A New Approach for the Fractional Integral Operator in Time Scales with Variable Exponent Lebesgue Spaces
Abstract
:1. Introduction
2. Materials and Methods
- (i)
- If is -differentiable at point (), then is continuous at point .
- (ii)
- If is left continuous at point and is right-scattered, then is -differentiable at point ,
- (iii)
- If is -differentiable at point and then
- (iv)
- If is -differentiable at point , then
- (i)
- is-differentiable forwith
- (ii)
- Let,is-differentiable forwith
- (iii)
- is-differentiable forwith
3. Main Results
- (a)
- (b)
- for any,
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hilger, S. Ein Maßkettenkalkül mit Anwendung auf Zentrmsmannigfaltingkeiten. Ph.D. Thesis, University Würzburg, Wuerzburg, Germany, 1988. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Peterson, A. Inequalities on time scales: A survey. Math. Inequal. Appl. 2001, 2001, 535–555. [Google Scholar] [CrossRef]
- Akin-Bohner, E.; Bohner, M.; Akin, F. Pachpatte inequalities on time scales. J. Inequalities Pure Appl. Math. 2005, 6, 1–23. [Google Scholar]
- Li, W.N. Nonlinear integral inequalities in two independent variables on time scales. Adv. Differ. Equ. 2011, 2011, 283926. [Google Scholar] [CrossRef] [Green Version]
- Anastassiou, G.A. Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Model. 2010, 52, 556–566. [Google Scholar] [CrossRef]
- Wong, F.-H.; Yeh, C.-C.; Yu, S.-L.; Hong, C.-H. Young’s inequality and related results on time scales. Appl. Math. Lett. 2005, 18, 983–988. [Google Scholar] [CrossRef]
- Wong, F.-H.; Yeh, C.-C.; Lian, W.-C. An extension of Jensen’s inequality on time scales. Adv. Dynam. Syst. Appl. 2006, 1, 113–120. [Google Scholar]
- Kuang, J. Applied İnequalities; Shandong Science Press: Jinan, China, 2003. [Google Scholar]
- Uçar, D.; Hatipoğlu, V.F.; Akincali, A. Fractional integral inequalities on time scales. Open J. Math. Sci. 2018, 2, 361–370. [Google Scholar] [CrossRef]
- Özkan, U.M.; Sarikaya, M.Z.; Yildirim, H. Extensions of certain integral inequalities on time scales. Appl. Math. Lett. 2008, 2, 993–1000. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.-F.; Ha, M.-H. Extensions of Hölder-type inequalities on time scales and their applications. J. Nonlinear Sci. Appl. 2017, 10, 937–953. [Google Scholar] [CrossRef] [Green Version]
- Kac, V.; Cheung, P. Quantum Calculus; Universitext Springer: New York, NY, USA, 2002. [Google Scholar]
- Yang, W.-G. A functional generalization of diamond-α integral Hölder’s inequality on time scales. Appl. Math. Lett. 2010, 23, 1208–1212. [Google Scholar] [CrossRef] [Green Version]
- Spedding, V. Taming nature’s numbers. New Sci. 2003, 179, 28–31. [Google Scholar]
- Tisdell, C.C.; Zaidi, A. Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling. Nonlinear Anal. 2008, 68, 3504–3524. [Google Scholar] [CrossRef]
- Bohner, M.; Heim, J.; Liu, A. Qualitative analysis of Solow model on time scales. J. Concr. Appl. Math. 2015, 13, 183–197. [Google Scholar]
- Brigo, D.; Mercurio, F. Discrete time vs continuous time stock-price dynamics and implications for option pricing. Financ. Stochast 2000, 4, 147–159. [Google Scholar] [CrossRef]
- Seadawy, A.R.; Iqbal, M.; Lu, D. Nonlinear wave solutions of the Kudryashov–Sinelshchikov dynamical equation in mixtures liquid-gas bubbles under the consideration of heat transfer and viscosity. J. Taibah Univ. Sci. 2019, 13, 1060–1072. [Google Scholar] [CrossRef] [Green Version]
- Bohner, M.; Agarwal, R.P. Basic calculus on time scales and some of its applications. Result. Der Math. 1999, 35, 3–22. [Google Scholar]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales, An Introduction with Applications; Birkhauser: Boston, MA, USA, 2001. [Google Scholar]
- Tuna, A.; Kutukcu, S. Some integral inequalities on time scales. Appl. Math. Mech. (Engl. Ed.) 2008, 29, 23–28. [Google Scholar] [CrossRef]
- D’Ovidio, M.; Loreti, P.; Momenzadeh, A.; Ahrabi, S.S. Determination of Order in Linear Fractional Differential Equations. Fract. Calc. Appl. Anal. 2018, 21, 937–948. [Google Scholar] [CrossRef] [Green Version]
- Heris, J.M.; Aghdaei, M.F. Equivalent HPM with ADM and Convergence of the HPM to a Class of Nonlinear Integral Equations. J. Math. Ext. 2013, 7, 33–49. [Google Scholar]
- Heris, J.M.; Bagheri, M. Exact Solutions for the Modified KdV and the Generalized KdV Equations via Exp-Function Method. J. Math. Ext. 2010, 4, 75–95. [Google Scholar]
- Akin, L. On the Fractional Maximal Delta Integral Type Inequalities on Time Scales. Fractal Fract. 2020, 4, 26. [Google Scholar] [CrossRef]
- Higgins, R. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discret. Contin. Dyn. Syst. Ser. B 2010, 13, 609–622. [Google Scholar] [CrossRef]
- Ozturk, O.; Higgins, R. Limit behaviors of nonoscillatory solutions of three-dimensional time scale systems. Turk. J. Math. 2018, 42, 2576–2587. [Google Scholar] [CrossRef]
- Shi, Z.S.H.; Yan, D.Y. Criterion on LP1 × LP2 → Lq-boundedness for oscillatory bilinear Hilbert transform. Abstr. Appl. Anal. 2014, 2014, 712051. [Google Scholar] [CrossRef]
- Mingquan, W.; Xudong, N.; Di, W.; Dunyan, Y. A note on Hardy-Littlewood maximal operators. J. Inequalities Appl. 2016, 2016, 1–13. [Google Scholar]
- Grafakos, L. Classical and Modern Fourier Analysis; China Machine Press: Beijing, China, 2005. [Google Scholar]
- Rudin, W. Real and Complex Analysis, 3rd ed.; McGraw-Hill: Singapore, 1987. [Google Scholar]
- Mamedov, F.I.; Zeren, Y.; Akin, L. Compactification of weighted Hardy operator in variable exponent Lebesgue spaces. Asian J. Math. Comput. Sci. 2017, 17, 38–47. [Google Scholar]
- Akin, L. A Characterization of Approximation of Hardy Operators in VLS. Celal Bayar Univ. J. Sci. 2018, 14, 333–336. [Google Scholar] [CrossRef]
- Akin, L.; Zeren, Y. Some properties for higher order commutators of Hardy-type integral operator on Herz–Morrey spaces with variable exponent. Sigma J. Eng. Nat. Sci. 2019, 10, 157–163. [Google Scholar]
- Capone, C.; David Cruz-Uribe, S.F.O.; Fiorenza, A. The fractional maximal operator and fractional integrals on variable Lp spaces. Rev. Mat. Iberoam. 2007, 23, 743–770. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Wu, J. Commutators of the fractional maximal function on variable exponent Lebesgue spaces. Czechoslov. Math. J. 2014, 64, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Beltran, D.; Madrid, J. Regularity of the centered fractional maximal Function on radial functions. J. Funct. Anal. 2020, 108686. [Google Scholar] [CrossRef]
- Akin, L.; Dusunceli, F. A New Approach for Weighted Hardy’s Operator in VELS. Appl. Math. Nonlinear Sci. 2019, 4, 417–432. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Otero–Espinar, V.; Perera, K.; Vivero, D.R. Basic properties of Sobolev’s spaces on time scales. Adv. Differ. Equ. 2006, 2006, 38121. [Google Scholar]
- Akin, L.; Zeren, Y. An investigation on fractional maximal operator in time scales. In Proceedings of the 3rd International E-Conference On Mathematical Advances And Applications, Yildiz Technical University, Istanbul, Turkey, 24–27 June 2020. [Google Scholar]
- Lu, S.Z.; Yan, D.Y. Lp Boundedness of multilinear oscillatory singular integrals with Calderón-Zygmund kernel. Sci. China Ser. A 2002, 45, 196–213. [Google Scholar]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Hardy Type Inequalities on Time Scales; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Akin, L. On some results of weighted Hölder type inequality on time scales. Middle East J. Sci. 2020, 6, 15–22. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akın, L. A New Approach for the Fractional Integral Operator in Time Scales with Variable Exponent Lebesgue Spaces. Fractal Fract. 2021, 5, 7. https://doi.org/10.3390/fractalfract5010007
Akın L. A New Approach for the Fractional Integral Operator in Time Scales with Variable Exponent Lebesgue Spaces. Fractal and Fractional. 2021; 5(1):7. https://doi.org/10.3390/fractalfract5010007
Chicago/Turabian StyleAkın, Lütfi. 2021. "A New Approach for the Fractional Integral Operator in Time Scales with Variable Exponent Lebesgue Spaces" Fractal and Fractional 5, no. 1: 7. https://doi.org/10.3390/fractalfract5010007
APA StyleAkın, L. (2021). A New Approach for the Fractional Integral Operator in Time Scales with Variable Exponent Lebesgue Spaces. Fractal and Fractional, 5(1), 7. https://doi.org/10.3390/fractalfract5010007