Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities
Abstract
:1. Introduction
2. Main Results
3. Conclusion Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mehmood, S.; Farid, G.; Khan, K.A.; Yussouf, M. New Hadamard and Fejér–Hadamard fractional inequalities for exponentially m-convex function. Eng. Appl. Sci. Lett. 2020, 3, 45–55. [Google Scholar] [CrossRef]
- Mumcu, I.; Set, E.; Akdemir, A.O. Hermite–Hadamard type inequalities for harmonically convex functions via Katugampola fractional integrals. Miskolc Math. Notes 2019, 20, 409–424. [Google Scholar] [CrossRef] [Green Version]
- Rao, Y.; Yussouf, M.; Farid, G.; Pecaric, J.; Tlili, I. Further generalizations of Hadamard and Fejér–Hadamard fractional inequalities and error estimates. Adv. Differ. Equ. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Rashid, S.; Safdar, F.; Akdemir, A.O.; Noor, M.A.; Noor, K.I. Some new fractional integral inequalities for exponentially m-convex functions via extended generalized Mittag-Leffler function. J. Inequalities Appl. 2019, 2019, 1–17. [Google Scholar] [CrossRef]
- Salim, T.O.; Faraj, A.W. A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. J. Fract. Calc. Appl. 2012, 3, 1–13. [Google Scholar]
- Sarikaya, M.Z.; Alp, N. On Hermite–Hadamard-Fejér type integral inequalities for generalized convex functions via local fractional integrals. Open J. Math. Sci. 2019, 3, 273–284. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildirim, H. On Hermite–Hadamard type inequalities for Riemann-Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Waheed, A.; Farid, G.; Rehman, A.U.; Ayub, W. k-Fractional integral inequalities for harmonically convex functions via Caputo k-fractional derivatives. Bull. Math. Anal. Appl. 2018, 10, 55–67. [Google Scholar]
- Yaldiz, H.; Akdemir, A.O. Katugampola fractional integrals within the class of convex functions. Turk. J. Sci. 2018, 3, 40–50. [Google Scholar]
- Abbas, G.; Farid, G. Hadamard and Fejér–Hadamard type inequalities for harmonically convex functions via generalized fractional integrals. J. Anal. 2017, 25, 107–119. [Google Scholar] [CrossRef]
- Farid, G.; Rehman, A.U.; Mehmood, S. Hadamard and Fejér–Hadamard type integral inequalities for harmonically convex functions via an extended generalized Mittag-Leffler function. J. Math. Comput. Sci. 2018, 8, 630–643. [Google Scholar]
- Farid, G.; Mishra, V.N.; Mehmood, S. Hadamard And Fejér–Hadamard Type Inequalities for Convex and Relative Convex Functions via an Extended Generalized Mittag-Leffler Function. Int. J. Anal. Appl. 2019, 17, 892–903. [Google Scholar]
- Set, E.; Mumcu, I. Hermite–Hadamard-Fejér type inequalities for conformable fractional integrals. Miskolc Math. Notes 2019, 20, 475–488. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard-Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Dahmani, Z. On Minkowski and Hermite–Hadamard integral inequalities via fractional integration. Ann. Funct. Anal. 2010, 1, 51–58. [Google Scholar] [CrossRef]
- Ekinci, A.; Ozdemir, M.E. Some new integral inequalities via Riemann-Liouville integral operators. Appl. Comput. Math. 2019, 18, 288–295. [Google Scholar]
- Farid, G.; Rehman, A.U.; Zahra, M. On Hadamard inequalities for relative convex functions via fractional integrals. Nonlinear Anal. Forum 2016, 21, 77–86. [Google Scholar]
- Kang, S.M.; Abbas, G.; Farid, G.; Nazeer, W. A generalized Fejér–Hadamard inequality for harmonically convex functions via generalized fractional integral operator and related results. Mathematics 2018, 6, 122. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Tunc, C.; Baleanu, D.; Khan, A.; Alkhazzan, A. Inequalities for n-class of functions using the Saigo fractional integral operator. Rev. Real Acad. Cienc. Exactas. Fis. Nat. Ser. Mat. 2019, 113, 2407–2420. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T.; Kashuri, A. Fractional Hermite–Hadamard–Fejér Inequalities for a Convex Function with Respect to an Increasing Function Involving a Positive Weighted Symmetric Function. Symmetry 2020, 12, 1503. [Google Scholar] [CrossRef]
- Qiang, X.; Farid, G.; Yussouf, M.; Khan, K.A.; Rahman, A.U. New generalized fractional versions of Hadamard and Fejér inequalities for harmonically convex functions. J. Inequalities Appl. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Iscan, I.; Wu, S. Hermite–Hadamard type inequalities for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2014, 238, 237–244. [Google Scholar]
- Ion, D.A. Some estimates on the Hermite–Hadamard inequality through quasi-convex functions. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2007, 34, 82–87. [Google Scholar]
- Fejér, L. Uber die fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss 1906, 24, 369–390. [Google Scholar]
- Tseng, K.L.; Hwang, S.R.; Dragomir, S.S. Fejér-type inequalities (I). J. Inequalities Appl. 2010, 2010, 531976. [Google Scholar] [CrossRef] [Green Version]
- Toader, G.H. Some generalizations of the convexity. In Proceedings of the Colloquium on Approximation and Optimization, Cluj-Napoca, Romania, 25–27 October 1984; pp. 329–338. [Google Scholar]
- Kunt, M.; Iscan, I.; Gozutok, U. On new inequalities of Hermite–Hadamard-Fejér type for harmonically convex functions via fractional integrals. SpringerPlus 2016, 5, 635. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.S.; Mubeen, S.; Nayab, I.; Araci, S.; Rahman, G.; Nisar, K.S. Some Fractional Operators with the Generalized Bessel-Maitland Function. Discret. Dyn. Nat. Soc. 2020, 2020. [Google Scholar] [CrossRef]
- Mubeen, S.; Ali, R.S.; Nayab, I.; Rahman, G.; Abdeljawad, T.; Nisar, K.S. Integral transforms of an extended generalized multi-index Bessel function. AIMS Math. 2020, 5, 7531–7547. [Google Scholar] [CrossRef]
- Suthar, D.L.; Purohit, S.D.; Parmar, R.K. Generalized fractional calculus of the multiindex Bessel function. Math. Nat. Sci. 2017, 1, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Iscan, I.; Kunt, M.; Yazici, N. Hermite–Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals. New Trends Math. Sci. 2016, 4, 239. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, R.S.; Mukheimer, A.; Abdeljawad, T.; Mubeen, S.; Ali, S.; Rahman, G.; Nisar, K.S. Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities. Fractal Fract. 2021, 5, 54. https://doi.org/10.3390/fractalfract5020054
Ali RS, Mukheimer A, Abdeljawad T, Mubeen S, Ali S, Rahman G, Nisar KS. Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities. Fractal and Fractional. 2021; 5(2):54. https://doi.org/10.3390/fractalfract5020054
Chicago/Turabian StyleAli, Rana Safdar, Aiman Mukheimer, Thabet Abdeljawad, Shahid Mubeen, Sabila Ali, Gauhar Rahman, and Kottakkaran Sooppy Nisar. 2021. "Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities" Fractal and Fractional 5, no. 2: 54. https://doi.org/10.3390/fractalfract5020054
APA StyleAli, R. S., Mukheimer, A., Abdeljawad, T., Mubeen, S., Ali, S., Rahman, G., & Nisar, K. S. (2021). Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities. Fractal and Fractional, 5(2), 54. https://doi.org/10.3390/fractalfract5020054