On the Fractional Maximal Delta Integral Type Inequalities on Time Scales
Abstract
:1. Introduction
2. Preliminaries
3. Main Result
4. Applications
- (I)
- (II)
- (III)
5. Discussion and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Hilger, S. Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Rahman, G.; Nisar, K.S.; Samraiz, M. Certain fractional conformable inequalitiesfor the weighted and the extended Chebyshev functionals. Adv. Differ. Equ. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Hammouch, Z.; Atangana, A. A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 2018, 316, 504–515. [Google Scholar] [CrossRef]
- Dananea, J.; Allalia, K.; Hammouch, Z. Mathematical analysis of a fractional differential model of HBV infection with antibody immune response. Chaos Solut. Fractals 2019, 136, 109787. [Google Scholar] [CrossRef]
- Ghanbari, B.; Günerhan, H.; Srivastava, H.M. An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model. Chaos Solut. Fractals 2020, 138, 109910. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales, An İntroduction with Applications; Birkhauser: Boston, MA, USA, 2001. [Google Scholar] [CrossRef] [Green Version]
- Akin-Bohner, E.; Bohner, M.; Akin, F. Pachpatte inequalities on time scales. J. Inequal. Pure Appl. Math. 2005, 6, 1–23. [Google Scholar]
- Li, W.N. Nonlinear Integral Inequalities in Two Independent Variables on Time Scales. Adv. Differ. Equ. 2011, 283926. [Google Scholar] [CrossRef] [Green Version]
- Kac, V.; Cheung, P. Quantum Calculus; Universitext Springer: New York, NY, USA, 2002. [Google Scholar]
- Chen, Q.; Yang, B. On a new reverse Hardy-Littlewood’s type inequality. Appl. Math. Sci. 2012, 6, 6553–6561. [Google Scholar]
- Bohner, M.; Heim, J.; Liu, A. Qualitative analysis of Solow model on time scales. J. Concrete Appl. Math. 2015, 13, 183–197. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Peterson, A. Inequalities on time scales: A survey. Math. Inequal. Appl. 2001, 4, 535–555. [Google Scholar] [CrossRef]
- Belarbi, S.; Dahmani, Z. On some new fractional integral inequalities. J. Inequal. Pure Appl. Math. 2009, 10, 1–12. [Google Scholar]
- Bohner, M.; Guseinov, G.S. Multiple Lebesgue integration on time scales. Adv. Differ. Equ. 2006, 026391. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Otero–Espinar, V.; Perera, K.; Vivero, D.R. Basic properties of Sobolev’s spaces on time scales. Adv. Differ. Equ. 2006, 038121. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wei, C. A functional generalization of diamond-α integral Dresher’s inequality on time scales. Adv. Differ. Equ. 2014, 2014, 324. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Nisar, K.S.; Abdeljawad, T. Certain Hadamard Proportional Fractional Integral Inequalities. Mathematics 2020, 8, 504. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Nisar, K.S.; Abdeljawad, T. Tempered Fractional Integral Inequalities for Convex Functions. Mathematics 2020, 8, 500. [Google Scholar] [CrossRef] [Green Version]
- Ucar, S.; Ucar, E.; Ozdemir, N.; Hammouch, Z. Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative. Chaos Solut. Fractals 2019, 118, 300–306. [Google Scholar] [CrossRef]
- Chebyshev, P.L. Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites. Proc. Math. Soc. Charkov. 1882, 2, 93–98. [Google Scholar]
- Akin, L. Compactness of Fractional Maximal Operator in Weighted and Variable Exponent Spaces. Erzincan Univ. J. Sci. Technol. 2019, 12, 185–190. [Google Scholar] [CrossRef]
- Uçar, D.; Hatipoğlu, V.F.; Akincali, A. Fractional Integral Inequalıties On Tıme Scales. Open J. Math. Sci. 2018, 2, 361–370. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Dynamic Inequalities on Time Scales; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Bohner, M.; Agarwal, R.P. Basic calculus on time scales and some of its applications. Result. Math. 1999, 35, 3–22. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Model. 2010, 52, 556–566. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akın, L. On the Fractional Maximal Delta Integral Type Inequalities on Time Scales. Fractal Fract. 2020, 4, 26. https://doi.org/10.3390/fractalfract4020026
Akın L. On the Fractional Maximal Delta Integral Type Inequalities on Time Scales. Fractal and Fractional. 2020; 4(2):26. https://doi.org/10.3390/fractalfract4020026
Chicago/Turabian StyleAkın, Lütfi. 2020. "On the Fractional Maximal Delta Integral Type Inequalities on Time Scales" Fractal and Fractional 4, no. 2: 26. https://doi.org/10.3390/fractalfract4020026
APA StyleAkın, L. (2020). On the Fractional Maximal Delta Integral Type Inequalities on Time Scales. Fractal and Fractional, 4(2), 26. https://doi.org/10.3390/fractalfract4020026