Certain Coefficient Estimate Problems for Three-Leaf-Type Starlike Functions
Abstract
:1. Introduction and Preliminary Results
2. The Sets of Lemmas
3. Upper Bound for Set
4. Bounds of for Two-Fold and Three-Fold Symmetric Functions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. In Theory and Applications; Series on Monographs and Textbooks in Pure and Appl. Math. No. 225; Marcel Dekker Inc.: New York, NY, USA, 2000; pp. 101–105. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M.S. Certain classes of starlike functions. Michigari Math. J. 1985, 32, 135–140. [Google Scholar] [CrossRef]
- Ronning, F. Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 1993, 118, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Sokół, J. Radius problem in the class *. Appl. Math. Comput. 2009, 214, 569–573. [Google Scholar]
- Jangteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for starlike and convex functions. Int. J. Ineq. Math. Anal. 2007, 1, 619–625. [Google Scholar]
- Goel, P.; Kumar, S. Certain class of starlike functions associated with Modified sigmoid function. Bull. Malays. Math. Sci. Soc. 2019, 43, 957–991. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.; Ravichandran, V. Radius problems for starlike functions associated with the Sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Mat. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Agarwal, P.; Deniz, S.; Jain, S.; Alderremy, A.A.; Aly, S. A new analysis of a partial differential equation arising in biology and population genetics via semi analytical techniques. Phys. A Stat. Mech. Appl. 2020, 542, 122769. [Google Scholar] [CrossRef]
- Attiya, A.A.; Lashin, A.M.; Ali, E.E.; Agarwal, P. Coefficient Bounds for Certain Classes of Analytic Functions Associated with Faber Polynomial. Symmetry 2021, 13, 302. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V.; Serivasatava, H.M. Starlike functions related to the Bell numbers. Symmetry 2019, 11, 219. [Google Scholar] [CrossRef] [Green Version]
- Dzoik, J.; Raina, R.K.; Sokół, J. On certain subclasses of starlike functions related to a shell-like curve connected with Fibonacci numbers. Math. Comput. Model. 2013, 57, 1203–1211. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Kumar, S.; Ravichandran, V. A subclass of starlike functions associated with rational function. Southeast Asian Bull. Math. 2016, 40, 199–212. [Google Scholar]
- Salahshour, S.; Ahmadian, A.; Senu, N.; Baleanu, D.; Agarwal, P. On Analytical Solutions of the Fractional Differential Equation with Uncertainty: Application to the Basset Problem. Entropy 2015, 17, 885–902. [Google Scholar] [CrossRef] [Green Version]
- Yassen, M.F.; Attiya, A.A.; Agarwal, P. Subordination and Superordination Properties for Certain Family of Analytic Functions Associated with Mittag—Leffler Function. Symmetry 2020, 12, 1724. [Google Scholar] [CrossRef]
- Zhou, S.-S.; Areshi, M.; Agarwal, P.; Shah, N.A.; Chung, J.D.; Nonlaopon, K. Analytical Analysis of Fractional-Order Multi-Dimensional Dispersive Partial Differential Equations. Symmetry 2021, 13, 939. [Google Scholar] [CrossRef]
- Ma, W.; Minda, M. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, MA, USA, 1992; pp. 157–169. [Google Scholar]
- Gandhi, S. Radius estimates for three leaf function and convex combination of starlike functions. In Mathematical. Analysis 1: Approximation Theory. ICRAPAM; Deo, N., Gupta, V., Acu, A., Agrawal, P., Eds.; Springer: Singapore, 2018; Volume 306. [Google Scholar]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 41, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Jangteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for a function whose derivative has a positive real part. J. Inequal. Pure Appl. Math. 2006, 7, 1–5. [Google Scholar]
- Răducanu, D.; Zaprawa, P. Second Hankel determinant for close-to-convex functions. Comptes Rendus Math. 2017, 355, 1063–1071. [Google Scholar] [CrossRef]
- Krishna, D.V.; RamReddy, T. Second Hankel determinant for the class of Bazilevic functions. Stud. Univ. Babes-Bolyai Math. 2015, 60, 413–420. [Google Scholar]
- Bansal, D. Upper bound of second Hankel determinant for a new class of analytic functions. Appl. Math. Lett. 2013, 23, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. 2013, 281. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.S.; Xu, J.F.; Yang, M. Upper bound of second Hankel determinant for certain subclasses of analytic functions. Abstr. Appl Anal. 2014, 603180. [Google Scholar] [CrossRef]
- Noonan, J.W.; Thomas, D.K. On the second Hankel determinant of areally mean p-valent functions. Trans. Am. Math. Soc. 1976, 223, 337–346. [Google Scholar]
- Orhan, H.; Magesh, N.; Yamini, J. Bounds for the second Hankel determinant of certain bi-univalent functions. Turk. J. Math. 2016, 40, 679–687. [Google Scholar] [CrossRef]
- Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2010, 6, 1–7. [Google Scholar]
- Arif, M.; Noor, K.N.; Raza, M. Hankel determinant problem of a subclass of analytic functions. J. Inequal. Appl. 2012, 22. [Google Scholar] [CrossRef] [Green Version]
- Altinkaya, S.; Yalçin, S. Third Hankel determinant for Bazilevič functions. Adv. Math. 2016, 5, 91–96. [Google Scholar]
- Bansal, D.; Maharana, S.; Prajapat, J.K. Third order Hankel Determinant for certain univalent functions. J. Korean Math. Soc. 2015, 52, 1139–1148. [Google Scholar] [CrossRef] [Green Version]
- Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, J. Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha. J. Math. Inequal. 2017, 11, 429–439. [Google Scholar] [CrossRef]
- Krishna, D.V.; Venkateswarlua, B.; RamReddy, T. Third Hankel determinant for bounded turning functions of order alpha. J. Niger. Math. Soc. 2015, 34, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Raza, M.; Malik, S.N. Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. J. Inequal. Appl. 2013, 412. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, G.; Stephen, B.A.; Babalola, K.O. Third Hankel determinant for α-starlike functions. Gulf J. Math. 2014, 2, 107–113. [Google Scholar]
- Zhang, H.Y.; Tang, H.; Niu, X.M. Third order Hankel determinat for certain class of analytic functions related with exponential function. Symmetry 2018, 10, 501. [Google Scholar] [CrossRef] [Green Version]
- Trąbka-Więclaw, K. On coefficient problems for functions connected with the sine function. Symmetry 2021, 13, 1179. [Google Scholar] [CrossRef]
- Esmail, S.; Agrawal, P.; Aly, S. A novel analytical approach for advection diffusion equation for radionuclide release from an area source. Nuclear Eng. Technol. 2020, 52, 819–826. [Google Scholar] [CrossRef]
- Morales-Delgado, V.F.; Gómez-Aguilar, J.F.; Saad, K.M.; Khan, M.A.; Agrawal, P. Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach. Phys. A Stat. Mech. Its Appl. 2019, 523, 48–65. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Zahra, M.; Farid, G.; Agrawal, P.; Kang, S.M. Some General Integral Operator Inequalities Associated with -Quasiconvex Functions. Math. Probl. Eng. 2021, 2021, 11. [Google Scholar] [CrossRef]
- Agarwal, P.; Kadakal, M.; İşcan, İ.; Chu, Y.-M. Better Approaches for n-Times Differentiable Convex Functions. Mathematics 2020, 8, 950. [Google Scholar] [CrossRef]
- Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 2017, 14, 19. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Lecko, A.; Sim, Y.J.; Śmiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 2018. [Google Scholar] [CrossRef] [Green Version]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2018, 42, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Keogh, F.; Merkes, E. A coefficient inequality for certain subclasses of analytic functions. Proc Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in . Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
- Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. 2015, 353, 505–510. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Khan, M.G.; Ahmad, B.; Mashwani, W.K.; Agarwal, P.; Momani, S. Certain Coefficient Estimate Problems for Three-Leaf-Type Starlike Functions. Fractal Fract. 2021, 5, 137. https://doi.org/10.3390/fractalfract5040137
Shi L, Khan MG, Ahmad B, Mashwani WK, Agarwal P, Momani S. Certain Coefficient Estimate Problems for Three-Leaf-Type Starlike Functions. Fractal and Fractional. 2021; 5(4):137. https://doi.org/10.3390/fractalfract5040137
Chicago/Turabian StyleShi, Lei, Muhammad Ghaffar Khan, Bakhtiar Ahmad, Wali Khan Mashwani, Praveen Agarwal, and Shaher Momani. 2021. "Certain Coefficient Estimate Problems for Three-Leaf-Type Starlike Functions" Fractal and Fractional 5, no. 4: 137. https://doi.org/10.3390/fractalfract5040137
APA StyleShi, L., Khan, M. G., Ahmad, B., Mashwani, W. K., Agarwal, P., & Momani, S. (2021). Certain Coefficient Estimate Problems for Three-Leaf-Type Starlike Functions. Fractal and Fractional, 5(4), 137. https://doi.org/10.3390/fractalfract5040137