service quality on customer satisfaction and loyalty. J. Hosp. Mark. Manag. 2020, 29, 739–756. [Google Scholar] [CrossRef]
- Puntoni, S.; Reczek, R.W.; Giesler, M.; Botti, S. Consumers and artificial intelligence: An experiential perspective. J. Mark. 2021, 85, 131–151. [Google Scholar] [CrossRef]
- Longoni, C.; Cian, L. Artificial intelligence in utilitarian vs. hedonic contexts: The ‘word-of-machine’ effect. J. Mark. 2020, 86, 91–108. [Google Scholar] [CrossRef]
- Liu, X.; Shin, H.; Burns, A.C. Examining the impact of luxury brand’s social media marketing on customer engagement: Using big data analytics and natural language processing. J. Bus. Res. 2021, 125, 815–826. [Google Scholar] [CrossRef]
- Hoff, K.A.; Bashir, M. Trust in automation: Integrating empirical evidence on factors that influence trust. Hum. Factors 2015, 57, 407–434. [Google Scholar] [CrossRef]
- Lee, J.D.; See, K.A. Trust in automation: Designing for appropriate reliance. Hum. Factors 2004, 46, 50–80. [Google Scholar] [CrossRef]
- Coeckelbergh, M. Can we trust robots? Ethics Inf. Technol. 2012, 14, 53–60. [Google Scholar] [CrossRef]
- Azevedo, C.R.; Raizer, K.; Souza, R. A vision for human-machine mutual understanding, trust establishment, and collaboration. In Proceedings of the IEEE Conference on Cognitive and Computational Aspects of Situation Management, Savannah, GA, USA, 27–31 March 2017. [Google Scholar]
- Okamura, K.; Yamada, S. Adaptive trust calibration for human-AI collaboration. PLoS ONE 2020, 15, e0229132. [Google Scholar] [CrossRef]
- Thuraisingham, B. The role of artificial intelligence and cyber security for social media. In Proceedings of the 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), New Orleans, LA, USA, 18–22 May 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Fang, Y.H.; Chiu, C.M.; Wang, E.T. Understanding customers’ satisfaction and repurchase intentions: An integration of IS success model, trust, and justice. Internet Res. 2011, 21, 479–503. [Google Scholar] [CrossRef]
- Park, C.L.; Nunes, M.F.; Paiva, E.L. (Mis)managing overstock in luxury: Burning inventory and brand trust to the ground. J. Consum. Behav. 2021, 20, 1664–1674. [Google Scholar] [CrossRef]
- Hancock, P.A.; Billings, D.R.; Schaefer, K.E.; Chen, J.Y.; De Visser, E.J.; Parasuraman, R. A meta-analysis of factors affecting trust in human-robot interaction. Hum. Factors 2011, 53, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Glikson, E.; Woolley, A.W. Human trust in artificial intelligence: Review of empirical research. Acad. Manag. Ann. 2020, 14, 627–660. [Google Scholar] [CrossRef]
- Lankton, N.K.; McKnight, D.H. What does it mean to trust Facebook? Examining technology and interpersonal trust beliefs. ACM SIGMIS Database Adv. Inf. Syst. 2011, 42, 32–54. [Google Scholar] [CrossRef]
- Wang, Y.; Humphrey, L.R.; Liao, Z.; Zheng, H. Trust-based multi-robot symbolic motion planning with a human-in-the-loop. ACM Trans. Interact. Intell. Syst. 2018, 8, 1–33. [Google Scholar] [CrossRef]
- Michael, J.; Pacherie, E. On commitments and other uncertainty reduction tools in joint action. J. Soc. Ontol. 2015, 1, 89–120. [Google Scholar] [CrossRef]
- Michael, J.; Salice, A. The sense of commitment in human–robot interaction. Int. J. Soc. Robot. 2017, 9, 755–763. [Google Scholar] [CrossRef]
- Shpall, S. Moral and rational commitment. Philos. Phenomenol. Res. 2014, 88, 146–172. [Google Scholar] [CrossRef]
- Haidegger, T.; Barreto, M.; Gonçalves, P.; Habib, M.; Ragavan, S.; Li, H.; Vaccarella, A.; Perrone, R.; Prestes, E. Applied ontologies and standards for service robots. Robot. Auton. Syst. 2013, 61, 1215–1223. [Google Scholar] [CrossRef]
- Lechevalier, S.; Nishimura, J.; Storz, C. Diversity in patterns of industry evolution: How an intrapreneurial regime contributed to the emergence of the service robot industry. Res. Policy 2014, 43, 1716–1729. [Google Scholar] [CrossRef]
- Shi, S.; Mu, R.; Lin, L.; Chen, Y.; Kou, G.; Chen, X.J. The impact of perceived online service quality on swift guanxi: Implications for customer repurchase intention. Internet Res. 2018, 28, 432–455. [Google Scholar] [CrossRef]
- Ozment, J.; Morash, E.A. The augmented service offering for perceived and actual service quality. J. Acad. Mark. Sci. 1994, 22, 352–363. [Google Scholar] [CrossRef]
- Moorman, C.; Zaltman, G.; Deshpandé, R. Factors affecting trust in market research relationships. J. Mark. 1993, 57, 81–101. [Google Scholar] [CrossRef]
- Huang, M.; Rust, R. Artificial intelligence in service. J. Serv. Res. 2018, 21, 155–172. [Google Scholar] [CrossRef]
- Lew, E. Pandemic and the Smarter World: A Future of Robots? Columbia Business School, Ideas and Insights. Available online: https://leading.business.columbia.edu/main-pillar-digital-future/digital-future/pandemic-and-smarter-world-future-robots (accessed on 24 February 2023).
- Kooijmans, T.; Kanda, T.; Bartneck, C.; Ishiguro, H.; Hagita, N. Accelerating robot development through integral analysis of human-robot interaction. IEEE Trans. Robot. 2007, 23, 1001–1012. [Google Scholar] [CrossRef]
- Leite, I.; Pereira, A.; Mascarenhas, S.; Martinho, C.; Prada, R.; Paiva, A. The influence of empathy in human–robot relations. Int. J. Hum. Comput. Stud. 2013, 71, 250–260. [Google Scholar] [CrossRef]
- Bartneck, C.; Kulić, D.; Croft, E.; Zoghbi, S. Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int. J. Soc. Robot. 2009, 1, 71–81. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. Reassessment of expectations as a comparison standard in measuring service quality: Implications for further research. J. Mark. 1995, 58, 111–124. [Google Scholar] [CrossRef]
- Delcourt, C.; Gremler, D.; Van Riel, A.; Van Birgelen, M. Effects of perceived employee emotional competence on customer satisfaction and loyalty. J. Serv. Manag. 2013, 24, 5–24. [Google Scholar] [CrossRef]
- Uzunoğlu, E.; Kip, S.M. Brand communication through digital influencers: Leveraging blogger engagement. Int. J. Inf. Manag. 2014, 34, 592–602. [Google Scholar] [CrossRef]
- Ruyter, K.; Moorman, L.; Lemmink, L. Antecedents of commitment and trust in customer-supplier relationships in high technology markets. Ind. Mark. Manag. 2001, 30, 271–286. [Google Scholar] [CrossRef]
- Ozuem, W.; Willis, M.; Howell, K.; Ranfagni, S.; Rovai, S. Examining user-generated content, service failure recovery and customer–brand relationships: An exploration through commitment-trust theory. Internet Res. 2024, 34, 784–809. [Google Scholar] [CrossRef]
- Orel, F.D.; Kara, A. Supermarket self-checkout service quality, customer satisfaction, and loyalty: Empirical evidence from an emerging market. J. Retail. Consum. Serv. 2014, 21, 118–129. [Google Scholar] [CrossRef]
- Oliver, R.L. A cognitive model of the antecedents and consequences of satisfaction decision. J. Mark. Res. 1980, 17, 460–469. [Google Scholar] [CrossRef]
- Britannica. São Paulo. Available online: https://www.britannica.com/place/Sao-Paulo-Brazil/People (accessed on 21 August 2023).
- CETIC. TIC Domicílios. Research Report 2022. Available online: https://cetic.br/media/docs/publicacoes/9/20230530114022/Annual_Report_Cetic2022.pdf (accessed on 4 November 2024).
- Brasil Republic Presidence—Civil House. Ultrapassada A Marca De 500 Serviços Transformados Em Digital Durante A Pandemia. Available online: https://www.gov.br/casacivil/pt-br/assuntos/noticias/2020/dezembro/ultrapassada-a-marca-de-500-servicos-transformados-em-digital-durante-a-pandemia (accessed on 2 August 2023).
- Startup Genome. The Global Startup Ecosystem Report. 2022. Available online: https://startupgenome.com/articles/the-state-of-global-startup-ecosystems-in-2022 (accessed on 4 November 2024).
- De Andrade, I.M.; Tumelero, C. Increasing customer service efficiency through artificial intelligence chatbot. Rev. De Gestão 2022, 29, 238–251. [Google Scholar] [CrossRef]
- Sebrae. Sebrae Market Map. Report; Sebrae: São Paulo, Brazil, 2022. [Google Scholar]
- IBGE. Continuous National Household Sample Survey—Information and Communication Technologies Use (PNAD TIC). 2021. Available online: https://www.ibge.gov.br/en/statistics/multi-domain/science-technology-and-innovation/20620-summary-of-indicators-pnad2.html (accessed on 4 November 2024).
- Aguirre-Urreta, M.I.; Rönkkö, M.; Marakas, G.M. Omission of causal indicators: Consequences and implications for measurement. Meas. Interdiscip. Res. Perspect. 2016, 14, 75–97. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M. Factors versus composites: Guidelines for choosing the right structural equation modelling method. Proj. Manag. J. 2019, 50, 619–624. [Google Scholar] [CrossRef]
- Soh, H.; Reid, L.N.; King, K.W. Measuring trust in advertising. J. Advert. 2009, 38, 83–104. [Google Scholar] [CrossRef]
- Meyer, J.P.; Allen, N.J. Commitment in the Workplace: Theory, Research, and Application; Sage Publications: Washington, DC, USA, 1997. [Google Scholar]
- Moreira, A.C.; Silva, P.M. The trust-commitment challenge in service quality-loyalty relationships. Int. J. Health Care Qual. Assur. 2015, 28, 253–266. [Google Scholar] [CrossRef]
- Bahri-Ammari, N.; Bilgihan, A. The effects of distributive, procedural, and interactional justice on customer retention: An empirical investigation in the mobile telecom industry in Tunisia. J. Retail. Consum. Serv. 2017, 37, 89–100. [Google Scholar] [CrossRef]
- Hennig-Thurau, T. Customer orientation of service employees: Its impact on customer satisfaction, commitment, and retention. Int. J. Serv. Ind. Manag. 2004, 15, 460–478. [Google Scholar] [CrossRef]
- Zeithaml, V.A.; Berry, L.L.; Parasuraman, A. The behavioural consequences of service quality. J. Mark. 1996, 60, 31–46. [Google Scholar] [CrossRef]
- Kono, S.; Sato, M. The potentials of partial least squares structural equation modelling (PLS-SEM) in leisure research. J. Leis. Res. 2022, 54, 309–329. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modelling (PLS-SEM); Sage Publications: Washington, DC, USA, 2022. [Google Scholar]
- Hair, J.F.; Sarstedt, M.; Matthews, L.M.; Ringle, C.M. Identifying and treating unobserved heterogeneity with FIMIX-PLS: Part I–method. Eur. Bus. Rev. 2016, 28, 63–76. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Cheah, J.H.; Ting, H.; Moisescu, O.I.; Radomir, L. Structural model robustness checks in PLS-SEM. Tour. Econ. 2020, 26, 531–554. [Google Scholar] [CrossRef]
- Damberg, S.; Schwaiger, M.; Ringle, C.M. What’s important for relationship management? The mediating roles of relational trust and satisfaction for loyalty of cooperative banks’ customers. J. Mark. Anal. 2022, 10, 3–18. [Google Scholar] [CrossRef]
- Morales-Pérez, S.; Garay-Tamajón, L.A.; Corrons-Giménez, A.; Pacheco-Bernal, C. The antecedents of entrepreneurial behaviour in the creation of platform economy initiatives: An analysis based on the decomposed theory of planned behaviour. Heliyon 2022, 8, e11078. [Google Scholar] [CrossRef]
- Sarstedt, M.; Adler, S.J.; Ringle, C.M.; Cho, G.; Diamantopoulos, A.; Hwang, H.; Liengaard, B.D. Same model, same data, but different outcomes: Evaluating the impact of method choices in structural equation modeling. J. Prod. Innov. Manag. 2024, 41, 1100–1117. [Google Scholar] [CrossRef]
- Kock, N. Common Method Bias: A Full Collinearity Assessment Method for Pls-Sem. In Partial Least Squares Path Modelling; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Baumgartner, H.; Weijters, B. Dealing with common method variance in international marketing research. J. Int. Mark. 2021, 29, 7–22. [Google Scholar] [CrossRef]
- Kamath, P.R.; Pai, Y.P.; Prabhu, N.K. Building customer loyalty in retail banking: A serial-mediation approach. Int. J. Bank Mark. 2019, 38, 456–484. [Google Scholar] [CrossRef]
- Fox, G.; Lynn, T.; Rosati, P. Enhancing consumer perceptions of privacy and trust: A GDPR label perspective. Inf. Technol. People 2022, 35, 181–204. [Google Scholar] [CrossRef]
- Saxena, M.; Bagga, T.; Gupta, S.; Kaushik, N. Exploring common method variance in analytics research in the Indian context: A comparative study with known techniques. FIIB Bus. Rev. 2022, 13, 553–569. [Google Scholar] [CrossRef]
- FecomercioSP. Research on Digital Consumer Behavior in São Paulo. 2023. Available online: https://www.fecomercio.com.br/pesquisas/indice/pcce (accessed on 4 November 2024).
- Cetic.br. Survey on Digital Security and Privacy. 2022. Available online: https://cetic.br/media/analises/2022-pesquisa_privacidade_protecao_dados_principais_resultados.pdf (accessed on 4 November 2024).
- Deloitte. 2021 Global Contact Center Survey. Deloitte Insights. 2021. Available online: https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/consultancy/deloitte-uk-2021-global-contact-center-survey-findings.pdf (accessed on 4 November 2024).
- Ameen, N.; Tarhini, A.; Reppel, A.; Anand, A. Customer experiences in the age of artificial intelligence. Comput. Hum. Behav. 2021, 114, 106548. [Google Scholar] [CrossRef] [PubMed]
- Trawnih, A.; Al-Masaeed, S.; Alsoud, M.; Alkufahy, A. Understanding artificial intelligence experience: A customer perspective. Int. J. Data Netw. Sci. 2022, 6, 1471–1484. [Google Scholar] [CrossRef]
- Chen, Q.; Lu, Y.; Gong, Y.; Xiong, J. Can AI chatbots help retain customers? Impact of AI service quality on customer loyalty. Internet Res. 2023, 33, 2205–2243. [Google Scholar] [CrossRef]
- Belanche, D.; Casaló, L.V.; Schepers, J.; Flavián, C. Examining the effects of robots’ physical appearance, warmth, and competence in frontline services: The Humanness-Value-Loyalty model. Psychol. Mark. 2021, 38, 2357–2376. [Google Scholar] [CrossRef]
- Huang, Y.S.S.; Dootson, P. Chatbots and service failure: When does it lead to customer aggression. J. Retail. Consum. Serv. 2022, 68, 103044. [Google Scholar] [CrossRef]
- Swangnetr, M.; Zhu, B.; Kaber, D.; Taylor, K. Meta-analysis of user age and service robot configuration effects on human-robot interaction in a healthcare application. In Proceedings of the 2010 AAAI Fall Symposium Series, Arlington, VA, USA, 11–13 November 2010. [Google Scholar]
Frequency | Percentage (%) | ||
---|---|---|---|
Gender | Male | 111 | 48.1 |
Female | 120 | 51.9 | |
Age (Years) | 18–29 | 85 | 36.8 |
30–39 | 77 | 33.3 | |
40–49 | 42 | 18.2 | |
Above 50 | 27 | 11.7 | |
Education | High School | 59 | 25.5 |
Undergraduate | 62 | 26.8 | |
Postgraduate | 110 | 47.6 |
1 Segment | 2 Segments | |
---|---|---|
AIC3 * | 852.455 | 847.418 |
CAIC ** | 876.552 | 899.055 |
∑ (AIC3: CAIC) | 1729.007 | 1746.473 |
EN (normed entropy statistic) | 0 | 0.882 |
Cronbach’s Alpha | Composite Reliability | Average Variance Extracted (AVE) | |
---|---|---|---|
Commitment | 0.804 | 0.837 | 0.622 |
Customer retention | 0.845 | 0.853 | 0.688 |
RSQ | 0.753 | 0.765 | 0.671 |
Trust | 0.909 | 0.911 | 0.846 |
Commitment | Customer Retention | RSQ | Trust | |
---|---|---|---|---|
Commitment | ||||
Customer retention | 0.876 | |||
RSQ | 0.835 | 0.874 | ||
Trust | 0.609 | 0.738 | 0.788 |
1 | 2 | 3 | 4 | |
---|---|---|---|---|
Commitment (1) | 1.929 | 1.466 | ||
Customer retention (2) | ||||
RSQ (3) | 2.335 | |||
Trust (4) | 1.858 | 1.466 |
Latent Constructs | β | t Statistics | p Values * | Decision |
---|---|---|---|---|
H1: Trust → customer retention | 0.173 | 3.435 | 0.0010 | Supported |
H2: Commitment → customer retention | 0.363 | 6.206 | 0.0000 | Supported |
H3: Trust → RSQ | 0.410 | 7.418 | 0.0000 | Supported |
H4: Commitment → RSQ | 0.445 | 8.492 | 0.0000 | Supported |
H5: RSQ → customer retention | 0.417 | 7.872 | 0.0000 | Supported |
β | Total Effect | t Statistics | p Values * | Decision | |
---|---|---|---|---|---|
H6: Trust → RSQ → customer retention | 0.171 | 0.344 | 5.585 | 0.0000 | Supported |
H7: Commitment → RSQ → customer retention | 0.186 | 0.549 | 5.644 | 0.0000 | Supported |
Commitment | Customer Retention | RSQ | Trust | |
---|---|---|---|---|
Commitment | 0.234 | 0.316 | ||
Customer retention Retention | ||||
RSQ | 0.255 | |||
Trust | 0.055 | 0.267 |
Q²predict | PLS-SEMRMSE | LMRMSE | PLS-SEMMAE | LMMAE | |
---|---|---|---|---|---|
Retention1 | 0.458 | 0.832 | 0.881 | 0.653 | 0.703 |
Retention2 | 0.414 | 0.947 | 0.964 | 0.742 | 0.753 |
Retention3 | 0.481 | 0.911 | 0.916 | 0.713 | 0.701 |
Retention4 | 0.349 | 0.877 | 0.844 | 0.683 | 0.623 |
Quality1 | 0.400 | 0.932 | 0.939 | 0.725 | 0.730 |
Quality2 | 0.468 | 0.941 | 0.924 | 0.752 | 0.723 |
Quality3 | 0.255 | 0.925 | 0.928 | 0.721 | 0.728 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panditharathna, R.; Liu, Y.; de Macedo Bergamo, F.V.; Appiah, D.; Trim, P.R.J.; Lee, Y.-I. How Cyber Security Enhances Trust and Commitment to Customer Retention: The Mediating Role of Robotic Service Quality. Big Data Cogn. Comput. 2024, 8, 165. https://doi.org/10.3390/bdcc8110165
Panditharathna R, Liu Y, de Macedo Bergamo FV, Appiah D, Trim PRJ, Lee Y-I. How Cyber Security Enhances Trust and Commitment to Customer Retention: The Mediating Role of Robotic Service Quality. Big Data and Cognitive Computing. 2024; 8(11):165. https://doi.org/10.3390/bdcc8110165
Chicago/Turabian StylePanditharathna, Roshan, Yang Liu, Fabio Vinicius de Macedo Bergamo, Dominic Appiah, Peter R. J. Trim, and Yang-Im Lee. 2024. "How Cyber Security Enhances Trust and Commitment to Customer Retention: The Mediating Role of Robotic Service Quality" Big Data and Cognitive Computing 8, no. 11: 165. https://doi.org/10.3390/bdcc8110165
APA StylePanditharathna, R., Liu, Y., de Macedo Bergamo, F. V., Appiah, D., Trim, P. R. J., & Lee, Y. -I. (2024). How Cyber Security Enhances Trust and Commitment to Customer Retention: The Mediating Role of Robotic Service Quality. Big Data and Cognitive Computing, 8(11), 165. https://doi.org/10.3390/bdcc8110165