New Challenges Arising in Engineering Problems with Fractional and Integer Order-II
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, S.; Zhou, Y.; Cai, S. Fractional-Order PD Attitude Control for a Type of Spacecraft with Flexible Appendages. Fractal Fract. 2022, 6, 601. [Google Scholar] [CrossRef]
- Hassan, A.; Aly, M.; Elmelegi, A.; Nasrat, L.; Watanabe, M.; Mohamed, E.A. Optimal Frequency Control of Multi-Area Hybrid Power System Using New Cascaded TID-PIlDmN Controller Incorporating Electric Vehicles. Fractal Fract. 2022, 6, 548. [Google Scholar] [CrossRef]
- Dubey, V.P.; Kumar, D.; Alshehri, H.M.; Dubey, S.; Singh, J. Computational Analysis of Local Fractional LWR Model Occurring in a Fractal Vehicular Traffic Flow. Fractal Fract. 2022, 6, 426. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Khader, M.; Megahed, A.; Abd El-Salam, F.; Adel, M. An Efficient Numerical Simulation for the Fractional COVID-19 Model Using the GRK4M Together with the Fractional FDM. Fractal Fract. 2022, 6, 304. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, J. A New Fifth-Order Finite Difference Compact Reconstruction Unequal-Sized WENO Scheme for Fractional Differential Equations. Fractal Fract. 2022, 6, 294. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, X.; Zhao, K.; Guirao, J.L.G.; Saeed, T.; Chen, H. The Tracking Control of the Variable-Order Fractional Differential Systems by Time-Varying Sliding-Mode Control Approach. Fractal Fract. 2022, 6, 231. [Google Scholar] [CrossRef]
- Yan, Z.; Guirao, J.L.G.; Saeed, T.; Chen, H.; Liu, X. Different Stochastic Resonances Induced by Multiplicative Polynomial Trichotomous Noise in a Fractional Order Oscillator with Time Delay and Fractional Gaussian Noise. Fractal Fract. 2022, 6, 191. [Google Scholar] [CrossRef]
- Gao, W.; Veeresha, P.; Cattani, C.; Baishya, C.; Baskonus, H.M. Modified Predictor–Corrector Method for the Numerical Solution of a Fractional-Order SIR Model with 2019-nCoV. Fractal Fract. 2022, 6, 92. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Aldosary, S.F.; Nisar, K.S. Exact Controllability Results for Sobolev-Type Hilfer Fractional Neutral Delay Volterra-Fredholm Integro-Differential Systems. Fractal Fract. 2022, 6, 81. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Nisar, K.S.; Chalishajar, C.; Shukla, A.; Malik, M.; Alsaadi, A.; Aldosary, S.F. A Note on Approximate Controllability of Fractional Semilinear Integrodifferential Control Systems via Resolvent Operators. Fractal Fract. 2022, 6, 73. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Botmart, T.; Weera, W. A Neuro-Evolution Heuristic Using Active-Set Techniques to Solve a Novel Nonlinear Singular Prediction Differential Model. Fractal Fract. 2022, 6, 29. [Google Scholar] [CrossRef]
- Gu, Y.; Khan, M.A.; Hamed, Y.S.; Felemban, B.F. A Comprehensive Mathematical Model for SARS-CoV-2 in Caputo Derivative. Fractal Fract. 2021, 5, 271. [Google Scholar] [CrossRef]
- Yan, L.; Yel, G.; Kumar, A.; Baskonus, H.M.; Gao, W. Newly Developed Analytical Scheme and Its Applications to the Some Nonlinear Partial Differential Equations with the Conformable Derivative. Fractal Fract. 2021, 5, 238. [Google Scholar] [CrossRef]
- Rahman, G.; Hussain, A.; Ali, A.; Nisar, K.S.; Mohamed, R.N. More General Weighted-Type Fractional Integral Inequalities via Chebyshev Functionals. Fractal Fract. 2021, 5, 232. [Google Scholar] [CrossRef]
- Rashid, S.; Ashraf, R.; Bayones, F.S. A Novel Treatment of Fuzzy Fractional Swift–Hohenberg Equation for a Hybrid Transform within the Fractional Derivative Operator. Fractal Fract. 2021, 5, 209. [Google Scholar] [CrossRef]
- Shokhanda, R.; Goswami, P.; He, J.-H.; Althobaiti, A. An Approximate Solution of the Time-Fractional Two-Mode Coupled Burgers Equation. Fractal Fract. 2021, 5, 196. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baskonus, H.M.; Sánchez Ruiz, L.M.; Ciancio, A. New Challenges Arising in Engineering Problems with Fractional and Integer Order-II. Fractal Fract. 2022, 6, 665. https://doi.org/10.3390/fractalfract6110665
Baskonus HM, Sánchez Ruiz LM, Ciancio A. New Challenges Arising in Engineering Problems with Fractional and Integer Order-II. Fractal and Fractional. 2022; 6(11):665. https://doi.org/10.3390/fractalfract6110665
Chicago/Turabian StyleBaskonus, Haci Mehmet, Luis Manuel Sánchez Ruiz, and Armando Ciancio. 2022. "New Challenges Arising in Engineering Problems with Fractional and Integer Order-II" Fractal and Fractional 6, no. 11: 665. https://doi.org/10.3390/fractalfract6110665
APA StyleBaskonus, H. M., Sánchez Ruiz, L. M., & Ciancio, A. (2022). New Challenges Arising in Engineering Problems with Fractional and Integer Order-II. Fractal and Fractional, 6(11), 665. https://doi.org/10.3390/fractalfract6110665