The State of the Art of Artificial Intelligence Applications in Eosinophilic Esophagitis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.2. Data Analysis
3. Results
3.1. AI in EoE Diagnosis
3.1.1. Endoscopic Diagnosis
3.1.2. Histologic Diagnosis
3.1.3. Molecular Profile Analysis
3.2. Application of AI Techniques in Understanding EoE Heterogeneity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Musacchio, N.; Guaita, G.; Ozzello, A.; Pellegrini, M.A.; Ponzani, P.; Zilich, R.; De Micheli, A. Artificial Intelligence and Big Data in Medicine: Scenarios, opportunities, and critical issues. JAMD 2018, 21, 204–218. [Google Scholar] [CrossRef]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, G.; Licari, A.; Fasola, S.; Marseglia, G.L.; La Grutta, S. Artificial intelligence in the diagnosis of pediatric allergic diseases. Pediatr. Allergy Immunol. 2021, 32, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Cilluffo, G.; Fasola, S.; Ferrante, G.; Licari, A.; Marseglia, G.R.; Albarelli, A.; Marseglia, G.L.; La Grutta, S. Machine learning: A modern approach to pediatric asthma. Pediatr. Allergy Immunol. 2022, 33 (Suppl. S27), 34–37. [Google Scholar] [CrossRef] [PubMed]
- Votto, M.; De Filippo, M.; Caimmi, S.; Indolfi, C.; Raffaele, A.; Tosca, M.A.; Marseglia, G.L.; Licari, A. A Practical Update on Pediatric Eosinophilic Esophagitis. Children 2023, 10, 1620. [Google Scholar] [CrossRef] [PubMed]
- Hirano, I.; Chan, E.S.; Rank, M.A.; Sharaf, R.N.; Stollman, N.H.; Stukus, D.R.; Wang, K.; Greenhawt, M.; Falck-Ytter, Y.T.; Chachu, K.A.; et al. AGA Institute and the Joint Task Force on Allergy-Immunology Practice Parameters Clinical Guidelines for the Management of Eosinophilic Esophagitis. Gastroenterology 2020, 158, 1776–1786. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.M.; Lenti, M.V.; Merli, S.; Licari, A.; Votto, M.; Marseglia, G.L.; Di Sabatino, A. Primary eosinophilic gastrointestinal disorders and allergy: Clinical and therapeutic implications. Clin. Transl. Allergy 2022, 12, e12146. [Google Scholar] [CrossRef]
- Votto, M.; Fasola, S.; Cilluffo, G.; Ferrante, G.; La Grutta, S.; Marseglia, G.L.; Licari, A. Author response for “Cluster analysis of clinical data reveals three pediatric eosinophilic gastrointestinal disorder phenotypes”. Pediatr. Allergy Immunol. 2022, 33, e13746. [Google Scholar] [CrossRef]
- Dellon, E.S.; Hirano, I. Epidemiology and Natural History of Eosinophilic Esophagitis. Gastroenterology 2018, 154, 319–332. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; A Akl, E.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Wolff, R.F.; Moons, K.G.; Riley, R.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S.; the PROBAST Group. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann. Intern. Med. 2019, 170, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Okimoto, E.; Ishimura, N.; Adachi, K.; Kinoshita, Y.; Ishihara, S.; Tada, T. Application of Convolutional Neural Networks for Diagnosis of Eosinophilic Esophagitis Based on Endoscopic Imaging. J. Clin. Med. 2022, 11, 2529. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, P.; Keller, A.; Fehlmann, T.; Lammert, F.; Casper, M. Deep learning-based detection of eosinophilic esophagitis. Endoscopy 2022, 54, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Römmele, C.; Mendel, R.; Barrett, C.; Kiesl, H.; Rauber, D.; Rückert, T.; Kraus, L.; Heinkele, J.; Dhillon, C.; Grosser, B.; et al. An artificial intelligence algorithm is highly accurate for detecting endoscopic features of eosinophilic esophagitis. Sci. Rep. 2022, 12, 11115. [Google Scholar] [CrossRef] [PubMed]
- Adorno, W., III; Catalano, A.; Ehsan, L.; von Eckstaedt, H.V.; Barnes, B.; McGowan, E.; Syed, S.; Brown, D.E. Advancing Eosinophilic Esophagitis Diagnosis and Phenotype Assessment with Deep Learning Computer Vision. In Proceedings of the In Biomedical Engineering Systems and Technologies, International Joint Conference, BIOSTEC Revised Selected Papers, Virtual Event, 11–13 February 2021; pp. 44–55. [Google Scholar] [CrossRef]
- Czyzewski, T.; Daniel, N.; Rochman, M.; Caldwell, J.M.; Osswald, G.A.; Collins, M.H.; Rothenberg, M.E.; Savir, Y. Machine Learning Approach for Biopsy-Based Identification of Eosinophilic Esophagitis Reveals Importance of Global features. IEEE Open J. Eng. Med. Biol. 2021, 2, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Daniel, N.; Larey, A.; Aknin, E.; Osswald, G.A.; Caldwell, J.M.; Rochman, M.; Collins, M.H.; Yang, G.-Y.; Arva, N.C.; Capocelli, K.E.; et al. A Deep Multi-Label Segmentation Network for Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Glasgow, UK, 11–15 July 2022; pp. 3211–3217. [Google Scholar]
- Larey, A.; Aknin, E.; Daniel, N.; Osswald, G.A.; Caldwell, J.M.; Rochman, M.; Wasserman, T.; Collins, M.H.; Arva, N.C.; Yang, G.-Y.; et al. Harnessing artificial intelligence to infer novel spatial biomarkers for the diagnosis of eosinophilic esophagitis. Front. Med. 2022, 9, 950728. [Google Scholar] [CrossRef] [PubMed]
- Archila, L.R.; Smith, L.; Sihvo, H.-K.; Westerling-Bui, T.; Koponen, V.; O’sullivan, D.M.; Fernandez, M.C.C.; Alexander, E.E.; Wang, Y.; Sivasubramaniam, P.; et al. Development and technical validation of an artificial intelligence model for quantitative analysis of histopathologic features of eosinophilic esophagitis. J. Pathol. Inform. 2022, 13, 100144. [Google Scholar] [CrossRef] [PubMed]
- Sallis, B.F.; Erkert, L.; Moñino-Romero, S.; Acar, U.; Wu, R.; Konnikova, L.; Lexmond, W.S.; Hamilton, M.J.; Dunn, W.A.; Szepfalusi, Z.; et al. An algorithm for the classification of mRNA patterns in eosinophilic esophagitis: Integration of machine learning. J. Allergy Clin. Immunol. 2018, 141, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Sallis, B.F.; Acar, U.; Hawthorne, K.; Babcock, S.J.; Kanagaratham, C.; Goldsmith, J.D.; Rosen, R.; Vanderhoof, J.A.; Nurko, S.; Fiebiger, E. A Distinct Esophageal mRNA Pattern Identifies Eosinophilic Esophagitis Patients with Food Impactions. Front. Immunol. 2018, 9, 2059. [Google Scholar] [CrossRef]
- Shoda, T.; Wen, T.; Aceves, S.S.; Abonia, J.P.; Atkins, D.; Bonis, P.A.; Caldwell, J.M.; Capocelli, K.E.; Carpenter, C.L.; Collins, M.H.; et al. Eosinophilic oesophagitis endotype classification by molecular, clinical, and histopathological analyses: A cross-sectional study. Lancet Gastroenterol. Hepatol. 2018, 3, 477–488. [Google Scholar] [CrossRef]
- Hassan, C.; Repici, A.; Sharma, P. Incorporating Artificial Intelligence Into Gastroenterology Practices. Clin. Gastroenterol. Hepatol. 2023, 21, 1687–1689. [Google Scholar] [CrossRef] [PubMed]
- Visaggi, P.; Barberio, B.; Gregori, D.; Azzolina, D.; Martinato, M.; Hassan, C.; Sharma, P.; Savarino, E.; de Bortoli, N. Systematic review with meta-analysis: Artificial intelligence in the diagnosis of oesophageal diseases. Aliment. Pharmacol. Ther. 2022, 55, 528–540. [Google Scholar] [CrossRef] [PubMed]
- Kudo, S.-E.; Misawa, M.; Mori, Y.; Hotta, K.; Ohtsuka, K.; Ikematsu, H.; Saito, Y.; Takeda, K.; Nakamura, H.; Ichimasa, K.; et al. Artificial Intelligence-assisted System Improves Endoscopic Identification of Colorectal Neoplasms. Clin. Gastroenterol. Hepatol. 2020, 18, 1874–1881. [Google Scholar] [CrossRef] [PubMed]
- Lenti, M.V.; Savarino, E.; Mauro, A.; Penagini, R.; Racca, F.; Ghisa, M.; Laserra, G.; Merli, S.; Arsiè, E.; Longoni, V.; et al. Diagnostic delay and misdiagnosis in eosinophilic oesophagitis. Dig. Liver Dis. 2021, 53, 1632–1639. [Google Scholar] [CrossRef] [PubMed]
- Schoepfer, A.M.; Safroneeva, E.; Bussmann, C.; Kuchen, T.; Portmann, S.; Simon, H.; Straumann, A. Delay in diagnosis of eosinophilic esophagitis increases the risk for stricture formation in a time-dependent manner. Gastroenterology 2013, 145, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
- Votto, M.; Lenti, M.V.; De Silvestri, A.; Bertaina, F.; Bertozzi, M.; Caimmi, S.; Cereda, E.; De Filippo, M.; Di Sabatino, A.; Klersy, C.; et al. Evaluation of diagnostic time in pediatric patients with eosinophilic gastrointestinal disorders according to their clinical features. Ital. J. Pediatr. 2023, 49, 9. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, G.; Sun, L.; Collins, M.H.; Bonis, P.A.; Arva, N.C.; Capocelli, K.E.; Chehade, M.; Davis, C.M.; Falk, G.W.; Gonsalves, N.; et al. Esophageal Epithelium and Lamina Propria Are Unevenly Involved in Eosinophilic Esophagitis. Clin. Gastroenterol. Hepatol. 2023, 21, S1542–S3565. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.H.; Martin, L.J.; Alexander, E.S.; Boyd, J.T.; Sheridan, R.; He, H.; Pentiuk, S.; Putnam, P.E.; Abonia, J.P.; Mukkada, V.A.; et al. Newly developed and validated eosinophilic esophagitis histology scoring system and evidence that it outperforms peak eosinophil count for disease diagnosis and monitoring. Dis. Esophagus 2017, 30, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Catalano, A.; Adorno, W.; Ehsan, L.; Shrivastava, A.; Barnes, B.H.; McGowan, E.C.; Moore, S.; Brown, D.; Syed, S. Use of machine learning and computer vision to link eosinophilic esophagitis cellular patterns with clinical phenotypes and disease location. Gastroenterology 2020, 158, 814. [Google Scholar] [CrossRef]
- Javaid, A.; Fernandes, P.; Adorno, W., III; Catalano, A.; Ehsan, L.; von Eckstaedt, H.V.; Barnes, B.; Khan, M.; Raghavan, S.S.; McGowan, E.; et al. Deep learning tissue analysis diagnoses and predicts treatment response in eosinophilic esophagitis. medRxiv 2021. [Google Scholar] [CrossRef]
- Hopson, P.; O’Sullivan, D.; Cardenas, M.F.; Westerling-Bui, T.; Koponen, V.; O’Sullivan, D.M.; Fernandez, M.C.C.; Alexander, E.E.; Wang, Y.; Sivasubramaniam, P.; et al. Evaluation of eosinophilic esophagitis with a novel artificial intelligence histopathologic feature recognition model. J. Pediatr. Gastroenterol. Nutr. 2022, 75, S490–S491. [Google Scholar]
- Lin, E.; Flygare, S.; Peterson, K.; Clayton, F.; Yandell, M. Using machine learning and RNA-seq to increase the accuracy and decrease the invasiveness of diagnosing eosinophilic esophagitis. J. Immunol. 2018, 200, 174.14. [Google Scholar] [CrossRef]
- Oliva, S.; Russo, G.; Rossetti, D.; Ruggiero, C.; Volpe, D.; Veraldi, S.; Rubino, C.; Costanzo, M.L.; Ciliberto, C. Machine learning as a new method for early detection of eosinophilic esophagitis. J. Pediatr. Gastroenterol. Nutr. 2022, 74, 310–311. [Google Scholar]
- Dunn, J.L.; Shoda, T.; Caldwell, J.M.; Wen, T.; Aceves, S.S.; Collins, M.H.; Dellon, E.S.; Falk, G.W.; Leung, J.; Martin, L.J.; et al. Esophageal type 2 cytokine expression heterogeneity in eosinophilic esophagitis in a multisite cohort. J. Allergy Clin. Immunol. 2020, 145, 1629–1640. [Google Scholar] [CrossRef]
- Arias, Á.; Lucendo, A.J. Molecular basis and cellular mechanisms of eosinophilic esophagitis for the clinical practice. Expert. Rev. Gastroenterol. Hepatol. 2019, 13, 99–117. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.M.; Lenti, M.V.; Di Sabatino, A. Toning down the role of eosinophils in eosinophilic oesophagitis. Gut 2024, 73, 874–875. [Google Scholar] [CrossRef]
- Rodrigues, T.; Keswani, R. Endoscopy Training in the Age of Artificial Intelligence: Deep Learning or Artificial Competence? Clin. Gastroenterol. Hepatol. 2023, 21, 8–10. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
Author, Year | AI Model | Application Field | Datasets | Study Aim | Accuracy (95%CI) | Sensitivity (95%CI) | Specificity (95%CI) |
---|---|---|---|---|---|---|---|
Okimoto et al., 2022 [12] | CNN | Diagnosis (endoscopy) | Endoscopic images | Analyzing multiple endoscopic images. | 0.947 (0.929–0.962) | 0.908 (0.865–0.941) | 0.966 (0.947–0.981) |
Guimarães et al., 2021 [13] | CNN | Diagnosis (endoscopy) | Endoscopic images | To distinguish the endoscopic appearance of EoE from normal findings and candida esophagitis. | 0.915 (0.880–0.940) | 0.871 (0.819–0.910) | 0.936 (0.910–0.955) |
Römmele et al., 2022 [14] | DL | Diagnosis (endoscopy) | Endoscopic images | Detecting and quantifying the endoscopic features of EoE. | 0.95 | 0.96 | 0.94 |
Adorno et al., 2021 [15] | DL | Diagnosis (histology) | Whole-slide images (WSIs) | Quantifying tissue eosinophils using deep image segmentation. | 0.99 | 1.0 | 0.982 |
Czyzewski et al., 2021 [16] | DCNN | Diagnosis (histology) | Whole-slide images (WSIs) | To detect histological features that are small relative to the size of the biopsy. | 0.85 | 0.825 | 0.87 |
Daniel et al., 2022 [17] | ML | Diagnosis (histology) | Whole-slide images (WSIs) | To identify and quantitate esophageal eosinophils. | 0.947 | 0.941 | 0.952 |
Larey et al., 2022 [18] | ML | Diagnosis (histology) | Whole-slide images (WSIs) | Extracting novel biomarkers to predict histological severity. | 0.867 | 0.845 | 0.909 |
Archila et al., 2022 [19] | CNN | Diagnosis (histology) | Whole-slide images (WSIs) | Evaluation of histologic features in EoE spectrum. | - | - | - |
Sallis et al., 2018 [20] | DL | Diagnosis (molecular profile) | Esophageal transcripts | Analysis of mRNA transcripts from esophageal biopsies. | 0.985 | 0.909 | 0.932 |
Sallis et al., 2018 [21] | ML | Pathogenesis (molecular profile) | Esophageal transcripts | Identifying molecular pathways involved in food impaction. | 0.99 | 0.93 | 1.0 |
Shoda et al., 2018 [22] | ML | Pathogenesis (molecular profile) | Endoscopic, histologic, and molecular (EoE diagnostic panel) features | EoE endotype prediction. | - | 0.95–1.0 | 0.94–1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Votto, M.; Rossi, C.M.; Caimmi, S.M.E.; De Filippo, M.; Di Sabatino, A.; Lenti, M.V.; Raffaele, A.; Marseglia, G.L.; Licari, A. The State of the Art of Artificial Intelligence Applications in Eosinophilic Esophagitis: A Systematic Review. Big Data Cogn. Comput. 2024, 8, 76. https://doi.org/10.3390/bdcc8070076
Votto M, Rossi CM, Caimmi SME, De Filippo M, Di Sabatino A, Lenti MV, Raffaele A, Marseglia GL, Licari A. The State of the Art of Artificial Intelligence Applications in Eosinophilic Esophagitis: A Systematic Review. Big Data and Cognitive Computing. 2024; 8(7):76. https://doi.org/10.3390/bdcc8070076
Chicago/Turabian StyleVotto, Martina, Carlo Maria Rossi, Silvia Maria Elena Caimmi, Maria De Filippo, Antonio Di Sabatino, Marco Vincenzo Lenti, Alessandro Raffaele, Gian Luigi Marseglia, and Amelia Licari. 2024. "The State of the Art of Artificial Intelligence Applications in Eosinophilic Esophagitis: A Systematic Review" Big Data and Cognitive Computing 8, no. 7: 76. https://doi.org/10.3390/bdcc8070076
APA StyleVotto, M., Rossi, C. M., Caimmi, S. M. E., De Filippo, M., Di Sabatino, A., Lenti, M. V., Raffaele, A., Marseglia, G. L., & Licari, A. (2024). The State of the Art of Artificial Intelligence Applications in Eosinophilic Esophagitis: A Systematic Review. Big Data and Cognitive Computing, 8(7), 76. https://doi.org/10.3390/bdcc8070076