Some Novel Fractional Integral Inequalities over a New Class of Generalized Convex Function
Abstract
:1. Introduction
2. Preliminaries
3. -s-Convex Function
4. Hermite–Hadamard Type and Related Integral Inequalities
5. Fractional Inequalities for - Convex Function
Pachpatte-Type Fractional Inequalities
6. Applications
6.1. Special Means
- (1)
- The arithmetic mean:
- (2)
- The geometric mean:
- (3)
- The logarithmic mean:
6.2. q-Digamma Function
6.3. Modified Bessel Functions
6.4. Matrices
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
H–H | Hermite-Hadamard |
R–L | Riemann-Liouville |
References
- Bertsimas, D.; Popescu, I. Optimal inequalities in probability theory: A convex optimization approach. SIAM J. Optim. 2005, 15, 780–804. [Google Scholar]
- Lin, Z.; Bai, Z. Probability Inequalities of Random Variables. In Probability Inequalities; Springer: Berlin/Heidelberg, Germany, 2010; pp. 37–50. [Google Scholar]
- Rumin, M. Spectral density and Sobolev inequalities for pure and mixed states. Geom. Funct. Anal. 2010, 20, 817–844. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Bermudo, S.; Kórus, P.; Valdés, J.N. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequal. App. 2018, 2018, 302. [Google Scholar] [CrossRef] [Green Version]
- Kotrys, D. Hermite-Hadamard inequality for convex stochastic processes. Aequationes Math. 2012, 83, 143–151. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I.; Safdar, F.; Chu, Y.M. Hermite-Hadamard type inequalities for the class of convex functions on time scale. Mathematics 2019, 7, 956. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, O.; Kılıçman, A. Generalized Integral Inequalities for Hermite-Hadamard-Type Inequalities via s-Convexity on Fractal Sets. Mathematics 2019, 7, 1065. [Google Scholar] [CrossRef] [Green Version]
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
- Krishna, V.; Maenner, E. Convex potentials with an application to mechanism design. Econometrica 2001, 69, 1113–1119. [Google Scholar] [CrossRef]
- Okubo, S.; Isihara, A. Inequality for convex functions in quantum-statistical mechanics. Physica 1972, 59, 228–240. [Google Scholar] [CrossRef]
- Peajcariaac, J.E.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Murota, K.; Tamura, A. New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities. Discret. Appl. Math. 2003, 131, 495–512. [Google Scholar] [CrossRef]
- Kaijser, S.; Nikolova, L.; Persson, L.E.; Wedestig, A. Hardy type inequalities via convexity. Math. Inequal. Appl. 2005, 8, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Gunawan, H.; Eridani. Fractional integrals and generalized Olsen inequalities. Kyungpook Math. J. 2009, 49, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Sawano, Y.; Wadade, H. On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space. J. Fourier Anal. Appl. 2013, 19, 20–47. [Google Scholar] [CrossRef]
- Kunt, M.; Iscan, I. Hermite-Hadamard–Fejér type inequalities for p-convex functions. Arab J. Math. Sci. 2017, 23, 215–230. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Tseng, K.-L.; Tseng, S.-J.; Lo, J.-C. Some weighted Opial-type inequalities on time scales. Taiwan J. Math. 2010, 14, 107–122. [Google Scholar] [CrossRef]
- Luo, C.Y.; Du, T.S.; Kunt, M.; Zhang, Y. Certain new bounds considering the weighted Simpson-like type inequality and applications. J. Inequal. Appl. 2018, 2018, 332. [Google Scholar] [CrossRef]
- Gavrea, B.; Gavrea, I. On some Ostrowski type inequalities. Gen. Math. 2010, 18, 33–44. [Google Scholar]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Hadamard, J. Étude sur les propriétés des fonctions entiéres en particulier d’une fonction considéréé par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar] [CrossRef]
- Avci, M.; Kavurmaci, H.; Özdemir, M.E. New inequalities of Hermite-Hadamard type via s-convex functions in the second sense with applications. Appl. Math. Comp. 2011, 217, 5171–5176. [Google Scholar] [CrossRef]
- İşcan, İ. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
- Toplu, T.; Kadakal, M.; İşcan, İ. n-Polynomial convexity and some related inequalities. AIMS Math. 2020, 5, 1304–1318. [Google Scholar] [CrossRef]
- Butt, S.I.; Rashid, S.; Tariq, M.; Wang, X.H. Novel refinements via n-polynomial harmonically s-type convex functions and Applications in special functions. J. Funt. Spaces 2021, 2021, 6615948. [Google Scholar] [CrossRef]
- Tunç, M.; Göv, E.; Şanal, Ü. On tgs-convex function and their inequalities. Facta Univ. Ser. Math. Inform. 2015, 30, 679–691. [Google Scholar]
- Kadakal, M.; İşcan, İ. Exponential type convexity and some related inequalities. J. Inequal. Appl. 2020, 2020, 82. [Google Scholar] [CrossRef]
- Khan, M.A.; Chu, Y.-M.; Khan, T.U.; Khan, J. Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 2017, 15, 1414–1430. [Google Scholar] [CrossRef]
- Özdemir, M.E.; Yildiz, C.; Akdemir, A.O.; Set, E. On some inequalities for s–convex functions and applications. J. Inequal. Appl. 2013, 333, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Özcan, S.; İşcan, İ. Some new Hermite–Hadamard type inequalities for s-convex functions and their applications. J. Inequal. Appl. 2019, 2019, 201. [Google Scholar] [CrossRef] [Green Version]
- Korus, P. An extension of the Hermite-Hadamard inequality for convex and s-convex functions. Aequationes Math. 2019, 93, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Xi, B.Y.; Qi, F. Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means. J. Funct. Spaces. Appl. 2012, 2012, 980438. [Google Scholar] [CrossRef] [Green Version]
- Mehrez, K.; Agarwal, P. New Hermite-Hadamard type integral inequalities for the convex functions and theirs applications. J. Comp. Appl. Math. 2019, 350, 274–285. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Ahmad, H.; Tariq, M.; Kodamasingh, B.; Aydi, H.; De la Sen, M. Hermite-Hadamard type inequalities involving k-fractional operator for (h,m)-convex Functions. Symmetry 2021, 13, 1686. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Tariq, M.; Ahmad, H.; Aly, A.A.; Felemban, B.F.; Thounthong, P. Some Hermite-Hadamard-Type Fractional Integral Inequalities Involving Twice-Differentiable Mappings. Symmetry 2021, 13, 2209. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Zhang, Z.-H.; Wu, Y.-D. Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables. Math. Comput. Model. 2001, 54, 2709–2717. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z.; Baleanu, D. On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals. Symmetry 2020, 12, 595. [Google Scholar] [CrossRef] [Green Version]
- Awan, M.U.; Noor, M.A.; Mihai, M.V.; Noor, K.I. Fractional Hermite-Hadamard inequalities for differentiable s–Godunova-Levin functions. Filomat 2016, 30, 3235–3241. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Generalised fractional Hermite-Hadamard inequalities involving m-convexity and (s, m)-convexity. Facta Univ. Ser. Math. Inform. 2013, 28, 107–126. [Google Scholar]
- Srivastava, H.M. Fractional-order derivatives and integrals: Introductory overview and recent developments. Kyungpook Math. J. 2020, 60, 73–116. [Google Scholar]
- Fernandez, A.; Mohammed, P.O. Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Meth. Appl. Sci. 2020, 44, 8414–8431. [Google Scholar] [CrossRef]
- Sarikaya., M.Z.; Yildirim., H. On Hermite-Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 2017, 17, 1049–1059. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Brevik, I. A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals. Symmetry 2020, 12, 610. [Google Scholar] [CrossRef] [Green Version]
- Budak, H.Ü.; Agarwal, P. New generalized midpoint type inequalities for fractional integral. Miskolc Math. Notes 2019, 20, 781–793. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Tariq, M.; Ahmad, H.; Nasir, J.; Aydi, H.; Mukheimer, A. New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications. Symmetry 2021, 13, 1429. [Google Scholar] [CrossRef]
- Mohammed, P.O. Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function. Math. Meth. Appl. Sci. 2021, 44, 2314–2324. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Oliveira, E.C. On the Ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; O’Regan, D. On the Hermite-Hadamard type inequality for Ψ-Riemann–Liouville fractional integrals via convex functions. J. Inequal. Appl. 2019, 2019, 27. [Google Scholar] [CrossRef]
- Wu, S.; Awan, M.U.; Noor, M.A.; Noor, K.I.; Iftikhar, S. On a new class of convex functions and integral inequalities. J. Inequal. Appl. 2019, 2019, 131. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, P.O.; Abdeljawad, T.; Zeng, S.; Kashuri, A. Fractional Hermite-Hadamard integral inequalities for a new class of convex functions. Symmetry 2020, 12, 1485. [Google Scholar] [CrossRef]
- Watson, G.N. A Treatise on the Theory of Bessel Functions; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Sababheh, M. Convex functions and means of matrices. arXiv 2016, arXiv:1606.08099v1. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahoo, S.K.; Tariq, M.; Ahmad, H.; Kodamasingh, B.; Shaikh, A.A.; Botmart, T.; El-Shorbagy, M.A. Some Novel Fractional Integral Inequalities over a New Class of Generalized Convex Function. Fractal Fract. 2022, 6, 42. https://doi.org/10.3390/fractalfract6010042
Sahoo SK, Tariq M, Ahmad H, Kodamasingh B, Shaikh AA, Botmart T, El-Shorbagy MA. Some Novel Fractional Integral Inequalities over a New Class of Generalized Convex Function. Fractal and Fractional. 2022; 6(1):42. https://doi.org/10.3390/fractalfract6010042
Chicago/Turabian StyleSahoo, Soubhagya Kumar, Muhammad Tariq, Hijaz Ahmad, Bibhakar Kodamasingh, Asif Ali Shaikh, Thongchai Botmart, and Mohammed A. El-Shorbagy. 2022. "Some Novel Fractional Integral Inequalities over a New Class of Generalized Convex Function" Fractal and Fractional 6, no. 1: 42. https://doi.org/10.3390/fractalfract6010042
APA StyleSahoo, S. K., Tariq, M., Ahmad, H., Kodamasingh, B., Shaikh, A. A., Botmart, T., & El-Shorbagy, M. A. (2022). Some Novel Fractional Integral Inequalities over a New Class of Generalized Convex Function. Fractal and Fractional, 6(1), 42. https://doi.org/10.3390/fractalfract6010042