Simplified Relation Model of Soil Saturation Permeability Coefficient and Air-Entry Value and Its Application
Abstract
:1. Introduction
2. Establishment of Prediction Model
3. Determine Constant of Proportionality k0 for the Model
3.1. Source of Experimental Data
3.2. Determination of the Comprehensive Proportionality Constant
4. Model Verification and Discussion
4.1. Data Verification
- (i).
- Experimental data of Hunan clay
- (ii).
- SoilVision Database
4.2. Model Verification
4.3. Discussion
5. Conclusions
- (1)
- The relationship model between the saturated permeability coefficient and air-entry value was determined to be ks = k0ψa−2, where k0 is the comprehensive proportional constant.
- (2)
- The comprehensive constant of proportionality k0 of the five soils was determined as follows: sand k0 = 0.03051; clay k0 = 0.001878; loam k0 = 0.001426; sandy loam k0 = 0.009301; and silty clay loam k0 = 0.0007055.
- (3)
- The model better predicted the air-entry value for sand, clay, and silty clay loam compared to loam and sandy loam.
- (4)
- The model in this study can be used to make mutual predictions of the saturation permeability coefficient and air-entry value. Limited data on soil types were used to validate the model, so more experimental data need to be considered in future research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Notation
ks | the saturated permeability coefficient |
θs | the saturated volumetric water content |
θr | the residual volumetric water content |
ψ | the matrix suction |
γ | the unit weight of water |
μ | the absolute viscosity of water |
Ts | the table surface tension |
α | the contact angle |
pi | the ratio of the actual length of the i-th pore channel to the length of the soil sample |
kc | a constant for the same type of soil |
e0 | the void ratio |
ψa | the air-entry value |
D | the fractal dimension |
References
- Bouwer, H. Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis. Water Resour. Res. 1966, 2, 729–738. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A. Equations for the soil-water characteristic curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Fallow, D.; Elrick, D. Field measurement of air-entry and water-entry soil water pressure heads. Soil Sci. Soc. Am. J. 1996, 60, 1036–1039. [Google Scholar] [CrossRef]
- Nemati, M.; Caron, J.; Banton, O.; Tardif, P. Determining air entry value in peat substrates. Soil Sci. Soc. Am. J. 2002, 66, 367–373. [Google Scholar] [CrossRef]
- Sakaki, T.; Komatsu, M.; Takahashi, M. Rules-of-Thumb for Predicting Air-Entry Value of Disturbed Sands from Particle Size. Soil Sci. Soc. Am. J. 2014, 78, 454–464. [Google Scholar] [CrossRef]
- Ip, C.Y.S.; Rahardjo, H.; Satyanaga, A. Spatial variations of air-entry value for residual soils in Singapore. Catena 2019, 174, 259–268. [Google Scholar] [CrossRef]
- Ni, J.; Leung, A.K.; Ng, C.W. Unsaturated hydraulic properties of vegetated soil under single and mixed planting conditions. Géotechnique 2019, 69, 554–559. [Google Scholar] [CrossRef]
- Slowik, V.; Schmidt, M.; Fritzsch, R. Capillary pressure in fresh cement-based materials and identification of the air entry value. Cem. Concr. Compos. 2008, 30, 557–565. [Google Scholar] [CrossRef]
- Soltani, A.; Azimi, M.; Deng, A.; Taheri, A. A simplified method for determination of the soil–water characteristic curve variables. Int. J. Geotech. Eng. 2019, 13, 316–325. [Google Scholar] [CrossRef]
- Wijaya, M.; Leong, E.C.; Rahardjo, H. Effect of shrinkage on air-entry value of soils. Soils Found. 2015, 55, 166–180. [Google Scholar] [CrossRef] [Green Version]
- Khanzode, R.; Vanapalli, S.; Fredlund, D. Measurement of soil-water characteristic curves for fine-grained soils using a small-scale centrifuge. Can. Geotech. J. 2002, 39, 1209–1217. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lu, Z.; Guo, L.; Zhang, L.M. Experimental study on soil-water characteristic curve for silty clay with desiccation cracks. Eng. Geol. 2017, 218, 70–76. [Google Scholar] [CrossRef]
- Lu, N.; Wayllace, A.; Carrera, J.; Likos, W.J. Constant flow method for concurrently measuring soil-water characteristic curve and hydraulic conductivity function. Geotech. Test. J. 2006, 29, 230–241. [Google Scholar] [CrossRef]
- Manahiloh, K.N.; Meehan, C.L. Determining the soil water characteristic curve and interfacial contact angle from microstructural analysis of X-ray CT images. J. Geotech. Geoenviron. Eng. 2017, 143, 04017034. [Google Scholar] [CrossRef]
- Nishiumura, T.; Koseki, J.; Fredlund, D.G.; Rahardjo, H. Microporous membrane technology for measurement of soil-water characteristic curve. Geotech. Test. J. 2012, 35, 201–208. [Google Scholar] [CrossRef]
- Peranić, J.; Arbanas, Ž.; Cuomo, S.; Maček, M. Soil-water characteristic curve of residual soil from a flysch rock mass. Geofluids 2018, 2018, 6297819. [Google Scholar] [CrossRef]
- Sahin, H.; Gu, F.; Lytton, R.L. Development of soil-water characteristic curve for flexible base materials using the methylene blue test. J. Mater. Civ. Eng. 2015, 27, 04014175. [Google Scholar] [CrossRef]
- Wang, X.; Benson, C.H. Leak-free pressure plate extractor for measuring the soil water characteristic curve. Geotech. Test. J. 2004, 27, 163–172. [Google Scholar] [CrossRef]
- Tao, G.; Kong, L. A model for determining the permeability coefficient of saturated and unsaturated soils based on micro pore channel and its application. J. Hydraul. Eng. 2017, 48, 702–709. (In Chinese) [Google Scholar] [CrossRef]
- Tao, G.; Kong, L.; Xiao, H.; Ma, Q.; Zhu, Z. Fractal characteristics and fitting analysis of soil–water characteristic curves. Rock Soil Mech. 2014, 35, 2443–2447. (In Chinese) [Google Scholar] [CrossRef]
- Li, D.; Zhang, T. Fractal features of particle size distribution of soils in China. Soil Environ. Sci. 2000, 9, 263–265. (In Chinese) [Google Scholar] [CrossRef]
- Nemes, A.; Schaap, M.; Leij, F. The UNSODA Unsaturated Soil Hydraulic Database Version 2.0; US Salinity Laboratory: Riverside, CA, USA, 1999.
- Tinjum, J.M.; Benson, C.H.; Blotz, L.R. Soil-water characteristic curves for compacted clays. J. Geotech. Geoenviron. Eng. 1997, 123, 1060–1069. [Google Scholar] [CrossRef]
- Zhu, X. Research on the Relationship between Fractal Characteristics of Soil Particle Size and Hydraulic Properties for Unsaturated Soils. Master’s Thesis, Hubei University of Technology, Wuhan, China, 2019. (In Chinese). [Google Scholar]
- Fredlund, M. Soilvision 2.0, a Knowledge-Based Database System for Unsaturatedsaturated Soil Properties, Version 2.0; Soilvision Systems Ltd.: Saskatoon, SK, Canada.
Type of Soil | Sample | Mean Value | Standard Deviation | ||
---|---|---|---|---|---|
AEV (kPa) | ks (cm/s) | AEV (kPa) | ks (cm/s) | ||
Sand | 50 | 2.23 | 0.024 | 1.41 | 0.051 |
Clay | 47 | 2.51 | 0.0053 | 5.21 | 0.0092 |
Loam | 38 | 2.94 | 0.0007 | 2.39 | 0.0008 |
Sandy loam | 43 | 4.44 | 0.0009 | 2.99 | 0.0011 |
Silty clay loam | 40 | 6.12 | 0.000024 | 1.79 | 0.000011 |
Type of Soil | Comprehensive Proportionality Constant k0 | Fitted Correlation Coefficient R2 |
---|---|---|
Sand | 0.03051 | 0.9158 |
Clay | 0.001878 | 0.8797 |
Loam | 0.001426 | 0.8373 |
Sandy loam | 0.009301 | 0.9067 |
Silty clay loam | 0.0007055 | 0.8267 |
The Serial Number of the Figure | The Serial Number of the Database | Saturated Permeability Coefficient ks (cm/s) | AEV in the Database (kPa) | Predicted AEV (kPa) |
---|---|---|---|---|
1 | 4283 | 0.0133 | 1.36 | 1.51 |
2 | 4346 | 0.020083 | 1.56 | 1.23 |
3 | 4417 | 0.010944 | 1.64 | 1.66 |
4 | 4461 | 0.0089444 | 1.64 | 1.84 |
5 | 4986 | 0.021167 | 0.84 | 1.19 |
6 | 3906 | 0.013417 | 2.28 | 1.50 |
7 | 5136 | 0.00875 | 2.9 | 1.86 |
8 | 4247 | 0.0040278 | 2.34 | 2.74 |
9 | 4333 | 0.00825 | 1.14 | 1.91 |
10 | 4498 | 0.0048889 | 2.81 | 2.48 |
The Serial Number of the Figure | Dry Density (g/cm3) | Saturated Permeability Coefficient ks (cm/s) | AEV Obtained by Drawing (kPa) | Predicted AEV (kPa) |
---|---|---|---|---|
1 | 1.3 | 7.72 × 10−4 | 2.65 | 1.56 |
2 | 1.35 | 4.15 × 10−4 | 4.33 | 2.13 |
3 | 1.4 | 2.49 × 10−4 | 6.7 | 2.75 |
4 | 1.45 | 1.73 × 10−4 | 8.25 | 3.29 |
5 | 1.5 | 4.78 × 10−5 | 9.77 | 6.27 |
6 | 1.6 | 9.92 × 10−6 | 13.42 | 13.76 |
The Serial Number of the Figure | The Serial Number of the Database | Saturated Permeability Coefficient ks (cm/s) | AEV in the Database (kPa) | Predicted AEV (kPa) |
---|---|---|---|---|
1 | 1451 | 8.3333 × 10−5 | 8.94 | 4.14 |
2 | 4407 | 4.860 × 10−3 | 0.56 | 0.54 |
3 | 4274 | 2.7778 × 10−5 | 10.49 | 7.16 |
4 | 4273 | 5.5556 × 10−5 | 4.72 | 5.07 |
5 | 4401 | 2.7778 × 10−5 | 3.65 | 7.16 |
6 | 4790 | 1.8333 × 10−5 | 6.2 | 2.79 |
7 | 1441 | 2.2222 × 10−5 | 5.37 | 8.01 |
8 | 1426 | 5.5556 × 10−6 | 14.39 | 16.02 |
9 | 1402 | 4.1667 × 10−5 | 8.62 | 5.85 |
10 | 4409 | 4.8889 × 10−3 | 2.81 | 2.48 |
The Serial Number of the Figure | The Serial Number of the Database | Saturated Permeability Coefficient ks (cm/s) | AEV in the Database (kPa) | Predicted AEV (kPa) |
---|---|---|---|---|
1 | 4991 | 2.50 × 10−4 | 2.59 | 6.10 |
2 | 5099 | 5.56 × 10−5 | 8.33 | 12.94 |
3 | 3955 | 3.53 × 10−4 | 3.57 | 5.13 |
4 | 3199 | 8.33 × 10−5 | 6.38 | 10.56 |
5 | 5238 | 8.19 × 10−4 | 1.12 | 3.37 |
6 | 5184 | 9.72 × 10−4 | 3.1 | 3.09 |
7 | 4384 | 2.92 × 10−2 | 0.48 | 0.56 |
8 | 4429 | 2.39 × 10−4 | 3.02 | 6.24 |
9 | 4284 | 3.61 × 10−4 | 2.63 | 5.08 |
10 | 5238 | 8.19 × 10−4 | 1.12 | 3.37 |
The Serial Number of the Figure | The Serial Number of the Database | Saturated Permeability Coefficient ks (cm/s) | AEV in the Database (kPa) | Predicted AEV (kPa) |
---|---|---|---|---|
1 | 4919 | 7.95 × 10−3 | 0.34 | 0.30 |
2 | 4930 | 6.29 × 10−3 | 0.56 | 0.33 |
3 | 4850 | 2.00 × 10−3 | 0.31 | 0.59 |
4 | 4867 | 5.14 × 10−4 | 1.08 | 1.17 |
5 | 4923 | 7.08 × 10−3 | 0.34 | 0.32 |
6 | 4906 | 4.20 × 10−3 | 0.37 | 0.41 |
7 | 4916 | 5.04 × 10−3 | 0.35 | 0.37 |
8 | 4845 | 8.29 × 10−3 | 0.29 | 0.29 |
9 | 4779 | 2.78 × 10−5 | 8.67 | 5.04 |
10 | 4910 | 4.02 × 10−3 | 0.65 | 0.42 |
11 | 4908 | 1.27 × 10−2 | 0.37 | 0.24 |
12 | 4913 | 9.59 × 10−3 | 0.25 | 0.27 |
13 | 4912 | 2.47 × 10−2 | 0.35 | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, G.; Wu, Z.; Li, W.; Li, Y.; Dong, H. Simplified Relation Model of Soil Saturation Permeability Coefficient and Air-Entry Value and Its Application. Fractal Fract. 2021, 5, 180. https://doi.org/10.3390/fractalfract5040180
Tao G, Wu Z, Li W, Li Y, Dong H. Simplified Relation Model of Soil Saturation Permeability Coefficient and Air-Entry Value and Its Application. Fractal and Fractional. 2021; 5(4):180. https://doi.org/10.3390/fractalfract5040180
Chicago/Turabian StyleTao, Gaoliang, Zhijia Wu, Wentao Li, Yi Li, and Heming Dong. 2021. "Simplified Relation Model of Soil Saturation Permeability Coefficient and Air-Entry Value and Its Application" Fractal and Fractional 5, no. 4: 180. https://doi.org/10.3390/fractalfract5040180
APA StyleTao, G., Wu, Z., Li, W., Li, Y., & Dong, H. (2021). Simplified Relation Model of Soil Saturation Permeability Coefficient and Air-Entry Value and Its Application. Fractal and Fractional, 5(4), 180. https://doi.org/10.3390/fractalfract5040180