Lévy Processes Linked to the Lower-Incomplete Gamma Function
Abstract
:1. Introduction
2. Basic Notions and Preliminary Results
2.1. Univariate Subordinators
2.2. Multivariate Subordinators
2.3. Fractional Equation Satisfied by the Incomplete Gamma Function
3. The Subordinator
3.1. Definition and Properties
3.2. Link to Stable Subordinators
3.2.1. The One-Dimensional Case
3.2.2. The Multivariate Case
4. The Tempered Subordinator
5. Subordination of Lévy Processes
5.1. The Generator Equation
5.2. Subordinated Brownian Motion
6. Subordinated Fractional Brownian Motion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beghin, L.; Gajda, J. Tempered relaxation equation and related generalized stable processes. Fract. Calc. Appl. Anal. 2020, 23, 1248. [Google Scholar] [CrossRef]
- Samorodnitsky, G.; Taqqu, M. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance; Chapman and All: New York, NY, USA, 1994. [Google Scholar]
- Meerschaert, M.; Sikorskii, A. Stochastic Models for Fractional Calculus; De Gruyter Studies in Mathematics Series; Hubert and Co: Berlin, Germany, 2012; Volume 43. [Google Scholar]
- Beghin, L.; Macci, C.; Ricciuti, C. Random time-change with inverses of multivariate subordinators: Governing equations and fractional dynamics. Stoch. Process. Their Appl. 2020, 130, 6364–6387. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.; Pedersen, J.; Sato, K. Multivariate subordination, self-decomposability and stability. Adv. Appl. Probab. 2001, 33, 160–187. [Google Scholar] [CrossRef]
- Sato, K.I. Lévy Processes and Infinitely Divisible Distributions; Cambridge Studies in Advanced Aathematics. 68; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Mandelbrot, B.B.; Ness, J.W.V. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Metzler, J.R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Schilling, R.L.; Song, R.; Vondracek, Z. Bernstein Functions: Theory and Applications; De Gruyter Studies in Mathematics Series; Hubert and Co: Berlin, Germany, 2010; Volume 37. [Google Scholar]
- Applebaum, D. Lévy Processes and Stochastic Calculus, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Bertoin, J. Subordinators: Examples and Applications. In Lectures on Probability Theory and Statistics (Saint-Flour, 1997); Lecture Notes in Mathematics, Volume 1717; Springer: Berlin, Germany, 1999; pp. 1–91. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, Volume 204 of North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- D’Ovidio, M.; Garra, R. Multidimensional fractional advection-dispersion equations and related stochastic processes. Electron. J. Probab. 2014, 19, 1–31. [Google Scholar] [CrossRef]
- Kumar, A.; Vellaisamy, P. Inverse tempered stable subordinators. Stat. Probab. Lett. 2015, 103, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products, 5th ed.; Academic Press: London, UK, 1994. [Google Scholar]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-Functions: Theory and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Wolfe, S.J. On moments of probability distribution functions. In Fractional Calculus and Its Applications; Lecture Notes in Mathematics, Volume 457; Ross, B., Ed.; Springer: Berlin, Germany, 1975; pp. 306–316. [Google Scholar]
- Kumar, A.; Gajda, J.; Wyłomanska, A.; Połoczanski, R. Fractional Brownian motion delayed by tempered and inverse tempered stable subordinators. Methodol. Comput. Appl. Probab. 2019, 21, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Feller, W. An Introduction Probability Theory and Its Applications, 2nd ed.; Wiley: New York, NY, USA, 1971; Volume 2. [Google Scholar]
- Wojdylo, J. On the coefficients that arise from Laplace’s method. J. Comput. Appl. Math. 2006, 196, 241–266. [Google Scholar] [CrossRef] [Green Version]
- Wong, R. Asymptotic Approximations of Integrals; SIAM, Ed.; Academic Press: Philadelphia, PA, USA, 2001. [Google Scholar]
- Jameson, G.J. The incomplete gamma functions. Math. Gaz. 2016, 100, 298–306. [Google Scholar] [CrossRef]
- Matsui, M.; Pawlas, Z. Fractional absolute moments of heavy tailed distributions. Braz. J. Probab. Stat. 2016, 30, 272–298. [Google Scholar] [CrossRef]
- Beghin, L.; Ricciuti, C. Additive geometric stable processes and related pseudo-differential operators. Markov Process. Relat. Fields 2019, 25, 415–444. [Google Scholar]
- Orsingher, E.; Ricciuti, C.; Toaldo, B. Time-inhomogeneous jump processes and variable order operators. Potential Anal. 2016, 45, 435–461. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Wyłomanska, A.; Połoczanski, R.; Sundar, S. Fractional Brownian motion time-changed by gamma and inverse gamma process. Phys. A Stat. Mech. Its Appl. 2017, 468, 648–667. [Google Scholar] [CrossRef] [Green Version]
- Mijena, J.B. Correlation structure of time-changed fractional Brownian motion. arXiv 2014, arXiv:1408.4502v1, 1–15. [Google Scholar]
- D’Ovidio, M.; Nane, E. Time dependent random fields on spherical non-homogeneous surfaces. Stoch. Process. Appl. 2014, 124, 2098–2131. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beghin, L.; Ricciuti, C. Lévy Processes Linked to the Lower-Incomplete Gamma Function. Fractal Fract. 2021, 5, 72. https://doi.org/10.3390/fractalfract5030072
Beghin L, Ricciuti C. Lévy Processes Linked to the Lower-Incomplete Gamma Function. Fractal and Fractional. 2021; 5(3):72. https://doi.org/10.3390/fractalfract5030072
Chicago/Turabian StyleBeghin, Luisa, and Costantino Ricciuti. 2021. "Lévy Processes Linked to the Lower-Incomplete Gamma Function" Fractal and Fractional 5, no. 3: 72. https://doi.org/10.3390/fractalfract5030072
APA StyleBeghin, L., & Ricciuti, C. (2021). Lévy Processes Linked to the Lower-Incomplete Gamma Function. Fractal and Fractional, 5(3), 72. https://doi.org/10.3390/fractalfract5030072