Fractals as Julia Sets of Complex Sine Function via Fixed Point Iterations
Abstract
:1. Introduction
2. Preliminaries
- (i)
- the Picard-iteration [32] isClearly, it is a one-step feedback procedure.
- (ii)
- the Mann-iteration [9] isClearly, it is a one-step feedback procedure.
- (iii)
- the Ishikawa-iteration [10] isClearly, it is a two-step feedback procedure.
- (iv)
- the Noor-iteration [12] isClearly, it is a three-step feedback procedure.
- 1.
- Ishikawa-orbit when ,
- 2.
- Mann-orbit when .
- 3.
- Picard-orbit when
- (i)
- ,
- (ii)
- ,
- (iii)
3. Escape Criteria for Complex Sine Functions
- (i)
- The selection of the parameters in the above theorems is new and has not been studied till now in this perspective.
- (ii)
- The Corollaries 1, 2 and 3 provide algorithms for exploring Julia sets of . If , we obtain the orbit of z. If lies in the exterior of the circle of radius for some k, then the orbit escapes meaning, thereby z is not inside the Julia sets. However, if does not exceed this bound, then utilizing the definitions of the Julia sets, we utilize these algorithms to generate fractals in the next section.
4. Generation of Julia Sets
- the parameters , , and play a very important role in giving shape, size, and color to the fractals.
- the convergence criteria derived for the fractals are also playing a very crucial role in giving resolution and richness of pixel in the fractals.
- all the fractals developed in this paper are very novel, aesthetic, and pleasing as the function contains the special kind of sine function in it.
- the function carries lots of characteristics in it. Various combinations of parameters lead to a variety of fractals—some of which may be used to create fractal art on glass (to give stunning effects).
- for the chosen function, we get the effects of flowers, ants, Rangoli, and glass painting in the fractals developed in the paper.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandelbrot, B.B. The Fractal Geometry of Nature; W. H. Freeman and Co.: San Francisco, CA, USA, 1982. [Google Scholar]
- Barnsley, M. Fractals Everywhere, 2nd ed.; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
- Julia, G. Mémoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl. 1918, 8, 47–745. [Google Scholar]
- Julia, G. Sur des problèmes concernant l’itération des fonctions rationelles. C. R. Acad. Sci. Paris Sér. I. Math. 1918, 166, 153–156. [Google Scholar]
- Fatou, P. Sur les équations fonctionnelles. Bull. Société Mathématique Fr. 1919, 47, 161–271. [Google Scholar] [CrossRef] [Green Version]
- Lakhtakia, A.; Varadan, W.; Messier, R.; Varadan, V.K. On the symmetries of the Julia sets for the process zp + c. J. Phys. A Math. Gen. 1987, 20, 3533–3535. [Google Scholar] [CrossRef]
- Crowe, W.D.; Hasson, R.; Rippon, P.J.; Strain-Clark, P.E.D. On the structure of the Mandelbar set. Nonlinearity 1989, 2, 541–553. [Google Scholar] [CrossRef]
- Winters, R. Bifurcations in Families of Antiholomorphic and Biquadratic Maps. Ph.D. Thesis, Department of Mathematics, Boston University, Boston, MA, USA, 1990. [Google Scholar]
- Mann, W.R. Mean Value Methods in Iteration. Proc. Amer. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed Points by a New Iteration Method. Proc. Amer. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Kang, S.M.; Rafiq, A.; Latif, A.; Shahid, A.A.; Kwun, Y.C. Tricorns and multicorns of S-iteration scheme. J. Function Space 2015, 2015, 1–7. [Google Scholar]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.M.; Nazeer, W.; Tanveer, M.; Shahid, A.A. New fixed point results for fractal generation in Jungck Noor orbit with S-convexity. J. Function Space 2015, 2015, 963016. [Google Scholar] [CrossRef] [Green Version]
- Goyal, K.; Prasad, B. Dynamics of iterative schemes for quadratic polynomial. Proc. AIP Conf. 2001, 9, 149–153. [Google Scholar]
- Nazeer, W.S.; Kang, M.; Tanveer, M.; Shahid, A.A. Fixed point results in the generation of Julia and mandelbrot sets. J. Inequalities Appl. 2015, 2015, 298. [Google Scholar] [CrossRef] [Green Version]
- Kwun, Y.C.; Tanveer, M.; Nazeer, W.; Abbas, M.; Kang, S.M. Fractal generation in modified Jungck-S orbit. IEEE Access 2019, 7, 35060–35071. [Google Scholar] [CrossRef]
- Kwun, Y.C.; Tanveer, M.; Nazeer, W.; Gdawiec, K.; Kang, S.M. Mandelbrot and Julia sets via Jungck-CR iteration with S-convexity. IEEE Access 2019, 7, 12167–12176. [Google Scholar] [CrossRef]
- Li, D.; Tanveer, M.; Nazeer, W.; Guo, X. Boundaries of filled Julia sets in generalized Jungck Mann orbit. IEEE Access 2019, 7, 76859–76867. [Google Scholar] [CrossRef]
- Li, X.; Tanveer, M.; Abbas, M.; Ahmad, M.; Kwun, Y.C.; Liu, J. Fixed point results for fractal generation in extended Jungck-SP orbit. IEEE Access 2019, 7, 160472–160481. [Google Scholar] [CrossRef]
- Chugh, R.; Kumar, V.; Kumar, S. Strong convergence of a new three step iterative scheme in Banach spaces. Amer. J. Comput. Math. 2012, 2, 345. [Google Scholar] [CrossRef] [Green Version]
- Phuengrattana, W.; Suantai, S. On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval. J. Comput. Appl. Math. 2011, 235, 3006–3014. [Google Scholar] [CrossRef] [Green Version]
- Cooper, G.R.J. Julia sets of the complex Carotid-Kundalini function. Comput. Graph. 2001, 25, 153–158. [Google Scholar] [CrossRef]
- Sajid, M.; Kapoor, G.P. Dynamics of a family of non-critically finite even transcendental meromorphic functions. Regul. Chaotic Dyn. 2004, 9, 143–162. [Google Scholar] [CrossRef]
- Sajid, M.; Kapoor, G.P. Dynamics of a family of transcendental meromorphic functions having rational schwarzian derivative. J. Math. Anal. Appl. 2007, 326, 1356–1369. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-Y.; Liang, Q.-Y.; Meng, J. Chaos and fractals in C-K map. Int. J. Mod. Phys. C 2008, 19, 1389–1409. [Google Scholar] [CrossRef]
- Bera, M.; Prasad, M.G.P. Dynamics of two parameter family of hyperbolic sine like functions. J. Anal. 2019, 27, 895–912. [Google Scholar] [CrossRef]
- Bray, K.; Dwyer, J.; Barnard, R.W.; Williams, G.B. Fixed points, symmetries, and bounds for basins of attraction of complex trigonometric functions. Int. J. Math. Math. Sci. 2020, 2020, 1853467. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.K.; Singh, A.K. The optimal order Newton’s like methods with dynamics. Mathematics 2021, 9, 527. [Google Scholar] [CrossRef]
- Appadu, A.; Kelil, A.; Tijani, Y. Comparison of some forecasting methods for COVID-19. Alex. Eng. J. 2021, 60, 1565–1589. [Google Scholar] [CrossRef]
- Euler, L. Institutionum calculi integralis Volume Primum (1768); Opera Omnia Series Prima, 11; Oxford University Press: Oxford, UK, 1913. [Google Scholar]
- Atkinson, K.E. An Introduction to Numerical Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Picard, E. Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. J. Math. Pures Appl. 1890, 6, 145–210. [Google Scholar]
a | c | n | |||||||
---|---|---|---|---|---|---|---|---|---|
(i) | 1.19802032 | 0.17835 | 0.1675056 | 0.14323409 | 0.11025 | 0.115025 | 0.115025 | 3 | |
(ii) | 1.19802032 | 0.17835 | 0.1675056 | - | 0.11025 | 0.115025 | - | 3 | |
(iii) | 1.19802032 | 0.17835 | - | - | 0.11025 | - | - | 3 |
a | c | |||||||
---|---|---|---|---|---|---|---|---|
(i) | 1.19802032 | 0.0077835 | 0.1675056 | 0.0814323409 | 0.07101025 | 0.079115025 | 0.078115025 | |
(ii) | 1.19802032 | 0.0077835 | 0.1675056 | - | 0.07101025 | 0.079115025 | - | |
(iii) | 1.19802032 | 0.0077835 | - | - | 0.07101025 | - | - |
a | c | |||||||
---|---|---|---|---|---|---|---|---|
(i) | 1.0229802032 | −1.89 | 0.077835 | 0.05675056 | 0.0814323409 | 0.000017101025 | 0.79115025 | 0.8115025 |
(ii) | 1.0229802032 | −1.89 | 0.077835 | 0.05675056 | - | 0.000017101025 | 0.79115025 | - |
(iii) | 1.0229802032 | −1.89 | 0.077835 | - | - | 0.000017101025 | - | - |
a | c | |||||||
---|---|---|---|---|---|---|---|---|
(i) | 1.0229802032 | −1.0089i | 0.077835 | 0.05675056 | 0.0814323409 | 0.000017101025 | 0.79115025 | 0.8115025 |
(ii) | 1.0229802032 | −1.0089i | 0.077835 | 0.05675056 | - | 0.000017101025 | 0.79115025 | - |
(iii) | 1.0229802032 | −1.0089i | 0.077835 | - | - | 0.000017101025 | - | - |
a | c | |||||||
---|---|---|---|---|---|---|---|---|
(i) | 1.0229802032 | −1.89i | 0.077835 | 0.05675056 | 0.0814323409 | 0.000017101025 | 0.79115025 | 0.8115025 |
(ii) | 1.0229802032 | −1.89i | 0.077835 | 0.05675056 | - | 0.000017101025 | 0.79115025 | - |
(iii) | 1.0229802032 | −1.89i | 0.077835 | - | - | 0.000017101025 | - | - |
a | c | |||||||
---|---|---|---|---|---|---|---|---|
(i) | 6.5 | 0 | 0.0097577835 | 0.11295675056 | 0.00975814323409 | 0.17101025 | 0.115025 | 0.8115025 |
(ii) | 6.5 | 0 | 0.0097577835 | 0.11295675056 | - | 0.17101025 | 0.115025 | - |
(iii) | 6.5 | 0 | 0.0097577835 | - | - | 0.17101025 | - | - |
a | c | |||||||
---|---|---|---|---|---|---|---|---|
(i) | 1.65 | 0.12397835 | 0.125675056 | 0.04323409 | 0.17101025 | 0.00179115025 | 0.009118115025 | |
(ii) | 1.65 | 0.12397835 | 0.125675056 | - | 0.17101025 | 0.00179115025 | - | |
(iii) | 1.65 | 0.12397835 | - | - | 0.17101025 | - | - | |
(iv) | 1.65 | - | - | - | 0.17101025 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antal, S.; Tomar, A.; Prajapati, D.J.; Sajid, M. Fractals as Julia Sets of Complex Sine Function via Fixed Point Iterations. Fractal Fract. 2021, 5, 272. https://doi.org/10.3390/fractalfract5040272
Antal S, Tomar A, Prajapati DJ, Sajid M. Fractals as Julia Sets of Complex Sine Function via Fixed Point Iterations. Fractal and Fractional. 2021; 5(4):272. https://doi.org/10.3390/fractalfract5040272
Chicago/Turabian StyleAntal, Swati, Anita Tomar, Darshana J. Prajapati, and Mohammad Sajid. 2021. "Fractals as Julia Sets of Complex Sine Function via Fixed Point Iterations" Fractal and Fractional 5, no. 4: 272. https://doi.org/10.3390/fractalfract5040272
APA StyleAntal, S., Tomar, A., Prajapati, D. J., & Sajid, M. (2021). Fractals as Julia Sets of Complex Sine Function via Fixed Point Iterations. Fractal and Fractional, 5(4), 272. https://doi.org/10.3390/fractalfract5040272