Next Article in Journal
On the Connectivity Measurement of the Fractal Julia Sets Generated from Polynomial Maps: A Novel Escape-Time Algorithm
Next Article in Special Issue
Novel Computations of the Time-Fractional Fisher’s Model via Generalized Fractional Integral Operators by Means of the Elzaki Transform
Previous Article in Journal
Novel Expressions for the Derivatives of Sixth Kind Chebyshev Polynomials: Spectral Solution of the Non-Linear One-Dimensional Burgers’ Equation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities

1
Department of Mathematics, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
2
Department of Mathematics and General Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
3
Department of Medical Research, China Medical University, Taichung 40402, Taiwan
4
Department of Computer Sciences and Information Engineering, Asia University, Taichung 41354, Taiwan
5
Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan
6
Department of Mathematics, Hazara University, Mansehra 21120, Pakistan
7
Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawaser 11991, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2021, 5(2), 54; https://doi.org/10.3390/fractalfract5020054
Submission received: 23 April 2021 / Revised: 30 May 2021 / Accepted: 2 June 2021 / Published: 7 June 2021

Abstract

:
In this article, we established a new version of generalized fractional Hadamard and Fejér–Hadamard type integral inequalities. A fractional integral operator (FIO) with a non-singular function (multi-index Bessel function) as its kernel and monotone increasing functions is utilized to obtain the new version of such fractional inequalities. Our derived results are a generalized form of several proven inequalities already existing in the literature. The proven inequalities are useful for studying the stability and control of corresponding fractional dynamic equations.

1. Introduction

In the present era, fractional integral operators involving inequalities are widely derived by [1,2,3,4]. These fractional integral operators of any arbitrary real or complex order involve a different type of kernel. The field of fractional calculus has gained considerable importance among mathematicians and scientists due to its wide applications in sciences, engineering, and many other fields [5,6,7,8,9]. Hadamard and Fejér–Hadamard type inequalities have been discussed for many functions using different fractional operators with different kernels. Abbas and Farid [10] proposed the Hadamard and Fejér–Hadamard type integral inequalities for harmonically convex functions using the two-sided generalized fractional integral operator. Farid et al. [11,12] discussed these results in generalized form with an extended generalized Mittag–Leffler function. Hadamard and Fejér–Hadamard type inequalities are widely studied by the researchers [12,13,14,15,16,17,18,19]. The objective of this paper is to derive Hadamard, Fejér–Hadamard, and some other related type inequalities for the harmonically convex function via a generalized fractional operator with a nonsingular function as its kernel, which involves a multi-index Bessel function. For a recent related weighted fractional generalized approach, we refer to [20].
Hermite–Hadamard inequality and Fejér–Hadamard inequality are given by
Theorem 1
([21,22,23]). The inequality derived on the interval I = [ u , v ] R called Hermite Hadamard inequality is given by
ρ u + v 2 1 v u u v ρ ( t ) d t ρ ( u ) + ρ ( v ) 2 ,
where u , v I , with u v and ρ : I R is a convex function.
Theorem 2
([21,24,25]). The Fejér–Hadamard inequality is defined for a convex function ρ : I R and for a function μ : I R , which is non-negative, integrable, and symmetric about u + v 2 , defined by
ρ u + v 2 u v μ ( t ) d t u v ρ ( t ) μ ( t ) d t ρ ( u ) + ρ ( v ) 2 u v μ ( t ) d t ,
where u , v I , with u v .
Definition 1
([21,26]). A function ρ : [ u , v ] R is said to be convex if
ρ t x + ( 1 t ) y t ρ ( x ) + ( 1 t ) ρ ( y )
holds for all x , y [ u , v ] and t [ 0 , 1 ] .
Definition 2
([21,22]). Let I be an interval of nonzero real numbers. Then a function ρ : I R is said to be harmonically convex if
ρ u v t u + ( 1 t ) v t ρ ( v ) + ( 1 t ) ρ ( u )
holds for all u , v I and t [ 0 , 1 ] .
Definition 3
([21,27]). A function ρ : [ u , v ] R where I R contains nonzero real numbers is said to be harmonically symmetric about u + v 2 u v if
ρ 1 t = ρ 1 1 u + 1 v t .
t [ u , v ]
Definition 4
([28,29]). The Pochammer’s symbol is defined for s N as
( μ ) s = 1 , for s = 0 , μ 0 , μ ( μ + 1 ) ( μ + s 1 ) , for s 1 ,
where μ C .
Definition 5
([30]). The generalized multi-index Bessel function defined by Choi et al. as follows;
J ( τ j ) m , σ ( γ j ) m , λ ( t ) = s = 0 ( λ ) σ s ( s ! ) j = 1 m Γ ( γ j s + τ j + 1 ) ( t ) s ,
where γ j , τ j , λ C , j = 1 , 2 , 3 m , ( λ ) > 0 , ( τ j ) > 1 , j = 1 m ( γ j ) > max ( 0 : ( σ ) 1 ) , σ > 0 .
We define the following generalized fractional integral with a nonsingular function (generalized multi-index Bessel function) as a kernel.
Definition 6.
The generalized fractional integral operators (left and right-sided) containing the multi-index Bessel function in its kernel are, respectively, defined by
T λ , σ , ς ; u + ( γ j , τ j ) m ρ ( z ) = u z ( z t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ς ( z t ) γ j ) ρ ( t ) d t
and
T λ , σ , ς ; v ( γ j , τ j ) m ρ ( z ) = z v ( t z ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ς ( t z ) γ j ) ρ ( t ) d t ,
where γ j , τ j , λ , ς C , j = 1 , 2 , 3 m , ( λ ) > 0 , ( τ j ) > 1 , j = 1 m ( γ j ) > m a x ( 0 : ( σ ) 1 ) , σ > 0 and ρ L [ u , v ] , t [ u , v ] .
Remark 1.
1. If we put ς = 0 , m = 1 and replace τ j by τ j 1 , it reduces to left and right-sided Riemann–Liouville fractional integral operator.

2. Main Results

In this section, we present Hadamard, and Fejér–Hadamard type inequalities for harmonically convex functions by employing the new generalized fractional integral operators with a multi-index Bessel function as its kernel. We also establish a new version of inequalities by expressing the generalized fractional integral operator as the sum of two fractional integrals.
Theorem 3.
Let θ , ψ : [ a , b ] R , ( 0 < a < b , r a n g e ( ψ ) [ a , b ] ) be functions such that θ L 1 [ a , b ] is a positive and harmonically convex function and ψ is differentiable and strictly increasing on [a,b], then for the integral operators defined in Definition 6, we have
θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m 1 1 ψ ( b ) 1 2 { T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m θ μ } 1 ψ ( b ) + { T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m θ μ } 1 ψ ( a ) θ ( ψ ( a ) ) + θ ( ψ ( b ) ) 2 T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m 1 1 ψ ( b ) ,
where μ ( x ) = 1 x for all x [ 1 b , 1 a ] .
Proof. 
If θ is harmonically convex on [ a , b ] , for every x , y [ a , b ] , the following inequality holds
θ 2 ψ ( x ) ψ ( y ) ψ ( x ) + ψ ( y ) θ ( ψ ( x ) ) + θ ( ψ ( y ) ) 2 .
Now, taking ψ ( x ) = ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) and ψ ( y ) = ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) in Equation (11), we have
2 θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) θ ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) + θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) .
By multiplying by ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) and then integrating over [ 0 , 1 ] , we get
2 θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) 0 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) d t 0 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) θ ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) + θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) d t
2 θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) 1 1 ψ ( a ) 1 ψ ( b ) T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m 1 1 ψ ( b ) s = 0 ( ( λ ) s σ ( ζ ) s ( s ! ) j = 1 m Γ ( γ j s + τ j + 1 ) [ 0 1 ( 1 t ) τ j + γ j s θ ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) d t + 0 1 ( 1 t ) τ j + ( γ j s ) θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) d t ] .
Solving the integrals involved in right side of inequality (13) by making substitution 1 u = ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) in first integral and 1 ψ ( x ) = ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) in the second integral, we have
θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m 1 1 ψ ( b ) 1 2 T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m θ μ 1 ( ψ ( b ) ) + T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m θ μ 1 ( ψ ( a ) ) .
To obtain the second part of the inequality, the harmonic convexity of θ , we have the following relation
θ ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) + θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) θ ( ψ ( a ) ) + θ ( ψ ( b ) ) .
Multiplying by ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) and integrating over [ 0 , 1 ] in Equation (15), we have
0 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) θ ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) d t + 0 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) d t θ ( ψ ( a ) ) + θ ( ψ ( b ) ) T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m 1 1 ψ ( a ) .
Solving the integrals involved in the left side of inequality (16) by making substitution 1 u = ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) in first integral and 1 v = ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) in the second integral, we obtain
1 2 T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m θ μ 1 ψ ( b ) + T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m θ μ 1 ψ ( a ) θ ( ψ ( a ) ) + θ ( ψ ( b ) ) 2 T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m 1 1 ( ψ ( a ) ) .
Combining (14) and (17), we get the desired result. □
Corollary 1.
If ψ ( x ) = 1 x in Theorem 3 then the following inequality holds
θ 2 a + b T λ , σ , ζ ; ( 1 a ) ( γ j , τ j ) m 1 1 b 1 2 T λ , σ , ζ ; ( 1 ( a ) ) ( γ j , τ j ) m θ μ 1 b + T λ , σ , ζ ; ( 1 ( b ) ) + ( γ j , τ j ) m θ μ 1 a θ 1 a + θ 1 b 2 T λ , σ , ζ ; ( 1 b ) + ( γ j , τ j ) m 1 1 ( a ) .
Now, we derive the following Lemma before giving the next result.
Lemma 1.
Let θ , ψ : [ a , b ] R , 0 < a < b , range ( ψ ) [ a , b ] be functions such that θ is positive, θ L 1 [ a , b ] , and ψ is differentiable and strictly increasing. If θ is a harmonically convex function on [a,b] and satisfies θ 1 ψ ( x ) = θ 1 1 ψ ( a ) + 1 ψ ( b ) ψ ( x ) , we have
T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m θ μ 1 ψ ( a ) = 1 2 T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m θ μ 1 ψ ( b ) + T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m θ μ 1 ψ ( a ) = T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m θ μ 1 ψ ( b ) ,
where μ ( x ) = 1 x , x [ 1 b , 1 a ] .
Proof. 
Consider
T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m θ μ 1 ψ ( a ) = 1 ψ ( b ) 1 ψ ( a ) 1 ψ ( a ) u 1 ψ ( a ) 1 ψ ( b ) τ j J ( τ j ) m , σ ( γ j ) m , λ ζ 1 ψ ( a ) u 1 ψ ( a ) 1 ψ ( b ) γ j ( θ μ ) u d u .
Putting u = 1 ψ ( a ) + 1 ψ ( b ) ψ ( x ) and using θ 1 ψ ( x ) = θ 1 1 ψ ( a ) + 1 ψ ( b ) ψ ( x ) in Equation (20), we have
T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m θ μ 1 ψ ( a ) = T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m θ μ 1 ψ ( b ) .
By the addition of T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m θ μ 1 ψ ( a ) in Equation (21) on both sides, we have the required result. □
Theorem 4.
Let θ , ψ , η : [ a , b ] R , 0 < a < b , range ( ψ ) , range ( η ) [ a , b ] , be functions such that θ L 1 [ a , b ] is a positive function, ψ is a differentiable and strictly increasing function and η is nonnegative and integrable and satisfies η 1 ψ ( x ) = η 1 1 ψ ( a ) + 1 ψ ( b ) ψ ( x ) , then the following inequality holds
θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m η μ 1 ( ψ ( a ) ) + T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m η μ 1 ψ ( b ) T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m θ η μ 1 ( ψ ( b ) ) + T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m θ η μ 1 ( ψ ( a ) ) θ ( ψ ( a ) ) + θ ( ψ ( b ) ) 2 T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m η μ 1 ψ ( b ) + T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m η μ 1 ψ ( a ) ,
where μ ( x ) = 1 x , x [ 1 b , 1 a ] , θ η μ = ( θ μ ) ( η μ ) .
Proof. 
By using the harmonic convexity of θ , we have
2 θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) θ ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) + θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) .
By multiplying by ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) η ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) in Equation (23) and then integrating over the closed interval [ 0 , 1 ] , we have
2 θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) 0 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) η ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) d t 0 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) η ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) × θ ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) + θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) d t
2 θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) s = 0 ( λ ) σ s ( ζ ) s ( s ! ) j = 1 m Γ ( γ j s + τ j + 1 ) 0 1 ( 1 t ) τ j + γ j s η ( ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) ) d t s = 0 ( ( λ ) σ s ( ζ ) s ( s ! ) j = 1 m Γ ( γ j s + τ j + 1 ) [ 0 1 ( 1 t ) τ j + γ j s η ( ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) ) × θ ( ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) ) d t + 0 1 ( 1 t ) τ j + ( γ j s ) η ( ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) ) × θ ( ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) ) d t ] .
By making a substitution of 1 u = ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) in the first integral and 1 ψ ( x ) = ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) in second integrals occurring at right side and 1 u = ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) in the integral occurring at left side of inequality (25) and using η 1 ψ ( x ) = η 1 1 ψ ( a ) + 1 ψ ( b ) ψ ( x ) , we have
θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m η μ 1 ψ ( a ) + T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m η μ 1 ψ ( b ) T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m θ η μ 1 ψ ( b ) + T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m θ η μ 1 ψ ( a ) .
Now, we take
θ ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) + θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) θ ( ψ ( a ) ) + θ ( ψ ( b ) ) .
By multiplying ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) η ( ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) ) in Equation (27) and then integrating over [ 0 , 1 ] , we get
0 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) η ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) θ ψ ( a ) ψ ( b ) t ψ ( b + ( 1 t ) ψ ( a ) ) d t + 0 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) η ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) d t ( θ ( ψ ( a ) ) + θ ( ψ ( b ) ) ) 0 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) η ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) d t .
Solving the integrals involved in left side of inequality (28) by making substitution 1 u = ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) in the first integral and 1 ψ ( x ) = ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) in the second integral and 1 u = ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) in the integral on the right side of the inequality and using η 1 ψ ( x ) = η 1 1 ψ ( a ) + 1 ψ ( b ) ψ ( x ) , we have
T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m θ η μ 1 ψ ( b ) + T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m θ η μ 1 ψ ( a ) θ ( ψ ( a ) ) + θ ( ψ ( b ) ) 2 T λ , σ , ζ ; ( 1 ψ ( b ) ) + ( γ j , τ j ) m η μ 1 ψ ( a ) + T λ , σ , ζ ; ( 1 ψ ( a ) ) ( γ j , τ j ) m η μ 1 ψ ( b ) .
Combining (26) and (29), we have the required result. □
Theorem 5.
Let θ , ψ : [ a , b ] R , ( 0 < a < b , r a n g e ( ψ ) [ a , b ] ) be functions, such that θ L 1 [ a , b ] is a positive and harmonically convex function and ψ is differentiable and strictly increasing, then the following inequality holds for the operators defined in Definition 6
θ ( 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) ) ( T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) ( γ j , τ j ) m 1 ) ( 1 ψ ( b ) ) 1 2 [ ( T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) ( γ j , τ j ) m θ μ ) ( 1 ψ ( b ) ) + ( T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m θ μ ) ( 1 ψ ( a ) ) ] [ θ ( ψ ( a ) ) + θ ( ψ ( b ) ) 2 ] ( T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m 1 ) ( 1 ψ ( a ) ) ,
where μ ( x ) = 1 x x [ 1 b , 1 a ]
Proof. 
We have
2 θ ( 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) ) θ ( ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) ) + θ ( ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) ) .
By multiplying ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) on both sides and then integrating over [ 1 2 , 1 ] , we get
2 θ ( 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) ) 1 2 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) d t 1 2 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) θ ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) + θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) d t 2 θ ( 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) s = 0 ( λ ) σ s ( ζ ) s ( s ! ) j = 1 m Γ ( γ j s + τ j + 1 ) 1 2 1 ( 1 t ) τ j + γ j s d t s = 0 ( λ ) σ s ( ζ ) s ( s ! ) j = 1 m Γ ( γ j s + τ j + 1 ) [ 1 2 1 ( 1 t ) τ j + γ j s θ ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) d t + 1 2 1 ( 1 t ) τ j + ( γ j s ) θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) d t ] .
Solving the integrals involved in the right side of inequality (32) by making a substitution of 1 u = ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) in the first integral and 1 v = ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) in the second integral as well as in the integral occurring at the left side of inequality (32), we have
θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) ( γ j , τ j ) m 1 1 ψ ( b ) 1 2 T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) ( γ j , τ j ) m θ μ 1 ψ ( b ) + T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m θ μ 1 ( ψ ( a ) ) .
To obtain the second part of inequality, the harmonic convexity of θ gives the following relation
θ ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) + θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) θ ( ψ ( a ) ) + θ ( ψ ( b ) ) .
Multiplying by ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) and integrating over [ 1 2 , 1 ] , we get
1 2 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) θ ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) d t + 1 2 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) d t ( θ ( ψ ( a ) ) + θ ( ψ ( b ) ) ) T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m 1 1 ψ ( a ) .
Simplify the integrals involved in the left side of inequality (35) by making a substitution of 1 u = ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) in the first integral and 1 v = ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) in the second integral, we have
1 2 T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) ( γ j , τ j ) m θ μ 1 ψ ( b ) + T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m θ μ 1 ψ ( a ) θ ( ψ ( a ) ) + θ ( ψ ( b ) ) 2 T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + γ j , τ j ) m 1 1 ψ ( a ) .
Combining (33) and (36), we have the result. □
Remark 2.
1. If ψ ( x ) = x , m = 1 , ς = 0 and τ j is replaced by τ j 1 , it reduces to the result produced by Mehmet et al. [31]
θ 2 a b a + b Γ ( τ j + 1 ) 2 1 τ j a b b a τ j I a + b 2 a b τ j θ μ 1 b + I a + b 2 a b + τ j θ μ 1 a θ ( a ) + θ ( b ) 2
where μ ( x ) = 1 x x [ 1 b , 1 a ]
Lemma 2.
Let θ , ψ : [ a , b ] R , ( 0 < a < b , range ( ψ ) [ a , b ] ) be functions such that θ > 0 , θ L 1 [ a , b ] , and ψ is differentiable and strictly increasing. If θ is a harmonically convex function on [a,b] and satisfies θ 1 ψ ( x ) = θ 1 1 ψ ( a ) + 1 ψ ( b ) ψ ( x ) , we have
T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m θ μ 1 ψ ( a ) = 1 2 T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) ( γ j , τ j ) m θ μ 1 ψ ( b ) + T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m θ μ 1 ψ ( a ) = T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ψ ( a ) ψ ( b ) ) ( γ j , τ j ) m θ μ 1 ψ ( b )
where μ ( x ) = 1 x , x [ 1 b , 1 a ] .
Proof. 
Consider
T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m θ μ 1 ψ ( a ) = ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) 1 ψ ( a ) 1 ψ ( a ) u 1 ψ ( a ) 1 ψ ( b ) τ j J ( τ j ) m , σ ( γ j ) m , λ ζ 1 ψ ( a ) u 1 ψ ( a ) 1 ψ ( b ) γ j ( θ μ ) u d u .
Substituting u = 1 ψ ( a ) + 1 ψ ( b ) ψ ( x ) and using θ 1 ψ ( x ) = θ 1 1 ψ ( a ) + 1 ψ ( b ) ψ ( x ) in Equation (38), we have
T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m θ μ 1 ψ ( a ) = T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) ( γ j , τ j ) m θ μ 1 ψ ( b ) .
By the addition of T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m θ μ 1 ψ ( a ) in Equation (39) on both sides, we have the required result. □
Theorem 6.
Let θ , ψ , η : [ a , b ] R , 0 < a < b , range ( ψ ) , range ( η ) [ a , b ] be functions such that θ L 1 [ a , b ] is a positive function, ψ is a differentiable, strictly increasing function and η is nonnegative and integrable and satisfies η 1 ψ ( x ) = η 1 1 ψ ( a ) + 1 ψ ( b ) ψ ( x ) , then the following inequality holds for the operators defined in Definition 6.
θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m η μ 1 ψ ( a ) + T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) ( γ j , τ j ) m η μ 1 ψ ( b ) T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) ( γ j , τ j ) m θ η μ 1 ψ ( b ) + T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m θ η μ 1 ψ ( a ) θ ( ψ ( a ) ) + θ ( ψ ( b ) ) 2 T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) ( γ j , τ j ) m η μ 1 ψ ( b ) + T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m η μ 1 ψ ( a ) ,
where μ ( x ) = 1 x , x [ 1 b , 1 a ] , θ η μ = ( θ μ ) ( η μ ) .
Proof. 
By the harmonic convexity of θ , we have
2 θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) θ ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) + θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) .
By multiplying ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) η ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) in the Equation (41) and then integrating over the closed interval [ 1 2 , 1 ] , we have
2 θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) 1 2 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) η ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) d t 1 2 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) η ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) × θ ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) + θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) d t 2 θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) s = 0 ( λ ) σ s ( ζ ) s ( s ! ) j = 1 m Γ ( γ j s + τ j + 1 ) 1 2 1 ( 1 t ) τ j + γ j s η ( ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) ) d t s = 0 ( ( λ ) σ s ( ζ ) s ( s ! ) j = 1 m Γ ( γ j s + τ j + 1 ) [ 1 2 1 ( 1 t ) τ j + γ j s η ( ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) ) × θ ( ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) ) d t + 1 2 1 ( 1 t ) τ j + ( γ j s ) η ( ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) ) × θ ( ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) ) d t ] .
By substituting 1 u = ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) in the first integral and 1 ψ ( x ) = ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) in the second integrals occurring at the right side and 1 u = ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) in the integral occurring at left side of inequality (42), we have
θ 2 ψ ( a ) ψ ( b ) ψ ( a ) + ψ ( b ) T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m η μ 1 ( ψ ( a ) ) + T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) ( γ j , τ j ) m η μ 1 ψ ( b ) T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) ( γ j , τ j ) m θ η μ 1 ( ψ ( b ) ) + T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m θ η μ 1 ( ψ ( a ) ) .
Now, we take
θ ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) + θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) θ ( ψ ( a ) ) + θ ( ψ ( b ) ) .
By multiplying ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) η ( ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) ) in Equation (44) and then integrating over [ 1 2 , 1 ] , we get
1 2 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) η ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) θ ψ ( a ) ψ ( b ) t ψ ( b + ( 1 t ) ψ ( a ) ) d t + 1 2 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) η ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) θ ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) d t ( θ ( ψ ( a ) ) + θ ( ψ ( b ) ) ) 1 2 1 ( 1 t ) τ j J ( τ j ) m , σ ( γ j ) m , λ ( ζ ( 1 t ) γ j ) η ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) d t .
Solving the integrals involved in left side of inequality (45) by making substitution 1 u = ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) in the first integral and 1 ψ ( x ) = ψ ( a ) ψ ( b ) t ψ ( a ) + ( 1 t ) ψ ( b ) in the second integral and 1 u = ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) in the integral on the right side of the inequality and using the above lemma and the condition 1 u = ψ ( a ) ψ ( b ) t ψ ( b ) + ( 1 t ) ψ ( a ) , we have
[ T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) ( γ j , τ j ) m θ η μ 1 ( ψ ( b ) ) + T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m θ η μ 1 ( ψ ( a ) ) ] θ ( ψ ( a ) ) + θ ( ψ ( b ) ) 2 T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) + ( γ j , τ j ) m η μ 1 ( ψ ( a ) ) + T λ , σ , ζ ; ( ψ ( a ) + ψ ( b ) 2 ψ ( a ) ψ ( b ) ) ( γ j , τ j ) m η μ 1 ( ψ ( b ) ) .
Combining (43) and (46), we have the required result. □

3. Conclusion Remarks

In this article, we established Hadamard and Fejér–Hadamard type inequalities via a new generation of the generalized fractional integral operators (8) and (9) with a non-singular function (multi-index Bessel function) as its kernel for harmonically convex functions. It is concluded that many classical inequalities cited in the literature can be easily derived by employing certain conditions on generalized fractional integral operators (8) and (9). We believe that our formulated inequalities will be useful to investigate the stability of certain fractional controlled systems.

Author Contributions

Conceptualization, R.S.A., S.M. and S.A.; methodology, G.R. and K.S.N.; software, G.R. and K.S.N.; validation, A.M., T.A. and G.R.; formal analysis, K.S.N.; investigation, S.M. and K.S.N.; resources, S.M., G.R. and K.S.N.; data curation, S.M., and T.A.; writing—original draft preparation, R.S.A., S.M. and S.A.; writing—review and editing, T.A., G.R. and K.S.N.; visualization, A.M., K.S.N. and T.A.; supervision, T.A., G.R. and K.S.N.; project administration, A.M. and T.A.; funding acquisition, A.M. and T.A. All authors have read and agreed to the published version of the manuscript.

Funding

The authors Aiman Mukheimer and Thabet Abdeljawad would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Mehmood, S.; Farid, G.; Khan, K.A.; Yussouf, M. New Hadamard and Fejér–Hadamard fractional inequalities for exponentially m-convex function. Eng. Appl. Sci. Lett. 2020, 3, 45–55. [Google Scholar] [CrossRef]
  2. Mumcu, I.; Set, E.; Akdemir, A.O. Hermite–Hadamard type inequalities for harmonically convex functions via Katugampola fractional integrals. Miskolc Math. Notes 2019, 20, 409–424. [Google Scholar] [CrossRef] [Green Version]
  3. Rao, Y.; Yussouf, M.; Farid, G.; Pecaric, J.; Tlili, I. Further generalizations of Hadamard and Fejér–Hadamard fractional inequalities and error estimates. Adv. Differ. Equ. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
  4. Rashid, S.; Safdar, F.; Akdemir, A.O.; Noor, M.A.; Noor, K.I. Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function. J. Inequalities Appl. 2019, 2019, 1–17. [Google Scholar] [CrossRef]
  5. Salim, T.O.; Faraj, A.W. A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. J. Fract. Calc. Appl. 2012, 3, 1–13. [Google Scholar]
  6. Sarikaya, M.Z.; Alp, N. On Hermite–Hadamard-Fejér type integral inequalities for generalized convex functions via local fractional integrals. Open J. Math. Sci. 2019, 3, 273–284. [Google Scholar] [CrossRef]
  7. Sarikaya, M.Z.; Yildirim, H. On Hermite–Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
  8. Waheed, A.; Farid, G.; Rehman, A.U.; Ayub, W. k-Fractional integral inequalities for harmonically convex functions via Caputo k-fractional derivatives. Bull. Math. Anal. Appl. 2018, 10, 55–67. [Google Scholar]
  9. Yaldiz, H.; Akdemir, A.O. Katugampola fractional integrals within the class of convex functions. Turk. J. Sci. 2018, 3, 40–50. [Google Scholar]
  10. Abbas, G.; Farid, G. Hadamard and Fejér–Hadamard type inequalities for harmonically convex functions via generalized fractional integrals. J. Anal. 2017, 25, 107–119. [Google Scholar] [CrossRef]
  11. Farid, G.; Rehman, A.U.; Mehmood, S. Hadamard and Fejér–Hadamard type integral inequalities for harmonically convex functions via an extended generalized Mittag-Leffler function. J. Math. Comput. Sci. 2018, 8, 630–643. [Google Scholar]
  12. Farid, G.; Mishra, V.N.; Mehmood, S. Hadamard And Fejér–Hadamard Type Inequalities for Convex and Relative Convex Functions via an Extended Generalized Mittag-Leffler Function. Int. J. Anal. Appl. 2019, 17, 892–903. [Google Scholar]
  13. Set, E.; Mumcu, I. Hermite–Hadamard-Fejér type inequalities for conformable fractional integrals. Miskolc Math. Notes 2019, 20, 475–488. [Google Scholar] [CrossRef]
  14. Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard-Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
  15. Dahmani, Z. On Minkowski and Hermite–Hadamard integral inequalities via fractional integration. Ann. Funct. Anal. 2010, 1, 51–58. [Google Scholar] [CrossRef]
  16. Ekinci, A.; Ozdemir, M.E. Some new integral inequalities via Riemann-Liouville integral operators. Appl. Comput. Math. 2019, 18, 288–295. [Google Scholar]
  17. Farid, G.; Rehman, A.U.; Zahra, M. On Hadamard inequalities for relative convex functions via fractional integrals. Nonlinear Anal. Forum 2016, 21, 77–86. [Google Scholar]
  18. Kang, S.M.; Abbas, G.; Farid, G.; Nazeer, W. A generalized Fejér–Hadamard inequality for harmonically convex functions via generalized fractional integral operator and related results. Mathematics 2018, 6, 122. [Google Scholar] [CrossRef] [Green Version]
  19. Khan, H.; Tunc, C.; Baleanu, D.; Khan, A.; Alkhazzan, A. Inequalities for n-class of functions using the Saigo fractional integral operator. Rev. Real Acad. Cienc. Exactas. Fis. Nat. Ser. Mat. 2019, 113, 2407–2420. [Google Scholar] [CrossRef]
  20. Mohammed, P.O.; Abdeljawad, T.; Kashuri, A. Fractional Hermite–Hadamard–Fejér Inequalities for a Convex Function with Respect to an Increasing Function Involving a Positive Weighted Symmetric Function. Symmetry 2020, 12, 1503. [Google Scholar] [CrossRef]
  21. Qiang, X.; Farid, G.; Yussouf, M.; Khan, K.A.; Rahman, A.U. New generalized fractional versions of Hadamard and Fejér inequalities for harmonically convex functions. J. Inequalities Appl. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
  22. Iscan, I.; Wu, S. Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar]
  23. Ion, D.A. Some estimates on the Hermite–Hadamard inequality through quasi-convex functions. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2007, 34, 82–87. [Google Scholar]
  24. Fejér, L. Uber die fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss 1906, 24, 369–390. [Google Scholar]
  25. Tseng, K.L.; Hwang, S.R.; Dragomir, S.S. Fejér-type inequalities (I). J. Inequalities Appl. 2010, 2010, 531976. [Google Scholar] [CrossRef] [Green Version]
  26. Toader, G.H. Some generalizations of the convexity. In Proceedings of the Colloquium on Approximation and Optimization, Cluj-Napoca, Romania, 25–27 October 1984; pp. 329–338. [Google Scholar]
  27. Kunt, M.; Iscan, I.; Gozutok, U. On new inequalities of Hermite–Hadamard-Fejér type for harmonically convex functions via fractional integrals. SpringerPlus 2016, 5, 635. [Google Scholar] [CrossRef] [Green Version]
  28. Ali, R.S.; Mubeen, S.; Nayab, I.; Araci, S.; Rahman, G.; Nisar, K.S. Some Fractional Operators with the Generalized Bessel-Maitland Function. Discret. Dyn. Nat. Soc. 2020, 2020. [Google Scholar] [CrossRef]
  29. Mubeen, S.; Ali, R.S.; Nayab, I.; Rahman, G.; Abdeljawad, T.; Nisar, K.S. Integral transforms of an extended generalized multi-index Bessel function. AIMS Math. 2020, 5, 7531–7547. [Google Scholar] [CrossRef]
  30. Suthar, D.L.; Purohit, S.D.; Parmar, R.K. Generalized fractional calculus of the multiindex Bessel function. Math. Nat. Sci. 2017, 1, 26–32. [Google Scholar] [CrossRef] [Green Version]
  31. Iscan, I.; Kunt, M.; Yazici, N. Hermite–Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. New Trends Math. Sci. 2016, 4, 239. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Ali, R.S.; Mukheimer, A.; Abdeljawad, T.; Mubeen, S.; Ali, S.; Rahman, G.; Nisar, K.S. Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities. Fractal Fract. 2021, 5, 54. https://doi.org/10.3390/fractalfract5020054

AMA Style

Ali RS, Mukheimer A, Abdeljawad T, Mubeen S, Ali S, Rahman G, Nisar KS. Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities. Fractal and Fractional. 2021; 5(2):54. https://doi.org/10.3390/fractalfract5020054

Chicago/Turabian Style

Ali, Rana Safdar, Aiman Mukheimer, Thabet Abdeljawad, Shahid Mubeen, Sabila Ali, Gauhar Rahman, and Kottakkaran Sooppy Nisar. 2021. "Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities" Fractal and Fractional 5, no. 2: 54. https://doi.org/10.3390/fractalfract5020054

APA Style

Ali, R. S., Mukheimer, A., Abdeljawad, T., Mubeen, S., Ali, S., Rahman, G., & Nisar, K. S. (2021). Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities. Fractal and Fractional, 5(2), 54. https://doi.org/10.3390/fractalfract5020054

Article Metrics

Back to TopTop