Fractals Parrondo’s Paradox in Alternated Superior Complex System
Abstract
:1. Introduction
2. Preliminaries
- (1)
- Superior Julia set is connected if and only if all the critical orbits are bounded;
- (2)
- Superior Julia set is totally disconnected, a red Cantor set, if (but not only if) all the critical orbits are unbounded;
- (3)
- For a polynomial with at least one critical orbit unbounded, the superior Julia set is totally disconnected if and only if all the bounded critical orbits are aperiodic.
3. Graphical Explorations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Danca, M.F.; Romera, M.; Pastor, G. Alternated Julia sets and connectivity properties. Int. J. Bifurc. Chaos 2009, 19, 2123–2129. [Google Scholar] [CrossRef] [Green Version]
- Danca, M.F.; Bourke, P.; Romera, M. Graphical exploration of the connectivity sets of alternated Julia sets. Nonlinear Dyn. 2013, 73, 1155–1163. [Google Scholar] [CrossRef] [Green Version]
- Harmer, G.P.; Abbott, D. Parrondo’s paradox. Stat. Sci. 1999, 14, 206–213. [Google Scholar]
- Harmer, G.P.; Abbott, D. Game theory Losing strategies can win by Parrondo’s paradox. Nature 1999, 402, 864. [Google Scholar] [CrossRef]
- Minor, D.P. Parrondo’s paradox–hope for losers! Coll. Math. J. 2003, 34, 15–20. [Google Scholar]
- Chen, L.; Li, C.F.; Gong, M.; Guo, G.C. Quantum Parrondo game based on a quantum ratchet effect. Phys. A Stat. Mech. Its Appl. 2010, 389, 4071–4074. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Fractals: Form, Chance, and Dimension; W. H. Freeman: San Francisco, CA, USA, 1977. [Google Scholar]
- Julia, G. Mémoire sur l’itération des fonctions rationnelles. J. De Mathématiques Pureset Appliquées 1918, 8, 47–245. [Google Scholar]
- Wang, X.Y.; Gu, L. Research fractal structures of generalized M-J sets using three algorithms. Fractals 2008, 16, 79–88. [Google Scholar] [CrossRef]
- Nazeer, W.; Kang, S.M.; Tanveer, M.; Shahid, A.A. Fixed point results in the generation of Julia and Mandelbrot sets. J. Inequalities Appl. 2015, 2015, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Dhurandhar, S.V.; Bhavsar, V.C.; Gujar, U.G. Analysis of z-plane fractal images from z←zα+c for α<0. Comput. Graph. 1993, 17, 89–94. [Google Scholar]
- Wang, X.Y.; Liu, X.D.; Zhu, W.Y.; Gu, S.S. Analysis of c-plane fractal images from z←zα+c for (α<0). Fractals 2020, 8, 307–314. [Google Scholar]
- Rani, M.; Kumar, V. Superior julia set. J. Korea Soc. Math. Educ. Ser. D Res. Math. Educ. 2004, 8, 261–277. [Google Scholar]
- Andreadis, I.; Karakasidis, T.E. On a closeness of the Julia sets of noise-perturbed complex quadratic maps. Int. J. Bifurc. Chaos 2012, 22, 1250221. [Google Scholar] [CrossRef]
- Wang, X.Y.; Ge, F.D. Quasi-sine Fibonacci M set with perturbation. Nonlinear Dyn. 2012, 69, 1765–1779. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wang, Z.; Lang, Y.H.; Zhang, Z.F. Noise perturbed generalized Mandelbrot sets. J. Math. Anal. Appl. 2008, 347, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Chang, P.J.; Gu, N.N. Additive perturbed generalized Mandelbrot-Julia sets. Appl. Math. Comput. 2007, 189, 754–765. [Google Scholar] [CrossRef]
- Wang, X.Y.; Jia, R.H.; Zhang, Z.F. The generalized Mandelbrot set perturbed by composing noise of additive and multiplicative. Appl. Math. Comput. 2009, 210, 107–118. [Google Scholar]
- Beck, C. Physical meaning for Mandelbrot and Julia sets. Phys. D Nonlinear Phenom. 1999, 125, 171–182. [Google Scholar] [CrossRef]
- Wang, X.Y.; Meng, Q.Y. Study on the physical meaning for generalized Mandelbrot-Julia sets based on the Langevin problem. Acta Phys. Sin. 2004, 53, 388–395. [Google Scholar]
- Wang, X.Y.; Liu, W.; Yu, X.J. Research on Brownian movement based on generalized Mandelbrot-Julia sets from a class complex mapping system. Mod. Phys. Lett. B 2007, 21, 1321–1341. [Google Scholar] [CrossRef]
- Sun, W.H.; Zhang, Y.P.; Zhang, X. Fractal analysis and control in the predator-prey model. Int. J. Comput. Math. 2017, 94, 737–746. [Google Scholar] [CrossRef]
- José, M.; António, M.L. Fractional Jensen–Shannon Analysis of the Scientific Output of Researchers in Fractional Calculus. Entropy 2017, 19, 127. [Google Scholar]
- Ionescu, C.M. The Human Respiratory System: An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics; Springer: New York, NY, USA, 2013. [Google Scholar]
- Wang, Y.P.; Liu, S.T.; Li, H.; Wang, D. On the spatial Julia set generated by fractional Lotka-Volterra system with noise. Chaos Solitons Fractals 2019, 128, 129–138. [Google Scholar] [CrossRef]
- Wang, Y.P.; Liu, S.T. Fractal analysis and control of the fractional Lotka–Volterra model. Nonlinear Dyn. 2019, 95, 1457–1470. [Google Scholar] [CrossRef]
- Wang, Y.P.; Liu, S.T.; Wang, D. Fractal dimension analysis and control of Julia set generated by fractional Lotka–Volterra models. Commun. Nonlinear Sci. Numer. Simul. 2019, 72, 417–431. [Google Scholar] [CrossRef]
- Yadav, M.P.; Agarwal, R. Numerical investigation of fractional-fractal Boussinesq equation. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 013109. [Google Scholar] [CrossRef] [PubMed]
- Mojica, N.S.; Navarro, J.; Marijuán, P.C.; Lahoz-Beltra, R. Cellular “bauplans”: Evolving unicellular forms by means of Julia sets and Pickover biomorphs. Biosystems 2009, 98, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, S.T.; Zhao, Y. A preliminary study on the fractal phenomenon:“ disconnected+disconnected=connected”. Fractals 2017, 25, 1750004. [Google Scholar] [CrossRef]
- Zou, C.; Shahid, A.A.; Tassaddiq, A.; Khan, A.; Ahmad, M. Mandelbrot sets and julia sets in picard-mann orbit. IEEE Access 2020, 8, 64411–64421. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Tanveer, M.; Nazeer, W.; Gdawiec, K.; Kang, S.M. Mandelbrot and Julia Sets via Jungck–CR Iteration with s–Convexity. IEEE Access 2020, 7, 12167–12176. [Google Scholar] [CrossRef]
- Jolaoso, L.O.; Khan, S.H. Some Escape Time Results for General Complex Polynomials and Biomorphs Generation by a New Iteration Process. Mathematics 2020, 8, 2172. [Google Scholar] [CrossRef]
- Zhou, H.; Tanveer, M.; Li, J. Comparative study of some fixed-point methods in the generation of Julia and mandelbrot sets. J. Math. 2020, 2020, 7020921. [Google Scholar] [CrossRef]
- Rani, M.; Kumar, V. Superior mandelbrot set. J. Korea Soc. Math. Educ. Ser. D Res. Math. Educ. 2004, 8, 279–291. [Google Scholar]
- Yadav, A.; Rani, M. Alternate superior Julia sets. Chaos Solitons Fractals 2015, 73, 1–9. [Google Scholar] [CrossRef]
- Negi, A.; Rani, M. New approach to dynamic noise on superior Mandelbrot set. Chaos Solitons Fractals 2008, 36, 1089–1096. [Google Scholar] [CrossRef]
- Rani, M.; Agarwal, R. Effect of stochastic noise on superior Julia sets. J. Math. Imaging Vis. 2010, 36, 63–68. [Google Scholar] [CrossRef]
- Agarwal, R.; Agarwal, V. Dynamic noise perturbed generalized superior Mandelbrot sets. Nonlinear Dyn. 2012, 67, 1883–1891. [Google Scholar] [CrossRef]
- Gdawiec, K.; Kotarski, W.; Lisowska, A. Biomorphs via modified iterations. J. Nonlinear Sci. Appl. 2016, 9, 2305–2315. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, D. Fractals Parrondo’s Paradox in Alternated Superior Complex System. Fractal Fract. 2021, 5, 39. https://doi.org/10.3390/fractalfract5020039
Zhang Y, Wang D. Fractals Parrondo’s Paradox in Alternated Superior Complex System. Fractal and Fractional. 2021; 5(2):39. https://doi.org/10.3390/fractalfract5020039
Chicago/Turabian StyleZhang, Yi, and Da Wang. 2021. "Fractals Parrondo’s Paradox in Alternated Superior Complex System" Fractal and Fractional 5, no. 2: 39. https://doi.org/10.3390/fractalfract5020039
APA StyleZhang, Y., & Wang, D. (2021). Fractals Parrondo’s Paradox in Alternated Superior Complex System. Fractal and Fractional, 5(2), 39. https://doi.org/10.3390/fractalfract5020039