Enhanced Linear and Vision Transformer-Based Architectures for Time Series Forecasting
Abstract
:1. Introduction
- Order insensitivity: The self-attention mechanism in transformers treats inputs as an unsequenced collection, which is problematic for time series prediction where order is important. Even though, positional encodings used in transformers partially address this but may not fully incorporate the temporal information. Some transformer-based models try to solve this problem using enhancements in architecture, e.g., Autoformer [11] uses series decomposition blocks that enhance the system’s ability to learn from intricate temporal patterns [11,13,15];
- Complexity trade-offs: The attention mechanism in transformers has high computational costs for long sequences due to its quadratic complexity , and modifications of sparse attention mechanisms, e.g., Informer [10], reduce this to by using a ProbSparse technique. Some models reduce this complexity to , e.g., FEDformer [12], which uses a Fourier-enhanced structure, and Pyraformer [16], which incorporates a pyramidal attention module with inter-scale and intra-scale connections to accomplish the linear complexity. These reductions in complexity come at the cost of some information loss in the time series prediction;
- Noise susceptibility: transformers with many parameters are prone to overfitting noise, a significant issue in volatile data like a financial time series where the actual signal is often subtle [15];
- Long-term dependency challenge: Transformers, despite their theoretical potential, often find it challenging to handle very long sequences typical in time series forecasting, largely due to training complexities and gradient dilution. For example, PatchTST [14] used disassembling a time series into smaller segments and used it as patches to address this issue. This may cause some segment fragmentation issues at the boundaries of the patches in input data;
- Interpretation challenge: Transformers’ complex architecture, with layers of self-attention and feed-forward networks, complicates understanding their decision-making, a notable limitation in time series forecasting where rationale clarity is crucial. An attempt has been made in LTS-Linear [15] to address this by using a simple linear network instead of a complex architecture; however, this may be unable to exploit the intricate multivariate relationships between data.
2. Related Work
3. Methodology
3.1. Proposed Models for Time Series Forecasting
3.2. Enhanced Linear Models for Time Series Forecasting (ELM)
3.3. Adaptation of Vision Transformers to Time Series Forecasting
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- De Livera, A.M.; Hyndman, R.J.; Snyder, R.D. Forecasting time series with complex seasonal patterns using exponential smoothing. J. Am. Stat. Assoc. 2011, 106, 1513–1527. [Google Scholar] [CrossRef]
- Cerqueira, V.; Torgo, L.; Soares, C. Machine Learning vs. Statistical Methods for Time Series Forecasting: Size Matters. arXiv 2019, arXiv:1909.13316v1. [Google Scholar]
- Lim, B.; Zohren, S. Time-series forecasting with deep learning: A survey. Philos. Trans. R. Soc. A 2021, 379, 20200209. [Google Scholar] [CrossRef] [PubMed]
- Salinas, D.; Flunkert, V.; Gasthaus, J.; Januschowski, T. DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 2020, 36, 1181–1191. [Google Scholar] [CrossRef]
- Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent Neural Networks for Time Series Forecasting: Current Status and Future Directions. Int. J. Forecast. 2021, 37, 388–427. [Google Scholar] [CrossRef]
- Sen, R.; Yu, H.F.; Dhillon, I.S. Think globally, act locally: A deep neural network approach to high-dimensional time series forecasting. In Advances in Neural Information Processing Systems 32 (NeurIPS 2019); Neural Information Processing Systems Foundation, Inc. (NeurIPS): San Diego, CA, USA, 2019. [Google Scholar]
- Lai, G.; Chang, W.-C.; Yang, Y.; Liu, H. Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks. In Proceedings of the SIGIR ‘18: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems 30 (NIPS 2017); Neural Information Processing Systems Foundation, Inc. (NeurIPS): San Diego, CA, USA, 2017. [Google Scholar]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [Google Scholar] [CrossRef]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting. In Advances in Neural Information Processing Systems 34 (NeurIPS 2021); Neural Information Processing Systems Foundation, Inc. (NeurIPS): San Diego, CA, USA, 2021; pp. 22419–22430. [Google Scholar]
- Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. In Proceedings of the 39th International Conference on Machine Learning PMLR 2022, Baltimore, MD, USA, 17–23 July 2022; pp. 27268–27286. [Google Scholar]
- Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.X.; Yan, X. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In Advances in Neural Information Processing Systems 32 (NeurIPS 2019); Neural Information Processing Systems Foundation, Inc. (NeurIPS): San Diego, CA, USA, 2019. [Google Scholar]
- Nie, Y.; Nguyen, N.H.; Sinthong, P.; Kalagnanam, J. A Time Series is worth 64 words: Long-term forecasting with Transformers. arXiv 2022, arXiv:2211.14730. [Google Scholar]
- Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are Transformers effective for Time Series Forecasting? Proc. AAAI Conf. Artif. Intell. 2023, 37, 11121–11128. [Google Scholar] [CrossRef]
- Liu, S.; Yu, H.; Liao, C.; Li, J.; Lin, W.; Liu, A.X.; Dustdar, S. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting. In Proceedings of the International Conference on Learning Representations 2022, Online, 25–29 April 2022. [Google Scholar]
- Guillaume, C. Direct multi-step estimation and forecasting. J. Econ. Surv. 2007, 21, 746–785. [Google Scholar]
- Albert, G.; Dao, T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv 2023, arXiv:2312.00752. [Google Scholar]
- Liu, Y.; Tian, Y.; Zhao, Y.; Yu, H.; Xie, L.; Wang, Y.; Ye, Q.; Liu, Y. Vmamba: Visual state space model. arXiv 2024, arXiv:2401.10166. [Google Scholar]
- Zhang, M.; Saab, K.K.; Poli, M.; Dao, T.; Goel, K.; Ré, C. Effectively Modeling Time Series with Simple Discrete State Spaces. arXiv 2023, arXiv:2303.09489v1. [Google Scholar]
- Kim, T.; Kim, J.; Tae, Y.; Park, C.; Choi, J.H.; Choo, J. Reversible instance normalization for accurate time-series forecasting against distribution shift. In Proceedings of the International Conference on Learning Representations 2021, Online, 3–7 May 2021. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 10–17 October 2021; pp. 10012–10022. [Google Scholar]
- Zhu, L.; Liao, B.; Zhang, Q.; Wang, X.; Liu, W.; Wang, X. Vision mamba: Efficient visual representation learning with bidirectional state space model. arXiv 2024, arXiv:2401.09417. [Google Scholar]
- Wang, Z.; Kong, F.; Feng, S.; Wang, M.; Zhao, H.; Wang, D.; Zhang, Y. Is Mamba Effective for Time Series Forecasting? arXiv 2024, arXiv:2403.11144. [Google Scholar]
- Ahamed, M.A.; Cheng, Q. TimeMachine: A Time Series is Worth 4 Mambas for Long-term Forecasting. arXiv 2024, arXiv:2403.09898. [Google Scholar]
Datasets | Weather | Traffic | Electricity | ILI | ETTh1/ETTh2 | Exchange Rate | ETTm1/ETTm2 |
---|---|---|---|---|---|---|---|
Features | 21 | 862 | 321 | 7 | 7 | 8 | 7 |
Timesteps | 52,696 | 17,544 | 26,304 | 966 | 17,420 | 7588 | 69,680 |
Granularity | 10 min | 1 h | 1 h | 1 week | 1 h | 1 day | 5 min |
Model | Type |
---|---|
FEDformer 1 | Transformer-based |
Autoformer | Transformer-based |
Informer | Transformer-based |
Pyraformer | Transformer-based |
DLinear | Non-transformer |
PatchTST | Transformer-based |
Models | (Our Model) ELM | PatchTST/64 | DLinear | FEDformer | Autoformer | Informer | Pyraformer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Metric | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
Weather | 96 | 0.140 | 0.184 | 0.149 | 0.198 | 0.176 | 0.237 | 0.238 | 0.314 | 0.249 | 0.329 | 0.354 | 0.405 | 0.896 | 0.556 |
192 | 0.183 | 0.226 | 0.194 | 0.241 | 0.22 | 0.282 | 0.275 | 0.329 | 0.325 | 0.37 | 0.419 | 0.434 | 0.622 | 0.624 | |
336 | 0.233 | 0.266 | 0.245 | 0.282 | 0.265 | 0.319 | 0.339 | 0.377 | 0.351 | 0.391 | 0.583 | 0.543 | 0.739 | 0.753 | |
720 | 0.306 | 0.319 | 0.314 | 0.334 | 0.323 | 0.362 | 0.389 | 0.409 | 0.415 | 0.426 | 0.916 | 0.705 | 1.004 | 0.934 | |
Traffic | 96 | 0.398 | 0.265 | 0.360 | 0.249 | 0.41 | 0.282 | 0.576 | 0.359 | 0.597 | 0.371 | 0.733 | 0.41 | 2.085 | 0.468 |
192 | 0.408 | 0.269 | 0.379 | 0.256 | 0.423 | 0.287 | 0.61 | 0.38 | 0.607 | 0.382 | 0.777 | 0.435 | 0.867 | 0.467 | |
336 | 0.417 | 0.274 | 0.392 | 0.264 | 0.436 | 0.296 | 0.608 | 0.375 | 0.623 | 0.387 | 0.776 | 0.434 | 0.869 | 0.469 | |
720 | 0.456 | 0.299 | 0.432 | 0.286 | 0.466 | 0.315 | 0.621 | 0.375 | 0.639 | 0.395 | 0.827 | 0.466 | 0.881 | 0.473 | |
Electricity | 96 | 0.131 | 0.223 | 0.129 | 0.222 | 0.14 | 0.237 | 0.186 | 0.302 | 0.196 | 0.313 | 0.304 | 0.393 | 0.386 | 0.449 |
192 | 0.146 | 0.236 | 0.147 | 0.240 | 0.153 | 0.249 | 0.197 | 0.311 | 0.211 | 0.324 | 0.327 | 0.417 | 0.386 | 0.443 | |
336 | 0.162 | 0.253 | 0.163 | 0.259 | 0.169 | 0.267 | 0.213 | 0.328 | 0.214 | 0.327 | 0.333 | 0.422 | 0.378 | 0.443 | |
720 | 0.200 | 0.287 | 0.197 | 0.29 | 0.203 | 0.301 | 0.233 | 0.344 | 0.236 | 0.342 | 0.351 | 0.427 | 0.376 | 0.445 | |
Illness | 24 | 1.820 | 0.809 | 1.319 | 0.754 | 2.215 | 1.081 | 2.624 | 1.095 | 2.906 | 1.182 | 4.657 | 1.449 | 1.42 | 2.012 |
36 | 1.574 | 0.775 | 1.579 | 0.87 | 1.963 | 0.963 | 2.516 | 1.021 | 2.585 | 1.038 | 4.65 | 1.463 | 7.394 | 2.031 | |
48 | 1.564 | 0.793 | 1.553 | 0.815 | 2.13 | 1.024 | 2.505 | 1.041 | 3.024 | 1.145 | 5.004 | 1.542 | 7.551 | 2.057 | |
60 | 1.512 | 0.803 | 1.470 | 0.788 | 2.368 | 1.096 | 2.742 | 1.122 | 2.761 | 1.114 | 5.071 | 1.543 | 7.662 | 2.1 | |
ETTh1 | 96 | 0.362 | 0.389 | 0.370 | 0.400 | 0.375 | 0.399 | 0.376 | 0.415 | 0.435 | 0.446 | 0.941 | 0.769 | 0.664 | 0.612 |
192 | 0.398 | 0.412 | 0.413 | 0.429 | 0.405 | 0.416 | 0.423 | 0.446 | 0.456 | 0.457 | 1.007 | 0.786 | 0.79 | 0.681 | |
336 | 0.421 | 0.427 | 0.422 | 0.440 | 0.439 | 0.443 | 0.444 | 0.462 | 0.486 | 0.487 | 1.038 | 0.784 | 0.891 | 0.738 | |
720 | 0.437 | 0.453 | 0.447 | 0.468 | 0.472 | 0.490 | 0.469 | 0.492 | 0.515 | 0.517 | 1.144 | 0.857 | 0.963 | 0.782 | |
ETTh2 | 96 | 0.263 | 0.331 | 0.274 | 0.337 | 0.289 | 0.353 | 0.332 | 0.374 | 0.332 | 0.368 | 1.549 | 0.952 | 0.645 | 0.597 |
192 | 0.318 | 0.369 | 0.341 | 0.382 | 0.383 | 0.418 | 0.407 | 0.446 | 0.426 | 0.434 | 3.792 | 1.542 | 0.788 | 0.683 | |
336 | 0.348 | 0.399 | 0.329 | 0.384 | 0.448 | 0.465 | 0.4 | 0.447 | 0.477 | 0.479 | 4.215 | 1.642 | 0.907 | 0.747 | |
720 | 0.409 | 0.444 | 0.379 | 0.422 | 0.605 | 0.551 | 0.412 | 0.469 | 0.453 | 0.49 | 3.656 | 1.619 | 0.963 | 0.783 | |
ETTm1 | 96 | 0.291 | 0.338 | 0.293 | 0.346 | 0.299 | 0.343 | 0.326 | 0.39 | 0.51 | 0.492 | 0.626 | 0.56 | 0.543 | 0.51 |
192 | 0.332 | 0.361 | 0.333 | 0.370 | 0.335 | 0.365 | 0.365 | 0.415 | 0.514 | 0.495 | 0.725 | 0.619 | 0.557 | 0.537 | |
336 | 0.362 | 0.377 | 0.369 | 0.392 | 0.369 | 0.386 | 0.392 | 0.425 | 0.51 | 0.492 | 1.005 | 0.741 | 0.754 | 0.655 | |
720 | 0.418 | 0.409 | 0.416 | 0.420 | 0.425 | 0.421 | 0.446 | 0.458 | 0.527 | 0.493 | 1.133 | 0.845 | 0.908 | 0.724 | |
ETTm2 | 96 | 0.160 | 0.246 | 0.166 | 0.256 | 0.167 | 0.260 | 0.18 | 0.271 | 0.205 | 0.293 | 0.355 | 0.462 | 0.435 | 0.507 |
192 | 0.219 | 0.288 | 0.223 | 0.296 | 0.224 | 0.303 | 0.252 | 0.318 | 0.278 | 0.336 | 0.595 | 0.586 | 0.73 | 0.673 | |
336 | 0.271 | 0.321 | 0.274 | 0.329 | 0.281 | 0.342 | 0.324 | 0.364 | 0.343 | 0.379 | 1.27 | 0.871 | 1.201 | 0.845 | |
720 | 0.360 | 0.380 | 0.362 | 0.385 | 0.397 | 0.421 | 0.41 | 0.42 | 0.414 | 0.419 | 3.001 | 1.267 | 3.625 | 1.451 | |
Exchange | 96 | 0.084 | 0.201 | 0.081 | 0.203 | 0.148 | 0.278 | 0.197 | 0.323 | 0.847 | 0.752 | 0.376 | 1.105 | ||
192 | 0.156 | 0.296 | 0.157 | 0.293 | 0.271 | 0.38 | 0.3 | 0.369 | 1.204 | 0.895 | 1.748 | 1.151 | |||
336 | 0.266 | 0.403 | 0.305 | 0.414 | 0.46 | 0.5 | 0.509 | 0.524 | 1.672 | 1.036 | 1.874 | 1.172 | |||
720 | 0.665 | 0.649 | 0.643 | 0.601 | 1.195 | 0.841 | 1.447 | 0.941 | 2.478 | 1.31 | 1.943 | 1.206 |
Dataset | Average % Improvement of Our ELM Model PatchTST/64 | Average % Improvement of Our ELM Model Over DLinear | ||
---|---|---|---|---|
Metric | MSE | MAE | MSE | MAE |
Weather | 4.79% | 5.86% | 13.65% | 17.68% |
Traffic | −7.54% | −4.96% | 3.25% | 6.20% |
Electricity | −0.45% | 1.14% | 4.16% | 5.26% |
Illness | −10.31% | 1.11% | 25.09% | 23.49% |
ETTh1 | 2.07% | 3.22% | 4.18% | 3.66% |
ETTh2 | −0.74% | −0.99% | 20.17% | 12.89% |
ETTm1 | 0.60% | 2.80% | 1.78% | 1.94% |
ETTm2 | 1.76% | 2.59% | 4.83% | 6.55% |
Exchange | 1.58% | −1.34% |
Models | (Our) Swin Transformer | (Our Model) ELM | PatchTST/64 | DLinear | FEDformer | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Metric | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
Weather | 96 | 0.173 | 0.224 | 0.140 | 0.184 | 0.149 | 0.198 | 0.176 | 0.237 | 0.238 | 0.314 |
192 | 0.227 | 0.268 | 0.183 | 0.226 | 0.194 | 0.241 | 0.22 | 0.282 | 0.275 | 0.329 | |
336 | 0.277 | 0.305 | 0.233 | 0.266 | 0.245 | 0.282 | 0.265 | 0.319 | 0.339 | 0.377 | |
720 | 0.333 | 0.345 | 0.306 | 0.319 | 0.314 | 0.334 | 0.323 | 0.362 | 0.389 | 0.409 | |
Traffic | 96 | 0.621 | 0.342 | 0.398 | 0.265 | 0.360 | 0.249 | 0.41 | 0.282 | 0.576 | 0.359 |
192 | 0.651 | 0.359 | 0.408 | 0.269 | 0.379 | 0.256 | 0.423 | 0.287 | 0.61 | 0.38 | |
336 | 0.648 | 0.353 | 0.417 | 0.274 | 0.392 | 0.264 | 0.436 | 0.296 | 0.608 | 0.375 | |
720 | 0.384 | 0.4509 | 0.456 | 0.299 | 0.432 | 0.286 | 0.466 | 0.315 | 0.621 | 0.375 | |
Electricity | 96 | 0.189 | 0.296 | 0.131 | 0.223 | 0.129 | 0.222 | 0.14 | 0.237 | 0.186 | 0.302 |
192 | 0.191 | 0.296 | 0.146 | 0.236 | 0.147 | 0.240 | 0.153 | 0.249 | 0.197 | 0.311 | |
336 | 0.205 | 0.3107 | 0.162 | 0.253 | 0.163 | 0.259 | 0.169 | 0.267 | 0.213 | 0.328 | |
720 | 0.228 | 0.327 | 0.200 | 0.287 | 0.197 | 0.29 | 0.203 | 0.301 | 0.233 | 0.344 | |
ILI | 24 | 5.806 | 1,800 | 1.820 | 0.809 | 1.319 | 0.754 | 2.215 | 1.081 | 2.624 | 1.095 |
36 | 6.931 | 1.968 | 1.574 | 0.775 | 1.579 | 0.87 | 1.963 | 0.963 | 2.516 | 1.021 | |
48 | 6.581 | 1.904 | 1.564 | 0.793 | 1.553 | 0.815 | 2.13 | 1.024 | 2.505 | 1.041 | |
60 | 6.901 | 1.968 | 1.512 | 0.803 | 1.470 | 0.788 | 2.368 | 1.096 | 2.742 | 1.122 | |
ETTh1 | 96 | 0.592 | 0.488 | 0.362 | 0.389 | 0.370 | 0.400 | 0.375 | 0.399 | 0.376 | 0.415 |
192 | 0.542 | 0.514 | 0.398 | 0.412 | 0.413 | 0.429 | 0.405 | 0.416 | 0.423 | 0.446 | |
336 | 0.537 | 0.518 | 0.421 | 0.427 | 0.422 | 0.440 | 0.439 | 0.443 | 0.444 | 0.462 | |
720 | 0.614 | 0.571 | 0.437 | 0.453 | 0.447 | 0.468 | 0.472 | 0.490 | 0.469 | 0.492 | |
ETTh2 | 96 | 0.360 | 0.405 | 0.263 | 0.331 | 0.274 | 0.337 | 0.289 | 0.353 | 0.332 | 0.374 |
192 | 0.386 | 0.426 | 0.318 | 0.369 | 0.341 | 0.382 | 0.383 | 0.418 | 0.407 | 0.446 | |
336 | 0.372 | 0.421 | 0.348 | 0.399 | 0.329 | 0.384 | 0.448 | 0.465 | 0.4 | 0.447 | |
720 | 0.424 | 0.454 | 0.409 | 0.444 | 0.379 | 0.422 | 0.605 | 0.551 | 0.412 | 0.469 | |
ETTm1 | 96 | 0.400 | 0.421 | 0.291 | 0.338 | 0.293 | 0.346 | 0.299 | 0.343 | 0.326 | 0.39 |
192 | 0.429 | 0.443 | 0.332 | 0.361 | 0.333 | 0.370 | 0.335 | 0.365 | 0.365 | 0.415 | |
336 | 0.439 | 0.447 | 0.362 | 0.377 | 0.369 | 0.392 | 0.369 | 0.386 | 0.392 | 0.425 | |
720 | 0.477 | 0.466 | 0.418 | 0.409 | 0.416 | 0.420 | 0.425 | 0.421 | 0.446 | 0.458 | |
ETTm2 | 96 | 0.210 | 0.292 | 0.160 | 0.246 | 0.166 | 0.256 | 0.167 | 0.260 | 0.18 | 0.271 |
192 | 0.264 | 0.325 | 0.219 | 0.288 | 0.223 | 0.296 | 0.224 | 0.303 | 0.252 | 0.318 | |
336 | 0.311 | 0.356 | 0.271 | 0.321 | 0.274 | 0.329 | 0.281 | 0.342 | 0.324 | 0.364 | |
720 | 0.408 | 0.412 | 0.360 | 0.380 | 0.362 | 0.385 | 0.397 | 0.421 | 0.41 | 0.42 |
Models | (Our Model) ELM | SpaceTime | DLinear | FEDformer | Autoformer | Time Machine (Mamba) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Metric | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE |
ETTh1 720 | 0.448 | 0.463 | 0.499 | 0.48 | 0.440 | 0.453 | 0.506 | 0.507 | 0.514 | 0.512 | 0.462 | 0.475 |
ETTh2 720 | 0.387 | 0.428 | 0.402 | 0.434 | 0.394 | 0.436 | 0.463 | 0.474 | 0.515 | 0.511 | 0.412 | 0.441 |
ETTm1 720 | 0.415 | 0.409 | 0.408 | 0.415 | 0.433 | 0.422 | 0.543 | 0.49 | 0.671 | 0.561 | 0.430 | 0.429 |
ETTm2 720 | 0.348 | 0.377 | 0.358 | 0.378 | 0.368 | 0.384 | 0.421 | 0.415 | 0.433 | 0.432 | 0.380 | 0.396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharthi, M.; Mahmood, A. Enhanced Linear and Vision Transformer-Based Architectures for Time Series Forecasting. Big Data Cogn. Comput. 2024, 8, 48. https://doi.org/10.3390/bdcc8050048
Alharthi M, Mahmood A. Enhanced Linear and Vision Transformer-Based Architectures for Time Series Forecasting. Big Data and Cognitive Computing. 2024; 8(5):48. https://doi.org/10.3390/bdcc8050048
Chicago/Turabian StyleAlharthi, Musleh, and Ausif Mahmood. 2024. "Enhanced Linear and Vision Transformer-Based Architectures for Time Series Forecasting" Big Data and Cognitive Computing 8, no. 5: 48. https://doi.org/10.3390/bdcc8050048
APA StyleAlharthi, M., & Mahmood, A. (2024). Enhanced Linear and Vision Transformer-Based Architectures for Time Series Forecasting. Big Data and Cognitive Computing, 8(5), 48. https://doi.org/10.3390/bdcc8050048